STMICROELECTRONICS TSH94I

TSH94
HIGH SPEED LOW POWER QUAD
OPERATIONAL AMPLIFIER (WITH STANDBY POSITION)
■ 2 SEPARATE STANDBY : REDUCED
■
■
■
■
■
■
■
■
■
CONSUMPTION AND HIGH IMPEDANCE
OUTPUTS
LOW SUPPLY CURRENT : 4.5mA
HIGH SPEED : 150MHz - 110V/µs
UNITY GAIN STABILITY
LOW OFFSET VOLTAGE : 3mV
LOW NOISE 4.2 nV/√Hz
LOW COST
SPECIFIED FOR 600Ω AND 150Ω LOADS
HIGH VIDEO PERFORMANCES :
Differential Gain : 0.03%
Differential Phase : 0.07°
Gain Flatness : 6MHz, 0.1dB max. @ 10dB
gain
HIGH AUDIO PERFORMANCES
D
SO16
(Plastic Micropackage)
PIN CONNECTIONS (top view)
DESCRIPTION
The TSH94 is a quad low power high frequency
op-amp, designated for high quality video signal
processing. The device offers an excellent speed
consumption ratio with 4.5mA per amplifier for
150MHz bandwidth.
High slew rate and low noise make it also suitable
for high quality audio applications.
The TSH94 offers 2 separate complementary
STANDBY pins :
❑ STANDBY 1 acting on the n° 2 operator
❑ STANDBY 2 acting on the n° 3 operator
They reduce the consumption of the corresponding operator and put the output in a high impedance state.
Output 1
1
Inverting Input 1
2
-
-
15 Inverting Input 4
Non-inverting Input 1
3
+
+
14 Non-inverting Input 4
VCC +
4
Non-inverting Input 2
5
+
+
12 Non-inverting Input 3
Inverting Input 2
6
-
-
11 Inverting Input 3
Output 2
7
Standby 1 8
16 Output 4
13 VCC -
10 Output 3
9
Standby 2
ORDER CODE
Package
Part Number
Temperature Range
D
TSH94I
-40°C, +125°C
•
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
October 2000
1/11
TSH94
SCHEMATIC DIAGRAM
V CC+
stdby
stdby
non inverting
input
Internal
Vref
inverting
input
output
Cc
stdby
stdby
VCC-
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
VCC
Supply Voltage 1)
14
V
Vid
Differential Input Voltage 2)
±5
V
-0.3 to 12
V
Vi
Input Voltage
3)
Toper
Operating Free-Air Temperature range
-40 to +125
°C
Tstg
Storage Temperature Range
-65 to +150
°C
Value
Unit
1. All voltages values, except differential voltage are with respect to network ground terminal
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal
3. The magnitude of input and output voltages must never exceed VCC+ +0.3V
OPERATING CONDITIONS
Symbol
VCC
Vic
2/11
Parameter
Supply Voltage
Common Mode Input Voltage Range
7 to 12
-
V
+
VCC +2 to VCC -1
V
TSH94
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, V CC- = -5V, pin 8 connected to 0V, pin 9 connected to VCC+, Tamb = 25°C
(unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
3
5
mV
Vio
Input Offset Voltage Vic = Vo = 0V
Tmin. ≤ Tamb ≤ Tmax.
Iio
Input Offset Current
Tmin. ≤ Tamb ≤ Tmax.
1
2
5
µA
Iib
Input Bias Current.
Tmin. ≤ Tamb ≤ Tmax.
5
15
20
µA
ICC
Supply Current (per amplifier, no load)
Tmin. ≤ Tamb ≤ Tmax.
4.5
6
8
mA
CMR
Common-mode Rejection Ratio Vic = -3V to +4V, Vo = 0V
Tmin. ≤ Tamb ≤ Tmax.
80
70
100
SVR
Supply Voltage Rejection Ratio VCC = ±5V to ±3V
Tmin. ≤ Tamb ≤ Tmax
60
50
75
Avd
Large Signal Voltage Gain RL = 10kΩ, Vo = ±2.5V
Tmin. ≤ Tamb ≤ Tmax.
57
54
70
3
2.5
2.4
3.5
3
dB
dB
dB
High Level Output Voltage Vid = 1V
VOH
Tmin. ≤ Tamb ≤ Tmax.
