PD - 90679F IRHN7250 JANSR2N7269U 200V, N-CHANNEL REF:MIL-PRF-19500/603 RADIATION HARDENED POWER MOSFET SURFACE MOUNT(SMD-1) ® ™ RAD-Hard HEXFET TECHNOLOGY Product Summary Part Number IRHN7250 IRHN3250 IRHN4250 IRHN8250 Radiation Level 100K Rads (Si) 300K Rads (Si) 600K Rads (Si) 1000K Rads (Si) RDS(on) 0.1Ω 0.1Ω 0.1Ω 0.1Ω ID 26A 26A 26A 26A QPL Part Number JANSR2N7269U JANSF2N7269U JANSG2N7269U JANSH2N7269U SMD-1 HEXFET® International Rectifier’s RADHard technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low Rds(on) and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters. Features: n n n n n n n n n n Single Event Effect (SEE) Hardened Low RDS(on) Low Total Gate Charge Proton Tolerant Simple Drive Requirements Ease of Paralleling Hermetically Sealed Surface Mount Ceramic Package Light Weight Absolute Maximum Ratings Pre-Irradiation Parameter ID @ VGS = 12V, TC = 25°C ID @ VGS = 12V, TC = 100°C IDM PD @ TC = 25°C VGS EAS IAR EAR dv/dt TJ T STG Continuous Drain Current Continuous Drain Current Pulsed Drain Current ➀ Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy ➁ Avalanche Current ➀ Repetitive Avalanche Energy ➀ Peak Diode Recovery dv/dt ➂ Operating Junction Storage Temperature Range Package Mounting Surface Temperature Weight Units 26 16 104 150 1.2 ±20 500 26 15 5.0 -55 to 150 A W W/°C V mJ A mJ V/ns o 300 for 5 sec) 2.6 (Typical ) C g For footnotes refer to the last page www.irf.com 1 12/17/01 IRHN7250 Pre-Irradiation Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified) Min Typ Max Units 200 — — V — 0.27 — V/°C — — 2.0 8.0 — — — — — — — — 0.10 0.11 4.0 — 25 250 Ω IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (‘Miller’) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance — — — — — — — — — — — — — — — — — — — 4.0 100 -100 170 30 60 33 140 140 140 — C iss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance — — — 4700 850 210 — — — Test Conditions VGS = 0V, ID = 1.0mA Reference to 25°C, ID = 1.0mA VGS = 12V, ID =16A ➃ VGS = 12V, ID = 26A VDS = VGS, ID = 1.0mA VDS > 15V, IDS = 16A ➃ VDS= 160V ,VGS=0V VDS = 160V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VGS =12V, ID =26A VDS = 100V V S( ) Ω Parameter BVDSS Drain-to-Source Breakdown Voltage ∆BVDSS/∆TJ Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage g fs Forward Transconductance IDSS Zero Gate Voltage Drain Current µA nA nC VDD = 100V, ID =26A VGS =12V, RG = 2.35Ω ns nH Measured from the center of drain pad to center of source pad VGS = 0V, VDS = 25V f = 1.0MHz pF Source-Drain Diode Ratings and Characteristics Parameter Min Typ Max Units IS ISM VSD t rr Q RR Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) ➀ Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ton Forward Turn-On Time — — — — — — — — — — 26 104 1.4 820 12 Test Conditions A V nS µC Tj = 25°C, IS = 26A, VGS = 0V ➃ Tj = 25°C, IF = 26A, di/dt ≤ 100A/µs VDD ≤ 25V ➃ Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. Thermal Resistance Parameter R thJC RthJ-PCB Junction-to-Case Junction-to-PC board Min Typ Max Units — — — 6.6 0.83 — Test Conditions °C/W Soldered to a 1 inch square clad PC board Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page 2 www.irf.com Radiation Characteristics Pre-Irradiation IRHN7250 International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ➄➅ Parameter BVDSS VGS(th) IGSS IGSS IDSS RDS(on) RDS(on) VSD 100 K Rads(Si)1 Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source ➃ On-State Resistance (TO-3) Static Drain-to-Source ➃ On-State Resistance (SMD-1) Diode Forward Voltage ➃ 300 - 1000K Rads (Si)2 Test Conditions Units Min Max Min Max 200 2.0 — — — — — 4.0 100 -100 25 0.100 200 1.25 — — — — — 4.5 100 -100 50 0.155 nA µA Ω VGS = 0V, ID = 1.0mA VGS = VDS, ID = 1.0mA VGS = 20V VGS = -20 V VDS=160V, VGS =0V VGS = 12V, ID =16A — 0.100 — 0.155 Ω VGS = 12V, ID =16A — 1.4 1.4 V VGS = 0V, IS = 26A — V 1. Part number IRHN7250 (JANSR2N7269U) 2. Part numbers