TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 D D D D D D D D D Operational Amplifier Low Supply Voltage . . . 1.8 V to 3.6 V Very Low Supply Current . . . 20 µA (per channel) Ultralow Power Shut-Down Mode – IDD(SHDN) = 10 nA/Channel CMOS Rail-to-Rail Input/Output Input Common-Mode Voltage Range . . . –0.2 V to VDD + 0.2 V Input Offset Voltage . . . 550 µV Wide Bandwidth . . . 500 kHz Slew Rate . . . 0.20 V/µs Specified Temperature Range – 0°C to 70°C . . . Commercial Grade – –40°C to 85°C . . . Industrial Grade Ultrasmall Packaging – 5 or 6 Pin SOT-23 (TLV2760/1) – 8 or 10 Pin MSOP (TLV2762/3) Universal Op-Amp EVM – + SUPPLY CURRENT vs SUPPLY VOLTAGE 20 AV= 1 VIC = VDD/2 TA = 25° C 18 I DD – Supply Current – µ A D D 16 14 12 10 8 6 4 2 0 0 0.6 1.2 1.8 2.4 3 3.6 VDD – Supply Voltage – V description The TLV276x single supply operational amplifiers provide 500 kHz bandwidth from only 20 µA while operating down to 1.8 V over the industrial temperature range. The maximum recommended supply voltage is 3.6 V, which allows the devices to be operated from ( 1.8 V supplies down to 0.9 V) two AA or AAA cells. The devices have been characterized at 1.8 V (end of life of 2 AA(A) cells) and at 2.4 V (nominal voltage of 2 Nicd/NiMH cells). The TLV276x have rail-to-rail input and output capability which is a necessity at 1.8 V. " " The low supply current is coupled with extremely low input bias currents enabling them to be used with mega-ohm resistors. Low shutdown current of only 10 nA make these devices ideal for low frequency measurement applications desiring long active battery life. All members are available in PDIP and SOIC with the singles in the small SOT-23 package, duals in the MSOP, and quads in the TSSOP package. SELECTION OF SINGLE SUPPLY AMPLIFIER PRODUCTS DEVICE VDD (V) VIO (µV) IDD/Ch (µA) IIB (pA) GBW (MHz) SR (V/µs) Vn,1kHz (nV/rtHz) IO (mA) SHUTDOWN RAIL-TORAIL TLV224x 2.5 – 12 600 1 100 0.0055 0.002 NA 0.2 — I/O TLV2211 2.7 – 10 450 13 1 0.065 0.025 21 0.4 — O TLV276x 1.8 – 3.6 550 20 3 0.5 0.23 95 5 Y I/O TLV245x(A) 2.7 – 6 20 23 500 0.22 0.11 49 2.5 Y I/O TLV246x(A) 2.7 – 6 150 550 1300 6.4 1.6 11 25 Y I/O TLV278x(A) 1.8 – 3.6 250 650 2.5 8 5 18 10 Y I/O Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2001, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 TLV2760 and TLV2761 AVAILABLE OPTIONS PACKAGED DEVICES VIOmax AT 25 C 25°C TA SOT-23 SMALL OUTLINE (D)† (DBV)‡ SYMBOL PLASTIC DIP (P) — — — — — — 0°C to 70°C 3500 µV TLV2760CD TLV2761CD – 40°C to 85°C 3500 µV TLV2760ID TLV2761ID TLV2760IDBV TLV2761IDBV VANI VAXI TLV2760IP TLV2761IP † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2760CDR). ‡ This package is only available taped and reeled. For standard quantities (3,000 pieces per reel), add an R suffix (i.e., TLV2760CDBVR). For smaller quantities (250 pieces per mini-reel), add a T suffix to the part number (e.g. TLV2760CDBVT). TLV2762 and TLV2763 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25 25°C C SMALL OUTLINE (D)† DGK† SYMBOL DGS† SYMBOL PLASTIC DIP (N) MSOP PLASTIC DIP (P) 0°C to 70°C 3500 µV TLV2762CD TLV2763CD — — — — — — — — — — — — – 40°C to 85°C 3500 µV TLV2762ID TLV2763ID TLV2762IDGK — xxTIAJP — — TLV2763IDGS — xxTIAJR — TLV2763IN TLV2762IP — † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2762CDR). TLV2764 and TLV2765 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOma max AT 25°C 0°C to 70°C – 40°C to 85°C SMALL OUTLINE (D)† PLASTIC DIP (N) 3500 µV TLV2764CD TLV2765CD — — 3500 µV TLV2764ID TLV2765ID TLV2764IN TLV2765IN TSSOP (PW)† — — TLV2764IPW TLV2765IPW † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2764CDR). 