RL = 600Ω
RL = 150Ω
RL = 150Ω
V
Low Level Output Voltage Vid = 11V
VOL
Tmin. ≤ Tamb ≤ Tmax.
RL = 600Ω
RL = 150Ω
RL = 150Ω
-3.5
-2.8
-3
-2.5
-2.4
V
Output Short Circuit Current Vid = ±1V
Io
GBP
fT
SR
Tmin. ≤ Tamb ≤ Tmax.
Source
Sink
Source
Sink
Gain Bandwidth Product
AVCL = 100, RL = 600Ω, CL = 15pF, f = 7.5MHz
Transition Frequency
Slew Rate
Vin = -2 to +2V, AVCL = +1, RL = 600Ω, CL = 15pF
20
20
15
15
36
40
90
150
mA
MHz
90
70
MHz
V/µs
110
en
Equivalent Input Voltage Noise Rs = 50Ω, f = 1kHz
4.2
nV/√Hz
φm
Phase Margin AVM = +1
35
Degrees
Channel Seperation f = 1MHz to 10MHz
65
VO1 /VO2
Gf
THD
Gain Flatness f = DC to 6MHz, AVCL = 10dB
Total Harmonic Distortion f = 1kHz, Vo = ±2.5V, RL = 600Ω
dB
0.1
0.01
dB
%
∆G
Differential Gain f = 3.58MHz, AVCL = +2, RL = 150Ω
0.03
%
∆ϕ
Differential Phase f = 3.58MHz, AVCL = +2, RL = 150Ω
0.07
Degree
3/11
TSH94
STANDBY MODE VCC+ = 5V, VCC- = -5V, Tamb = 25°C (unless otherwise specified)
Symbol
VSBY
Parameter
Min.
Typ.
+
Pin 8/9 Threshold Voltage for STANDBY Mode
VCC -2.2
+
VCC -1.6
Max.
+
VCC -1.0
Unit
V
Isol
Total Consumption
Standby 1 & 2 = 0
Standby 1 & 2 = 1
Standby 1 = 1, Standby 2 = 0
Input/Output Isolation (f = 1MHz to 10MHz)
tON
Time from Standby Mode to Active Mode
200
ns
tOFF
Time from Active Mode to Standby Mode
200
ns
ICC SBY
13.7
13.7
9.4
70
mA
dB
ID
Standby Driving Current
2
pA
IOL
Output Leakage Current
20
pA
IIL
Input Leakage Current
20
pA
LOGIC INPUT
STATUS
Standby 1
Standby 2
Op-Omp 2
Op-Amp 3
Op-Amp 1 & 4
0
0
1
1
0
1
0
1
Enable
Enable
Standby
Standby
Standby
Enable
Standby
Enable
Enable
Enable
Enable
Enable
STANDBY POSITION
STANDBY MODE
VCC
standby
VCC
APPLICATIONS
SIGNAL MULTIPLEXING
4/11
To put the device in standby, just apply a logic
level on the standby MOS input. As ground is a virtual level for the device, threshold voltage has
been refered to VCC+ at VCC+ - 1.6V typ.
In standby mode, the output goes in high impedance in 200ns. Be aware that all maximum rating
must still be followed in this mode. It leads to
swing limitation while using the device in signal
multiplexing configuration with followers, differential input voltage must not exceed ±5V limiting input swing to 2.5Vpp.
SAMPLE AND HOLD
TSH94
APPLICATIONS
VIDEO LINE TRANSCEIVER WITH REMOTE CONTROL
PRINTED CIRCUIT LAYOUT
As for any high frequency device, a few rules must
be observed when designing the PCB to get the
best performances from this high speed op amp.
From the most to the least important points :
❑ Each power supply lead has to be
by-passed to ground with a 10nF ceramic
capacitor very close to the device and
10µF capacitor.
❑ To provide low inductance and low resistance common return, use a ground plane
or common point return for power and signal.
❑ All leads must be wide and as short as possible especially for op amp inputs. This is in
order to decrease parasitic capacitance
and inductance.
❑ Use small resistor values to decrease time
constant with parasitic capacitance.
❑ Choose component sizes as small as possible (SMD).
❑ On output, decrease capacitor load so as
to avoid circuit stability being degraded
which may cause oscillation. You can also
add a serial resistor in order to minimise its
influence.