IRHN3250, IRHN4250 and IRHN8250 (JANSF2N7269U, JANSG2N7269U and JANSH2N7269U) International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2. Table 2. Single Event Effect Safe Operating Area VD S(V) Ion LE T MeV/(mg/cm²)) Energy (MeV) Range (µm) Cu 28 285 43 190 180 170 125 — Br 36.8 305 39 100 100 100 50 — @VGS=0V @VGS=-5V @VGS=-10V @VGS=-15V @VGS=-20V 200 VDS 150 Cu 100 Br 50 0 0 -5 -10 -15 -20 VGS Fig a. Single Event Effect, Safe Operating Area For footnotes refer to the last page www.irf.com 3 IRHN7250 Post-Irradiation Pre-Irradiation Fig 1. Typical Response of Gate Threshhold Fig 2. Typical Response of On-State Resistance Vs. Total Dose Exposure Voltage Vs. Total Dose Exposure Fig 3. Typical Response of Transconductance Vs. Total Dose Exposure 4 Fig 4. Typical Response of Drain to Source Breakdown Vs. Total Dose Exposure www.irf.com Post-Irradiation Pre-Irradiation Fig 5. Typical Zero Gate Voltage Drain Current Vs. Total Dose Exposure IRHN7250 Fig 6. Typical On-State Resistance Vs. Neutron Fluence Level Fig 8a. Gate Stress of VGSS Equals 12 Volts During Radiation Fig 7. Typical Transient Response of Rad Hard HEXFET During 1x1012 Rad (Si)/Sec Exposure www.irf.com Fig 8b. VDSS Stress Equals 80% of BVDSS During Radiation 5 RadiationPost-Irradiation Characteristics Pre-Irradiation IRHN7250 Note: Bias Conditions during radiation: VGS = 12 Vdc, VDS = 0 Vdc Fig 9. Typical Output Characteristics Pre-Irradiation Fig 10. Typical Output Characteristics Post-Irradiation 100K Rads (Si) Fig 11. Typical Output Characteristics Post-Irradiation 300K Rads (Si) Fig 12. Typical Output Characteristics Post-Irradiation 1 Mega Rads (Si) 6 www.irf.com Radiation Characteristics Pre-Irradiation IRHN7250 Note: Bias Conditions during radiation: VGS = 0 Vdc, VDS = 160 Vdc Fig 13. Typical Output Characteristics Pre-Irradiation Fig 14. Typical Output Characteristics Post-Irradiation 100K Rads (Si) Fig 15. Typical Output Characteristics Post-Irradiation 300K Rads (Si) Fig 16. Typical Output Characteristics Post-Irradiation 1 Mega Rads (Si) www.irf.com 7 IRHN7250 Fig 17. Typical Output Characteristics Fig 19. Typical Transfer Characteristics 8 Pre-Irradiation Fig 18. Typical Output Characteristics Fig 20. Normalized On-Resistance Vs. Temperature www.irf.com Pre-Irradiation IRHN7250 29 Fig 21. Typical Capacitance Vs. Drain-to-Source Voltage Fig 22. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 23. Typical Source-Drain Diode Forward Voltage Fig 24. Maximum Safe Operating Area www.irf.com 9 IRHN7250 Pre-Irradiation VDS VGS RD D.U.T. RG + -VDD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 26a. Switching Time Test Circuit VDS 90% 10% VGS Fig 25. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 26b. Switching Time Waveforms Fig 27. Maximum Effective Transient Thermal Impedance, Junction-to-Case 10 www.irf.com Pre-Irradiation IRHN7250 1 5V L VD S D .U .T RG IA S VGS 20V D R IV E R + - VD D A 0 .0 1 Ω tp Fig 28a. Unclamped Inductive Test Circuit V (B R )D S S tp Fig 28c. Maximum Avalanche Energy Vs. Drain Current IAS Current Regulator Same Type as D.U.T. Fig 28b. Unclamped Inductive Waveforms 50KΩ QG 12V .2µF .3µF 12 V QGS QGD + V - DS VGS VG 3mA Charge Fig 29a. Basic Gate Charge Waveform www.irf.com D.U.T. IG ID Current Sampling Resistors Fig 29b. Gate Charge Test Circuit 11 IRHN7250 Pre-Irradiation Foot Notes: ➀ Repetitive Rating; Pulse width limited by maximum junction temperature. ➁ VDD = 25V, starting TJ = 25°C, L=1.48mH Peak IL = 26A, VGS =12V ➂ ISD ≤ 26A, di/dt ≤ 190A/µs, VDD ≤ 200V, TJ ≤ 150°C ➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2% ➄ Total Dose Irradiation with VGS Bias. 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A. ➅ Total Dose Irradiation with VDS Bias. 160 volt VDS applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A. Case Outline and Dimensions — SMD-1 PAD ASSIGNMENTS IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 12/01 12 www.irf.com