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 TLV276x PACKAGE PINOUTS TLV2760 D OR P PACKAGE (TOP VIEW) TLV2760 DBV PACKAGE (TOP VIEW) OUT 1 6 VDD GND 2 5 SHDN IN+ 3 4 IN – TLV2761 D OR P PACKAGE (TOP VIEW) NC IN – IN + GND 1OUT 1IN – 1IN+ GND NC 1SHDN NC 1 8 2 7 3 6 4 5 NC IN – IN + GND 1 8 2 7 3 6 4 5 TLV2761 DBV PACKAGE (TOP VIEW) SHDN VDD OUT NC OUT 1 GND 2 IN+ 3 1OUT 1IN – 1IN + GND 1 8 2 7 3 6 4 5 VDD 2OUT 2IN – 2IN+ VDD 4 IN – TLV2763 DGS PACKAGE (TOP VIEW) TLV2762 D, DGK, OR P PACKAGE (TOP VIEW) NC VDD OUT NC 5 1OUT 1IN – 1IN+ GND 1SHDN 1 2 3 4 5 10 9 8 7 6 VDD 2OUT 2IN – 2IN+ 2SHDN TLV2763 D OR N PACKAGE TLV2764 D, N, OR PW PACKAGE TLV2765 D, N, OR PW PACKAGE (TOP VIEW) (TOP VIEW) (TOP VIEW) 1 14 2 13 3 12 4 11 5 10 6 9 7 8 VDD 2OUT 2IN – 2IN+ NC 2SHDN NC 1OUT 1IN – 1IN+ VDD 2IN+ 2IN – 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN – 4IN+ GND 3IN+ 3IN – 3OUT 1OUT 1IN – 1IN+ VDD 2IN+ 2IN – 2OUT 1SHDN 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 4OUT 4IN – 4IN+ GND 3IN + 3IN– 3OUT 2SHDN NC – No internal connection POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V Differential input voltage range, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VDD Input current range, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA Output current range, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 10 mA Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values, except differential voltages, are with respect to GND DISSIPATION RATING TABLE PACKAGE ΘJC (°C/W) ΘJA (°C/W) TA ≤ 25°C POWER RATING TA = 85°C POWER RATING D (8) 38.3 176 710 mW 369 mW D (14) 26.9 122 1022 mW 531 mW D (16) 25.7 114 1090 mW 567 mW DBV (5) 55 324 385 mW 201 mW DBV (6) 55 294 425 mW 221 mW DGK(8) 54.2 260 481 mW 250 mW DGS(10) 54.1 258 485 mW 252 mW N (14,16) 32 78 1600 mW 833 mW P 41 104 1200 mW 625 mW PW (14) 29.3 174 720 mW 374 mW PW (16) 28.7 161 774 mW 403 mW recommended operating conditions Supply voltage voltage, VDD Single supply Split supply Common-mode input voltage range, VICR Operating free-air free air temperature, temperature TA Shutdown on/off voltage level (see Note 2) C-suffix I-suffix VIH VDD < 2.7 V VDD = 2.7 to 3.6 V VIL POST OFFICE BOX 655303 MAX 1.8 3.6 ±0.8 ±1.8 –0.2 0 VDD+0.2 70 – 40 85 • DALLAS, TEXAS 75265 UNIT V V °C 0.75 VDD V 2 0.6 NOTE 2: Relative to GND 4 MIN TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 electrical characteristics at recommended operating conditions, VDD = 1.8 V, 2.4 V (unless otherwise noted) dc performance PARAMETER VIO Input offset voltage αVIO Offset voltage drift TEST CONDITIONS VIC = VDD/2, VO = VDD/2, /2 RL = 300 kΩ kΩ, RS = 50 Ω 25°C MAX 550 3500 6800 25°C 50 Full range 48 VICR = 0 V to VDD, RS = 50 Ω 25°C 53 Full range 50 25°C 55 Full range 55 25°C 63 Full range 60 25°C 20 Full range 18 25°C 28 VDD = 2.4 24V Full range 23 25°C 45 VDD = 3.6 36V Full range 37 VDD = 2 2.4 4V VDD = 2 2.4 4V V, 3 3.6 6V VDD = 1.8 18V RL = 10 kΩ,, VO(PP) = VDD/2 UNIT µV µV/°C 9 VICR = 1.2 V to VDD, RS = 50 Ω AVD TYP Full range VDD = 3 3.6 6V Large-signal g g differential voltage g amplification MIN TLV276x VDD = 1 1.8 8V CMRR Common-mode rejection ratio TA† 70 dB 72 dB dB 76 dB 82 dB 60 V/mV 78 120 V/mV † Full range is 0°C to 70°C for the C suffix and –40°C to 85°C for the I suffix. If not specified, full range is – 40°C to 85°C. input characteristics PARAMETER IIO Input offset current IIB Input bias current ri(d) Differential input resistance TEST CONDITIONS VIC = VDD/2, VO = VDD/2, RL = 300 kΩ, RS = 50 Ω TA† 25°C TLV276xC Full range TLV276xI Full range 25°C TLV276xC Full range TLV276xI Full range 25°C MIN TYP 3 MAX UNIT 15 100 pA 200 3 15 100 pA 200 1000 GΩ ci(c) Common-mode input capacitance f = 16 kHz 25°C 10 † Full range is 0°C to 70°C for the C suffix and –40°C to 85°C for the I