5/11
TSH94
INPUT OFFSET VOLTAGE DRIFT VERSUS
TEMPERATURE
STATIC OPEN LOOP VOLTAGE GAIN
LARGE SIGNAL FOLLOWER RESPONSE
SMALL SIGNAL FOLLOWER RESPONSE
OPEN LOOP FREQUENCY RESPONSE AND
PHASE SHIFT
CLOSE LOOP FREQUENCY RESPONSE
6/11
TSH94
AUDIO BANDWIDTH FREQUENCY
RESPONSE AND PHASE SHIFT
(TSH94 vs Standard 15MHz Audio Op-Amp)
GAIN FLATNESS AND PHASE SHIFT VERSUS
FREQUENCY
CROSS TALK ISOLATION VERSUS
FREQUENCY (SO16 PACKAGE)
CROSS TALK ISOLATION VERSUS
FREQUENCY (SO16 PACKAGE)
INPUT/OUTPUT ISOLATION IN STANDBY
MODE (SO16 PACKAGE)
STANDBY SWITCHING
7/11
TSH94
SIGNAL MULTIPLEXING (cf p. 5/10)
COMMON INPUT IMPEDANCE VERSUS
FREQUENCY
4.5
4.0
3.5
Zin-diff (kW )
3.0
2.5
2.0
1.5
1.0
0.5
1k
10k
100k
1M
Frequency (Hz)
DIFFERENTIAL INPUT IMPEDANCE VERSUS
FREQUENCY
120
Zin-com (MW )
100
80
60
40
20
1k
10k
100k
1M
Frequency (Hz)
8/11
10M
100M
10M
100M
TSH94
MACROMODEL
Applies to: TSH94I (model without standby)
** Standard Linear Ics Macromodels, 1996.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TSH94 1 3 2 4 5 (analog)
********************************************************
.MODEL MDTH D IS=1E-8 KF=1.809064E-15
CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E-01
RIN 15 16 2.600000E-01
RIS 11 15 3.645298E-01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 1314DC 0
IPOL 13 5 1.000000E-03
CPS 11 15 2.986990E-10
DINN 17 13 MDTH 400E-12
VIN 17 5 2.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.000000E+00
FCP 4 5 VOFP 3.500000E+00
FCN 5 4 VOFN 3.500000E+00
FIBP 2 5 VOFP 1.000000E-02
FIBN 5 1 VOFN 1.000000E-02
* AMPLIFYING STAGE
FIP 5 19 VOFP 2.530000E+02
FIN 5 19 VOFN 2.530000E+02
RG1 19 5 3.160721E+03
RG2 19 4 3.160721E+03
CC 19 5 2.00000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 1.504000E+03
VIPM 28 4 5.000000E+01
HONM 21 27 VOUT 1.400000E+03
VINM 5 27 5.000000E+01
***********************
RZP1 5 80 1E+06
RZP2 4 80 1E+06
GZP 5 82 19 80 2.5E-05
RZP2H 83 4 10000
RZP1H 83 82 80000
RZP2B 84 5 10000
RZP1B 82 84 80000
LZPH 4 83 3.535e-02
LZPB 84 5 3.535e-02
EOUT 26 23 82 5 1
VOUT 23 5 0
ROUT 26 3 35
COUT 3 5 30.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.361965E+00
DON 24 19 MDTH 400E-12
VON 24 5 2.361965E+00
.ENDS
ELECTRICAL CHARACTERISTICS
VCC = ±5V, Tamb = 25°C (unless otherwise specificed)
Symbol
Conditions
Vio
Avd
RL = 600Ω
ICC
No load / Ampli
Vicm
Value
Unit
0
mV
3.2
V/mV
5.2
mA
-3 to 4
V
V
VOH
RL = 600Ω
+3.6
VOL
RL = 600Ω
-3.6
V
Isink
Vo = 0V
40
mA
Isource
Vo = 0V
40
mA
GBP
RL = 600Ω, CL = 15pF
147
MHz
SR
RL = 600Ω, CL = 15pF
110
V/µs
φm
RL = 600Ω, CL = 15pF
42
Degrees
9/11
TSH94
Applies to: TSH94I (model with standby)
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
* 6 STANDBY
