RFD20N03, RFD20N03SM Data Sheet 20A, 30V, 0.025 Ohm, N-Channel Power MOSFETs The RFD20N03 and RFD20N03SM N-Channel power MOSFETs are manufactured using the MegaFET process. This process which uses feature sizes approaching those of LSI integrated circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits. Formerly developmental type TA49235. PACKAGE File Number 4350.1 Features • 20A, 30V • rDS(ON) = 0.025Ω • Temperature Compensating PSPICE® Model • Thermal Impedance SPICE Model • Peak Current vs Pulse Width Curve • UIS Rating Curve • 175oC Operating Temperature • Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” Ordering Information PART NUMBER July 1999 BRAND RFD20N03 TO-251AA F20N03 RFD20N03SM TO-252AA F20N03 Symbol D NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-252AA variant in tape and reel, e.g., RFD20N03SM9A. G S Packaging JEDEC TO-251AA JEDEC TO-252AA SOURCE DRAIN GATE DRAIN (FLANGE) GATE SOURCE 4-427 DRAIN (FLANGE) CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 RFD20N03, RFD20N03SM Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS Power Dissipation (Figure 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD Derate Above 25oC (Figure 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg UNITS V V V 30 30 ±20 20 Figure 5 Figure 6 90 0.60 -55 to 175 A W W/oC oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 11) 30 - - V Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V VDS = 30V, VGS = 0V - - 1 µA VDS = 30V, VGS = 0V, TC = 150oC - - 50 µA VGS = ±20V - - 100 nA ID = 20A, VGS = 10V (Figure 9) - 0.022 0.025 Ω VDD = 15V, ID ≅ 20A, RL =0.75Ω, VGS = 10V, RGS = 9.1Ω - - 60 ns - 10 - ns tr - 30 - ns td(OFF) - 12 - ns tf - 32 - ns tOFF - - 66 ns - 60 75 nC - 28 40 nC - 2.4 2.9 nC - 1150 - pF - 550 - pF - 110 - pF Zero Gate Voltage Drain Current IDSS Gate to Source Leakage Current Drain to Source On Resistance IGSS rDS(ON) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge Qg(TOT) VGS = 0V to 20V Gate Charge at 10V Qg(10) VGS = 0V to 10V Threshold Gate Charge Qg(TH) VGS = 0V to 2V Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDD = 15V, ID ≅ 20A, RL = 0.75Ω Ig(REF) = 1.0mA (Figure 13) VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) Thermal Resistance Junction to Case RθJC (Figure 3) - - 1.66 oC/W Thermal Resistance Junction to Ambient RθJA TO-251, TO-252 - - 100 oC/W MIN TYP MAX UNITS ISD = 20A - - 1.25 V trr ISD = 20A, dISD/dt = 100A/µs - - 70 ns QRR ISD = 20A, dISD/dt = 100A/µs - - 145 nC Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge 4-428 SYMBOL VSD TEST CONDITIONS RFD20N03, RFD20N03SM Typical Performance Curves 25 POWER DISSIPATION MULTIPLIER 1.2 ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 0.2 20 15 10 5 0 0 0 25 50 75 100 125 TC , CASE TEMPERATURE (oC) 150 25 175 50 75 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 THERMAL IMPEDANCE ZθJC, NORMALIZED 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 SINGLE PULSE 0.01 10-5 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC 10-4 10-2 10-3 10-1 t, RECTANGULAR PULSE DURATION (s) 100 101 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 500 TJ = MAX RATED TC = 25oC 100 100µs 1ms 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) VGS = 20V IDM, PEAK CURRENT (A) ID, DRAIN CURRENT (A) 500 10ms 100ms DC TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I 100 = I25 175 - TC 150 VGS = 10V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION VDSS(MAX) = 30V 1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 4-429 100 10 10-5 10-4 10-3 10-2 10-1 100 t, PULSE WIDTH (s) FIGURE 5. PEAK CURRENT CAPABILITY 101 RFD20N03, RFD20N03SM Typical Performance Curves 100 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) + 1] VGS = 20V VGS = 10V ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) 300 (Continued) 100 STARTING TJ = 25oC STARTING TJ = 150oC 10 0.001 1 0.01 0.1 tAV, TIME IN AVALANCHE (ms) 80 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC VGS = 7V 60 40 VGS = 6V 20 VGS = 5V 0 10 0 1 2 3 4 5 VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 80 2.0 -55oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 25oC NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID(ON), ON-STATE DRAIN CURRENT (A) 100 FIGURE 7. SATURATION CHARACTERISTICS 175oC 60 40 20 2 4 6 8 1.5 1.0 0.5 -80 0 0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 20A 10 -40 FIGURE 8. TRANSFER CHARACTERISTICS 80 120 160 200 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 40 FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 1.0 0.8 0.6 0.4 -80 0 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 200 FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 4-430 ID = 250µA 1.1 1.0 0.9 0.8 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) 200 FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE RFD20N03, RFD20N03SM Typical Performance Curves (Continued) 10 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD C, CAPACITANCE (pF) 1500 CISS 1200 900 COSS 600 CRSS 300 VGS , GATE TO SOURCE VOLTAGE (V) 1800 0 0 10 20 VDD = 15V 8 6 4 2 0 30 WAVEFORMS IN DESCENDING ORDER: ID = 20A ID = 15A ID = 10A ID = 5A 0 6 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE 12 18 Qg, GATE CHARGE (nC) 24 30 FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS IAS + RG VDS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + VDD DUT Ig(REF) VGS = 10V VGS - VGS = 2V 0 Qg(TH) Ig(REF) 0 FIGURE 16. GATE CHARGE TEST CIRCUIT 4-431 FIGURE 17. GATE CHARGE WAVEFORM RFD20N03, RFD20N03SM Test Circuits and Waveforms (Continued) tON VDS tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 10% 0 90% DUT RGS VGS VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT 4-432 10% 50% 50% PULSE WIDTH FIGURE 19. RESISTIVE SWITCHING WAVEFORMS RFD20N03, RFD20N03SM PSPICE Electrical Model SUBCKT RFD20N03, RFD20N03SM 2 1 3 ; rev 28 Jul 97 CA 12 8 1.3e-9 CB 15 14 1.3e-9 CIN 6 8 9.9e-10 LDRAIN DPLCAP DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD DRAIN 2 5 10 RLDRAIN RSLC1 51 5 51 ESLC 11 - RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 LDRAIN 2 5 1.00e-9 LGATE 1 9 3.57e-9 LSOURCE 3 7 4.25e-9 + 17 EBREAK 18 50 - IT 8 17 1 EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD 8 SOURCE 3 7 RSOURCE RLSOURCE S1A RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 5e-4 RGATE 9 20 1.24 RLDRAIN 2 5 10 RLGATE 1 9 28.6 RLSOURCE 3 7 26.9 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 6.2e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B + RSLC2 EBREAK 11 7 17 18 33.15 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 DBREAK 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 VBAT 5 8 EDS - - IT 14 + + EGS 19 - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*120),3))} .MODEL DBODYMOD D (IS = 9e-13 RS = 6.4e-3 IKF=7.4 TIKF=0.005 N=1.02 TRS1 = 3.5e-3 TRS2 =-1e-5 CJO = 1.78e-9 TT = 4.0e-8 M = 0.4053) .MODEL DBREAKMOD D (RS = 0.1 N=3.5 IKF=-1e-3 TRS1 = -1e-3 TRS2 =1e-6) .MODEL DPLCAPMOD D (CJO = 1.3e-9 IS = 1e-30 N = 10 M = 0.62) .MODEL MMEDMOD NMOS (VTO = 3.17 KP = 1.3 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.24) .MODEL MSTROMOD NMOS (VTO = 3.68 KP = 13 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.68 KP = 0.009 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 12.4 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 8e-4 TC2 = 4.5e-7) .MODEL RDRAINMOD RES (TC1 = 3.5e-2 TC2 = 4.5e-4) .MODEL RSLCMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -1.2e-3 TC2 = -2e-5) .MODEL RVTEMPMOD RES (TC1 = -3.5e-3 TC2 = 1e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -8.60 VOFF= -2.50) VON = -2.50 VOFF= -8.60) VON = 0.00 VOFF= 0.30) VON = 0.30 VOFF= 0.00) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 4-433 RFD20N03, RFD20N03SM SPICE Thermal Model 7 REV 28 July 97 JUNCTION RFD20N03, RFD20N03SM CTHERM1 7 6 9.9e-7 CTHERM2 6 5 1.5e-3 CTHERM3 5 4 2.2e-3 CTHERM4 4 3 5.7e-3 CTHERM5 3 2 7.5e-2 CTHERM6 2 1 5.4e-1 RTHERM1 CTHERM1 6 RTHERM1 7 6 8e-3 RTHERM2 6 5 2.3e-2 RTHERM3 5 4 9.0e-2 RTHERM4 4 3 6.9e-1 RTHERM5 3 2 6.1e-1 RTHERM6 2 1 8.0e-2 RTHERM2 CTHERM2 5 RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 1 CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 4-434