suffix. If not specified, full range is – 40°C to 85°C. pF POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 electrical characteristics at recommended operating conditions, VDD = 1.8 V, 2.4 V (unless otherwise noted) (continued) output characteristics PARAMETER TEST CONDITIONS VDD = 1 1.8V 8V VIC = VDD/2,, IOH = – 100 µA VDD = 2 2.4V 4V 6V VDD = 3 3.6V VOH High level output voltage High-level VDD = 1 1.8V 8V VIC = VDD/2,, IOH = – 500 µA VDD = 2 2.4V 4V VDD = 3 3.6V 6V IOL = 100 µA VIC = VDD/2 /2, VOL IO Low level output voltage Low-level Output current VIC = VDD/2 /2, IOL = 500 µA VDD = 1.8 V,, VO = 0.5 V from Positive rail VDD = 2.4 V,, VO = 0.5 V from Positive rail Negative rail Negative rail Sourcing VDD = 1 1.8 8V IOS Sinking Short circuit output current Short-circuit Sourcing VDD = 2 2.4 4V Sinking TA† MIN TYP 1.79 25°C 1.77 Full range 1.76 25°C 2.38 Full range 2.37 25°C 3.58 Full range 3.57 25°C 1.725 Full range 25°C Full range 25°C Full range MAX UNIT 2.39 3.59 V 1.75 1.7 2.325 2.35 2.3 3.525 3.55 3.5 25°C 10 Full range 20 30 25°C 50 Full range 75 mV 100 4.8 25°C 7.2 mA 7.3 25°C 10.2 7 25°C 10 mA 15 25°C 19 † Full range is 0°C to 70°C for the C suffix and –40°C to 85°C for the I suffix. If not specified, full range is – 40°C to 85°C. power supply, VDD = 1.8 V, 2.4 V, 3.6 V (unless otherwise noted) PARAMETER IDD Supply current (per channel) TEST CONDITIONS VO = VDD/2 /2, SHDN = VDD VDD = 1.8 V to 2.4 V,, VIC = VDD /2 kSVR Supplyy voltage g rejection j ratio (∆VDD /∆VIO) VDD = 2.4 V to 3.6 V,, VIC = VDD /2 No load VDD = 1.8 V to 3.6 V,, VIC = VDD /2 TA† 25°C MIN TYP MAX 20 28 Full range 30 25°C 65 Full range 63 25°C 65 Full range 63 25°C 65 Full range 63 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 µA 85 85 85 † Full range is 0°C to 70°C for the C suffix and –40°C to 85°C for the I suffix. If not specified, full range is – 40°C to 85°C. 6 UNIT dB TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 electrical characteristics at recommended operating conditions, VDD = 1.8 V, 2.4 V (unless otherwise noted) (continued) dynamic performance PARAMETER UGBW TA† TEST CONDITIONS Unity gain bandwidth RL = 300 kΩ , CL = 10 pF VDD = 1 1.8 8V SR+ Positive slew rate at unity gain VO(PP) = 1 V,, RL = 300 kΩ,, CL = 50 pF, VDD = 2 2.4 4V 6V VDD = 3 3.6 VDD = 1 1.8 8V SR SR– Negative slew rate at g unity gain VO(PP) = 1 V,, RL = 300 kΩ,, CL = 50 pF, 4V VDD = 2 2.4 VDD = 3 3.6 6V φm Phase margin Gain margin ts Settling time MIN 25°C TYP MAX 500 25°C 0.11 Full range 0.09 25°C 0.11 Full range 0.09 25°C 0.11 Full range 0.09 25°C 0.08 Full range 0.07 25°C 0.10 Full range 0.09 25°C 0.10 Full range 0.09 UNIT kHz 0.20 V/µs 0.22 0.23 V/µs 0.15 V/µs 0.18 0.22 V/µs 25°C 63 ° 25°C 20 dB RL = 300 kΩ kΩ, CL = 100 pF VDD = 1.8 V,, V(STEP)PP = 1 V,, AV = –1, CL = 10 pF, RL = 300 kΩ 0.1% 6.4 0.01% 13.7 VDD = 2.4 V,, V(STEP)PP = 1 V,, AV = –1, CL = 10 pF, RL = 300 kΩ 0.1% 25°C µs 6 0.01% 13.9 † Full range is 0°C to 70°C for the C suffix and –40°C to 85°C for the I suffix. If not specified, full range is – 40°C to 85°C. noise/distortion PARAMETER THD + N Total harmonic distortion plus noise Vn Equivalent input noise voltage In Equivalent input noise current TEST CONDITIONS VDD = 1.8 V, VO(PP) = VDD/2 V, V RL = 300 kΩ kΩ, f = 1 kHz AV = 1 VDD = 2.4 V, VO(PP) = VDD/2 V, V RL = 300 kΩ kΩ, f = 1 kHz AV = 1 AV = 10 TA MIN MAX UNIT 0.08% 0.10% 25°C AV = 100 AV = 10 TYP 0.27% 0.06% 0.08% 25°C AV = 100 0.24% f = 1 kHz 25°C 95 f = 10 kHz 25°C 75 f = 1 kHz 25°C 0.8 nV/√Hz fA /√Hz shutdown characteristics PARAMETER IDD(SHDN) TEST CONDITIONS Supply y current,, all channels in shutdown mode (TLV2760, TLV2763, TLV2765) (per channel) SHDN = 0 V TA† 25°C Full range MIN TYP 10 MAX 50 400 UNIT nA t(on) Amplifier turnon time (see Note 3) RL = 300 kΩ 25°C 5 µs t(off) Amplifier turnoff time (see Note 3) RL = 300 kΩ 25°C 0.8 µs † Full range is 0°C to 70°C for the C suffix and –40°C to 85°C for the I suffix. If not specified, full range is – 40°C to 85°C. NOTE 3: Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current has reached half its final value. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO CMRR Input offset voltage vs Common-mode input voltage Common-mode rejection ratio vs Frequency VOH VOL High-level output voltage vs High-level output current 4, 6 Low-level output voltage vs Low-level output current 5, 7 VO(PP) IDD Maximum peak-to-peak output voltage vs Frequency Supply current vs Supply voltage 9 IDD PSRR Supply current vs Free-air temperature 10 Power supply rejection ratio vs Frequency 11 AVD Differential voltage amplification & phase vs Frequency 12 vs Temperature 13 vs Supply voltage 14 Gain bandwidth product Gain-bandwidth vs Supply voltage 1, 2 3 8 15 SR Slew rate φm Vn Phase margin vs Load capacitance 18 Equivalent input noise voltage vs Frequency 19 Supply current and output voltage vs Time 20 Voltage-follower large-signal pulse response vs Time 21 Voltage-follower small-signal pulse response vs Time 22 Inverting large-signal response vs Time 23 Inverting small-signal response vs Time 24 Crosstalk vs Frequency 25 vs Free-air temperature 16, 17 Shutdown forward & reverse isolation vs Frequency 26 IDD(SHDN) IDD(SHDN) Shutdown supply current vs Supply voltage 27 Shutdown supply current vs Free-air temperature 28 IDD(SHDN) IDD(SHDN) Shutdown pin leakage current vs Shutdown pin voltage 29 Shutdown supply current/output voltage vs Time 30 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 300 350 VDD=1.8 V VDD=2.4 V TA=25° C VIO – Input Offset Voltage – µ V 200 150 100 50 0 –50 –100 –0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VICR – Common-Mode Input Voltage – V TA=25 °C 300 250 200 150 100 50 0 –50 –0.2 0.2 0.6 1 1.4 1.8 2.2 2.6 VICR – Common-Mode Input Voltage – V HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 0.8 TA=25°C TA=0°C TA=–40°C 0.6 0.4 0.2 1 2 3 4 5 6 7 8 IOH – High-Level Output Current – mA 1.6 1.4 TA=85°C 1.2 TA=70°C 1.0 TA=25°C TA=0°C TA=–40°C 0.8 0.6 0.4 0.2 0 1 2 3 4 5 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT VOL – Low-Level Output Voltage – V 2.4 VDD= 2.4 V 2.1 TA=85°C TA= 70°C TA=25°C TA=0°C TA=–40°C 1.2 0.9 0.6 0.3 0.0 0 6 7 8 VDD = 2.4 V 1.8 1.5 TA=85°C 1.2 TA=70°C 0.9 TA=25°C TA=0°C TA=–40°C 0.6 0.3 0 0 9 10 11 12 2 4 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 IOL – Low-Level Output Current – mA 6 8 10 12 14 16 18 20 IOH – High-Level Output Current – mA Figure 5 1.5 1M 2.1 IOL – Low-Level Output Current – mA Figure 4 1.8 100k 2.4 0.0 0.0 0 100 10k 1k f – Frequency – Hz HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT V OH – High-Level Output Voltage – V 1.4 TA=70°C 10 Figure 3 VDD=1.8 V VOL – Low-Level Output Voltage – V 1.6 1.0 VDD = 1.8 V 1 1.8 VDD=1.8 V TA=85°C VDD = 2.4 V LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 1.8 1.2 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure 2 Figure 1 Figure 6 V O(PP) – Maximum Peak-To-Peak Output Voltage – V VIO – Input Offset Voltage – µ V 250 V OH – High-Level Output Voltage – V COMMON-MODE REJECTION RATIO vs FREQUENCY CMRR – Common-Mode Rejection Ratio – dB INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 2.8 2.6 2.4 2.2 VO(PP)= 2.4 V 2.0 1.8 1.6 VO(PP)= 1.8 V 1.4 1.2 1.0 0.8 0.6 0.4 AV = –10 RL=300 kΩ CL = 10 pF TA = 25° C 0.2 10 100 1k 10k 100k 1M f – Frequency – Hz Figure 8 Figure 7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 TYPICAL CHARACTERISTICS SUPPLY CURRENT vs FREE-AIR