.SUBCKT TSH94 1 3 2 4 5 6 (analog)
********************************************************
**************** switch *******************
.SUBCKT SWITCH20 10 IN OUT COM
.MODEL DIDEAL D N=0.1 IS=1E-08
DP IN 1 DIDEAL 400E-12
DN OUT 2 DIDEAL 400E-12
EP 1 OUT COM 10 2
EN 2 IN COM 10 2
RFUIT1 IN 1 1E+09
RFUIT2 OUT 2 1E+09
RCOM COM 0 1E+12
.ENDS SWITCH
**************** inverter *****************
.SUBCKT INV 20 10 IN OUT
.MODEL DIDEAL D N=0.1 IS=1E-08
RP1 20 15 1E+09
RN1 15 10 1E+09
RIN IN 10 1E+12
RIP IN 20 1E+12
DPINV OUT 20 DIDEAL 400E-12
DNINV 10 OUT DIDEAL 400E-12
GINV 0 OUT IN 15 -6.7E-7
CINV 0 OUT 210f
.ENDS INV
***************** AOP **********************
.MODEL MDTH D IS=1E-8 KF=1.809064E-15
CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E-01
RIN 15 16 2.600000E-01
RIS 11 15 3.645298E-01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 1314DC 0
FPOL 13 5 VSTB 1E+03
CPS 11 15 2.986990E-10
DINN 17 13 MDTH 400E-12
VIN 17 5 2.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.000000E+00
FCP 4 5 VOFP 3.500000E+00
FCN 5 4 VOFN 3.500000E+00
10/11
ISTB0 4 5 130UA
FIBP 2 5 VOFP 1.000000E-02
FIBN 5 1 VOFN 1.000000E-02
* AMPLIFYING STAGE
FIP 5 19 VOFP 2.530000E+02
FIN 5 19 VOFN 2.530000E+02
RG1 19 120 3.160721E+03
XCOM1 4 0 120 5 COM SWITCH
RG2 19 121 3.160721E+03
XCOM2 4 0 4 121 COM SWITCH
CC 19 5 2.00000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 1.504000E+03
VIPM 28 4 5.000000E+01
HONM 21 27 VOUT 1.400000E+03
VINM 5 27 5.000000E+01
*********** ZP **********
RZP1 5 80 1E+06
RZP2 4 80 1E+06
GZP 5 82 19 80 2.5E-05
RZP2H 83 4 10000
RZP1H 83 82 80000
RZP2B 84 5 10000
RZP1B 82 84 80000
LZPH 4 83 3.535e-02
LZPB 84 5 3.535e-02
**************************
EOUT 26 23 82 5 1
VOUT 23 5 0
ROUT 26 103 35
COUT 103 5 30.000000E-12
XCOM 4 0 103 3 COM SWITCH
DOP 19 25 MDTH 400E-12
VOP 4 25 2.361965E+00
DON 24 19 MDTH 400E-12
VON 24 5 2.361965E+00
********** STAND BY ********
RMI1 4 111 1E+7
RMI2 0 111 2E+7
RONOFF 6 60 1K
CONOGG 60 0 10p
RSTBIN 60 0 1E+12
ESTBIN 106 0 6 0 1
ESTBREF 106 107 111 0 1
DSTB1 107 108 MDTH 400E-12
VSTB 108 109 0
ISTB 109 0 1U
RSTB 109 110 1
DSTB2 0 110 MDTH 400E-12
XINV 4 0 6 COM INV
.ENDS
TSH94
PACKAGE MECHANICAL DATA
16 PINS - PLASTIC MICROPACKAGE (SO)
Millimeters
Inches
Dim.
Min.
A
a1
a2
b
b1
C
c1
D
E
e
e3
F
G
L
M
S
Typ.
Max.
Min.
1.75
0.2
1.6
0.46
0.25
0.1
0.35
0.19
Typ.
0.004
0.014
0.007
0.5
Max.
0.069
0.008
0.063
0.018
0.010
0.020
45° (typ.)
9.8
5.8
10
6.2
0.386
0.228
1.27
8.89
3.8
4.6
0.5
0.394
0.244
0.050
0.350
4.0
5.3
1.27
0.62
0.150
0.181
0.020
0.157
0.209
0.050
0.024
8° (max.)
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support
devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com
11/11