TEMPERATURE SUPPLY CURRENT vs SUPPLY VOLTAGE AV= 1 VIC = VDD/2 16 TA = 85°C 14 TA = 25°C 12 TA = 0°C 10 TA = –40°C 8 6 TA = 70°C 4 22 I DD – Supply Current – mA 18 PSRR – Power Supply Rejection Ratio – dB 24 20 I DD – Supply Current – µ A POWER SUPPLY REJECTION RATIO vs FREQUENCY VDD = 3.6 V 20 18 VDD = 2.4 V VDD = 1.8 V 16 14 12 2 0 0 0.6 1.2 1.8 2.4 3 10 –40 3.6 –15 10 35 60 TA – Free-Air Temperature – °C VDD – Supply Voltage – V Figure 9 90 Phase 60 30 40 0 20 –30 –60 Gain VDD = 1.8 V & 2.4 V RL= 300 kΩ CL = 10 pF TA = 25° C 100 1k 10k –90 –120 –150 400 VDD = 1.8 V 300 200 100 5 20 35 50 65 80 85 TA – Temperature – °C Figure 13 GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE SLEW RATE vs SUPPLY VOLTAGE 0.36 RL = 300 kΩ CL = 10 pF f = 10 kHz Ta = 25°C 0.32 SR – Slew Rate – V/µs GBWP – Gain Bandwidth Product – kHz 10k 500 480 460 440 0.28 SR+ 0.24 0.20 SR– 0.16 AV = 1 RL = 300 kΩ CL =50 pF TA = 25° C 0.12 0.08 420 0.04 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 0.00 1.8 VDD – Supply Voltage – V Figure 14 10 1k RL = 300 kΩ CL = 10 pF f = 10 kHz VDD = 2.4 V 600 0 –40 –25 –10 –180 1M 100k 500 400 100 f – Frequency – Hz Figure 12 520 –20 10 f – Frequency – Hz 540 0 GAIN BANDWIDTH PRODUCT vs TEMPERATURE GBWP – Gain Bandwidth Product – kHz 120 Phase Margin – ° A VD – Differential Voltage Gain – dB 80 560 20 700 150 –40 10 40 Figure 11 180 –20 60 Figure 10 100 0 VDD=2.4 V TA=25°C 80 85 DIFFERENTIAL VOLTAGE GAIN AND PHASE vs FREQUENCY 60 100 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VDD – Supply Voltage – V Figure 15 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100k 1M TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 TYPICAL CHARACTERISTICS SLEW RATE vs FREE-AIR TEMPERATURE 0.32 0.28 0.28 90 SR – Slew Rate – V/µs 0.24 0.20 SR– 0.16 VDD = 1.8 V AV = 1 RL=300 kΩ CL=50 pF VIC = VDD/2 0.08 0.04 0.00 –40 –25 –10 5 20 35 50 65 SR– 0.20 0.16 0.12 VDD = 2.4 V AV = 1 RL= 300 kΩ CL = 50 pF VIC = VDD/2 0.08 0.04 0.00 –40 80 85 TA – Free-Air Temperature – °C 10 35 60 40 30 VDD = 2.4 V RL = 300 kΩ AV = Open Loop TA = 25°C 20 10 85 10 100 Figure 18 SUPPLY CURRENT AND OUTPUT VOLTAGE vs TIME 20 500 15 TA = 25°C 450 VDD = 2.4 V 350 300 250 200 150 10 IDD 5 0 2 0 VO VDD = 1.8 V 10 100 1k 10k 0 100k 1 Figure 19 2 VI 0 2.5 2 VO 1.5 1 0.5 0 0.2 0.4 0.6 0.8 0 1 1.2 1.4 1.6 1.8 V O – Output Voltage – V 1 0 –0.5 4 5 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE vs TIME V I – Input Voltage – V 2.5 0.5 3 0.5 Figure 20 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE vs TIME VDD = 2.4 V AV =1 RL = 300 kΩ CL = 10 pF TA = 25°C 2 1 t – Time – µs f – Frequency – Hz 1.5 1.5 VDD = 3.6 V AV = 1 VIN = VDD/2 RL = 300 kΩ CL = 10 pF TA = 25°C 100 50 1k CL – Load Capacitance – pF Figure 17 IDD – Supply Current – µ A Hz Rnull=100 Ω 50 TA – Free-Air Temperature – °C EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY V n – Equivalent Input Noise Voltage – nV/ 60 0 –15 Figure 16 400 70 1.26 1.24 1.22 VI 1.20 1.18 1.16 1.14 1.26 1.24 VDD = 2.4 V AV = 1 RL = 300 kΩ CL = 10 pF TA = 25°C 0 1 2 3 4 VO 1.22 1.20 1.18 1.16 5 6 7 1.14 8 V O – Output Voltage – V 0.12 Rnull=0 Ω 80 SR+ V O – Output Voltage – V SR+ 0.24 PHASE MARGIN vs LOAD CAPACITANCE φ m – Phase Margin – ° 0.32 V I – Input Voltage – V SR – Slew Rate – V/µs SLEW RATE vs FREE-AIR TEMPERATURE t – Time – µs t – Time – µs Figure 21 Figure 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 TYPICAL CHARACTERISTICS INVERTING SMALL-SIGNAL PULSE RESPONSE vs TIME 2 1.5 VI 1 0.5 0 2.5 VDD = 2.4 V AV = 1 RL = 300 kΩ CL = 10 pF TA = 25°C 2 1.5 VO 1 0.5 0 10 20 30 40 50 60 70 80 90 0 1.28 1.24 1.20 VI 1.16 VDD = 2.4 V RL = 300 kΩ CL = 10 pF AV = 1 TA = 25°C 1.12 0 1.16 Figure 24 Shutdown Forward and Reverse Isolation – dB 0 VDD = 1.8 V & 2.4 V VI = VDD/2 AV = 1 RL= 300 kΩ TA = 25°C All Channels Crosstalk – dB –60 Crosstalk in Shutdown –80 –100 –120 Crosstalk/No Shutdown –140 100 1k 10k f – Frequency – Hz 100k SHUTDOWN FORWARD AND REVERSE ISOLATION vs FREQUENCY 100 90 Forward and Reverse Isolation 80 70 60 50 40 VDD = 1.8 & 2.4 V VI = VDD /2 RL = 300 kΩ CL= 10 pF AV = +1 TA = 25°C 30 20 10 0 10 100 1k .12 I DD – Shutdown Supply Current – µ A I DD – Shutdown Supply Current –µ A TA = 25°C .008 .006 TA = 0°C .004 TA = –40°C .002 0 0 0.4 0.8 1.2 1.6 2 2.4 2.8 VDD – Supply Voltage – V Figure 27 12 3.2 3.6 1M .10 VDD = 1.8, 2.4, 3.6 V SHDN = 0V VIN = VDD/2 AV = 1 .08 .06 .04 .02 0 –40 –25 –10 5 20 35 50 65 80 85 TA – Free-Air Temperature – °C Figure 28 POST OFFICE BOX 655303 SHUTDOWN PIN LEAKAGE CURRENT vs SHUTDOWN PIN VOLTAGE I DD – Shutdown Pin Leakage Current – pA SHUTDOWN SUPPLY CURRENT vs FREE-AIR TEMPERATURE .014 .010 100k Figure 26 SHUTDOWN SUPPLY CURRENT vs SUPPLY VOLTAGE .012 10k f – Frequency – Hz Figure 25 SHDN = 0 V VIN = VDD/2 AV = 1 1.12 40 45 t – Time – µs CROSSTALK vs FREQUENCY 10 1.20 10 15 20 25 30 35 5 Figure 23 –40 1.24 VO t – Time – µs –20 1.28 V O – Output Voltage – V V I – Input Voltage – V 2.5 V O – Output Voltage – V V I – Input Voltage – V INVERTING LARGE-SIGNAL RESPONSE vs TIME • DALLAS, TEXAS 75265 20 VDD = 3.6 V TA = 85°C 15 10 5 0 –5 –10 –15 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 Shutdown Pin Voltage – V Figure 29 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 TYPICAL CHARACTERISTICS V O – Output Voltage – V SHDN – Shutdown Pulse – V SHUTDOWN SUPPLY CURRENT / OUTPUT VOLTAGE vs TIME 3.0 2.5 2.0 1.5 1.0 0.5 0.0 –0.5 SHDN 1.5 1.3 1.0 0.8 VO 0.5 0.3 0.0 VDD = 2.4 V AV = 1 RL = 300 kΩ CL = 10 pF VIC = VDD/2 TA = 25° C I DD – Supply Current – µA –0.3 18 16 14 12 10 8 6 4 2 0 –2 20 IDD(SHDN = 0) 40 60 80 100 120 140 160 t – Time – µs Figure 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 APPLICATION INFORMATION driving a capacitive load When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as shown in Figure 31. A minimum value of 20 Ω should work well for most applications. RF RG RNULL – Input Output + CLOAD VDD/2 Figure 31. Driving a Capacitive Load offset voltage The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage: RF IIB– RG + – VI VO + RS ǒ ǒ ǓǓ ǒ ǒ ǓǓ IIB+ V OO + VIO 1 ) R R F G " IIB) RS 1 ) R R F G " IIB– RF Figure 32. Output Offset Voltage Model general configurations When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 33). 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 APPLICATION INFORMATION general configurations (continued) RG RF VDD/2 – VO + VI R1 V O V I C1 + ǒ Ǔǒ 1 ) RRF G f –3dB Ǔ ) sR1C1 1 1 1 + 2pR1C1 Figure 33. Single-Pole Low-Pass Filter If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier. C1 + _ VI R1 R1 = R2 = R C1 = C2 = C Q = Peaking Factor (Butterworth Q = 0.707) R2 f C2 RF RG –3dB RG = + 2p1RC ( RF 1 2– Q ) VDD/2 Figure 34. 2-Pole Low-Pass Sallen-Key Filter circuit layout considerations To achieve the levels of high performance of the TLV276x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following. D D Ground planes—It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance. Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 APPLICATION INFORMATION circuit layout considerations (continued) D D D Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation. Short trace runs/compact part placements—Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier. Surface-mount passive components—Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible. shutdown function Three members of the TLV276x family (TLV2760/3/5) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is pulled low, the supply current is reduced to 10 nA/channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the shutdown terminal must be pulled high. The shutdown terminal should never be left floating. If the shutdown feature is not desired, directly tie the shutdown terminal to the positive rail. The shutdown terminal threshold is always referenced to the GND terminal of the device. Therefore, when operating the device with split supply voltages (e.g. ± 1.8 V), the shutdown terminal needs to be pulled to the negative rail, not the system ground, to disable the operational amplifier. The amplifier is powered with a single 2.4-V supply and configured as a noninverting configuration with a unity gain. Turnon and turnoff times are defined as the interval between application of the logic signal to the shutdown pin and the point at which the supply current has reached half its final value. The times for the single, dual, and quad are listed in the data tables. general power dissipation considerations ǒ Ǔ For a given θJA, the maximum power dissipation is shown in Figure 35 and is calculated by the following formula: P Where: D + T –T MAX A q JA PD = Maximum power dissipation of TLV276x IC (watts) TMAX = Absolute maximum junction temperature (150°C) TA = Free-ambient air temperature (°C) θJA = θJC + θCA θJC = Thermal coefficient from junction to case θCA = Thermal coefficient from case to ambient air (°C/W) 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 APPLICATION INFORMATION general power dissipation considerations (continued) MAXIMUM POWER DISSIPATION vs FREE-AIR TEMPERATURE 2 Maximum Power Dissipation – W 1.75 PDIP Package Low-K Test PCB θJA = 104°C/W 1.5 1.25 SOIC Package Low-K Test PCB θJA = 176°C/W TJ = 150°C MSOP Package Low-K Test PCB θJA = 260°C/W 1 0.75 0.5 0.25 SOT-23 Package Low-K Test PCB θJA = 324°C/W 0 –55 –40 –25 –10 5 20 35 50 65 80 95 110 125 TA – Free-Air Temperature – °C NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB. Figure 35. Maximum Power Dissipation vs Free-Air Temperature POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts Release 9.1, the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 4) and subcircuit in Figure 36 are generated using TLV276x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D Maximum positive output voltage swing D Unity-gain frequency D Maximum negative output voltage swing D Common-mode rejection ratio D Slew rate D Phase margin D Quiescent power dissipation D DC output resistance D Input bias current D AC output resistance D Open-loop voltage amplification D Short-circuit output current limit NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 3 99 VDD + egnd rd1 rd2 rss ro2 css fb rp – c1 7 11 12 + c2 vlim 1 + r2 9 6 IN+ – vc D D 8 + – vb ga 2 G G – IN– ro1 gcm ioff 53 S S OUT dp 91 10 iss GND 4 dlp – vlp – ve + 54 5 92 – hlim – vln + de *DEVICE=amp_tlv276x_highVdd,OPAMP,NJF,INT * amp_tlv_276x_highVdd operational amplifier ”macromodel” * subcircuit updated using Model Editor release 9.1 on 05/15/00 * at 14:40 Model Editor is an OrCAD product. * * connections: non-inverting input * | inverting input * | | positive power supply * | | | negative power supply * | | | | output * | | | | | .subckt amp_tlv276x_highVdd 1 2 3 4 5 * c1 11 12 457.48E–15 c2 6 7 5.0000E–12 css 10 99 1.1431E–12 dc 5 53 dy de 54 5 dy dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 176.02E6 –1E3 1E3 180E6 –180E6 ga gcm iss hlim j1 J2 r2 rd1 rd2 ro1 ro2 rp rss vb vc ve vlim vlp vln .model .model .model .model .ends 6 0 10 90 11 12 6 3 3 8 7 3 10 9 3 54 7 91 0 dx dy jx1 jx2 0 11 12 16.272E–6 6 10 99 6.8698E–9 4 dc 1.3371E–6 0 vlim 1K 2 10 jx1 1 10 jx2 9 100.00E3 11 61.456E3 12 61.456E3 5 10 99 10 4 150.51E3 99 149.58E6 0 dc 0 53 dc .78905 4 dc .78905 8 dc 0 0 dc 14.200 92 dc 14.200 D(Is=800.00E–18) D(Is=800.00E–18 Rs=1m Cjo=10p) NJF(Is=500.00E–15 Beta=198.03E–6 Vto=–1) NJF(Is=500.00E–15 Beta=198.03E–6 Vto=–1) Figure 36. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. 18 90 + + dc dln POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 MECHANICAL DATA D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0.050 (1,27) 0.020 (0,51) 0.014 (0,35) 14 0.010 (0,25) M 8 0.008 (0,20) NOM 0.244 (6,20) 0.228 (5,80) 0.157 (4,00) 0.150 (3,81) Gage Plane 0.010 (0,25) 1 7 0°– 8° A 0.044 (1,12) 0.016 (0,40) Seating Plane 0.069 (1,75) MAX 0.010 (0,25) 0.004 (0,10) PINS ** 0.004 (0,10) 8 14 16 A MAX 0.197 (5,00) 0.344 (8,75) 0.394 (10,00) A MIN 0.189 (4,80) 0.337 (8,55) 0.386 (9,80) DIM 4040047 / D 10/96 NOTES: A. B. C. D. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Falls within JEDEC MS-012 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 MECHANICAL DATA DBV (R-PDSO-G5) PLASTIC SMALL-OUTLINE PACKAGE 0,40 0,20 0,95 5 0,25 M 4 1,80 1,50 1 0,15 NOM 3,00 2,50 3 Gage Plane 3,10 2,70 0,25 0°– 8° 0,55 0,35 Seating Plane 1,30 1,00 0,10 0,05 MIN 4073253-4/B 10/97 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions include mold flash or protrusion. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 MECHANICAL DATA DBV (R-PDSO-G6) PLASTIC SMALL-OUTLINE PACKAGE 0,40 0,20 0,95 6 0,25 M 4 1,80 1,50 0,15 NOM 3,00 2,50 3 1 Gage Plane 3,10 2,70 0,25 0°– 8° Seating Plane 1,30 1,00 0,10 0,05 MIN 4073253-5/B 10/97 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions include mold flash or protrusion. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 MECHANICAL DATA DGK (R-PDSO-G8) PLASTIC SMALL-OUTLINE PACKAGE 0,38 0,25 0,65 8 0,25 M 5 0,15 NOM 3,05 2,95 4,98 4,78 Gage Plane 0,25 1 0°– 6° 4 3,05 2,95 0,69 0,41 Seating Plane 1,07 MAX 0,15 MIN 0,10 4073329/A 02/97 NOTES: A. B. C. D. 22 All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion. Falls within JEDEC MO-187 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 MECHANICAL DATA DGS (S-PDSO-G10) PLASTIC SMALL-OUTLINE PACKAGE 0,27 0,17 0,50 10 0,25 M 6 0,15 NOM 3,05 2,95 4,98 4,78 Gage Plane 0,25 1 0°– 6° 5 3,05 2,95 0,69 0,41 Seating Plane 1,07 MAX 0,15 0,05 0,10 4073272/A 12/97 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 MECHANICAL DATA N (R-PDIP-T**) PLASTIC DUAL-IN-LINE PACKAGE 16 PIN SHOWN PINS ** 14 16 18 20 A MAX 0.775 (19,69) 0.775 (19,69) 0.920 (23.37) 0.975 (24,77) A MIN 0.745 (18,92) 0.745 (18,92) 0.850 (21.59) 0.940 (23,88) DIM A 16 9 0.260 (6,60) 0.240 (6,10) 1 8 0.070 (1,78) MAX 0.035 (0,89) MAX 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0.010 (0,25) M 0°– 15° 0.010 (0,25) NOM 14/18 PIN ONLY 4040049/C 08/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.) 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 MECHANICAL DATA P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE 0.400 (10,60) 0.355 (9,02) 8 5 0.260 (6,60) 0.240 (6,10) 1 4 0.070 (1,78) MAX 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0°– 15° 0.010 (0,25) M 0.010 (0,25) NOM 4040082 / B 03/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 TLV2760, TLV2761, TLV2762, TLV2763, TLV2764, TLV2765 FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN SLOS326D – JUNE 2000 – REVISED FEBRUARY 2001 MECHANICAL DATA PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° 0,75 0,50 A Seating Plane 0,15 0,05 1,20 MAX 0,10 PINS ** 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064 / E 08/96 NOTES: A. B. C. D. 26 All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, license, warranty or endorsement thereof. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2001, Texas Instruments Incorporated