NEC UPD75P336

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD75P336
4-BIT SINGLE-CHIP MICROCOMPUTER
DESCRIPTION
The µPD75P336 is a version of the µPD75336 in which the on-chip mask ROM is replaced by one-time
PROM.
As the µPD75P336 is user-programmable, it is suitable for preproduction in system development, and for
short-run and multiple device-production.
Detailed function description, etc. are described in the following User's manual. Be sure to read it when
designing. µPD75336 User's Manual: IEU-725
FEATURES
• µPD75336 compatible
• Memory capacity:
• PROM : 16256 × 8 bits
• RAM : 768 × 4 bits
• Operable over same supply voltage range as mask ROM µPD75336
• VDD = 2.7 to 6.0 V
• On-chip 8-bits resolution A/D converter (successive approximation type)
• On-chip LCD controller/driver
ORDERING INFORMATION
Ordering Code
µ PD75P336GC-3B9
µ PD75P336GK-BE9
Note
Package
80-pin plastic QFP (
14mm)
80-pin plastic TQFP (fine pitch)( 12mm)
Quality Grade
Standard
Standard
★
Pull-up resistor cannot be incorporated by mask option.
Please refer to “Quality grade on NEC Semiconductor Devices” (Document number IEI-1209) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.
The information in this document is subject to change without notice.
Document No. IC-2980A
(O. D. No. IC-8371A)
Date Published October 1993P
Printed in Japan
The mark
★ shows major revised points.
© NEC Corporation 1993
2
8
AVREF
AVSS
A/D
CONVERTER
BASIC
INTERVAL
TIMER
INTBT
TI0/P13
PTO0/P20
TIMER/EVENT
COUNTER
#0
INTT0
TI1/P80
PTO1/P21
TIMER/EVENT
COUNTER
#1
PROGRAM
COUNTER
(15)
SP(8)
CY
WATCH
TIMER
INTW
SI/SB1/P03
SO/SB0/P02
SCK/P01
fLCD
4
P00-P03
PORT 1
4
P10-P13
PORT 2
4
P20-P23
PORT 3
4
P30-P33
/MD0-MD3
PORT 4
4
P40-P43
PORT 5
4
P50-P53
PORT 6
4
P60-P63
PORT 7
4
P70-P73
PORT 8
4
P80-P83
12
S12-S23
ALU
BANK
INTT1
BUZ/P23
PORT0
BLOCK DIAGRAM
AN0-AN7*
GENERAL REG.
PROGRAM
MEMORY
(ROM)
16256 × 8 BITS
DECODE
AND
CONTROL
CLOCKED
SERIAL
INTERFACE
DATA
MEMORY
(RAM)
768 × 4 BITS
INTCSI
INT0/P10
INT1/P11
INTERRUPT
CONTROL
INT2/P12
8
LCD
CONTROLLER
/DRIVER
N
SYSTEM CLOCK
CLOCK
CLOCK
GENERATOR STAND BY
OUTPUT
DIVIDER
SUB MAIN CONTROL
CONTROL
CPU
CLOCK
fLCD
BIT SEQ.
BUFFER (16)
PCL/P22
XT1 XT2 X1 X2
*
AN6/P82, AN7/P83
VPP VDD VSS RESET
S24/BP0
–S31/BP7
4
COM0–COM3
3
VLC0–VLC2
BIAS
LCDCL/P30
SYNC/P31
µPD75P336
INT4/P00
KR0/P60
–KR3/P63
KR4/P70
–KR7/P73
fX / 2
8
µPD75P336
PIN CONFIGURATION (Top View)
S26/BP2
6
7
8
9
*
AVREF
AVSS
AN5
AN4
AN3
VDD
XT1
X1
VPP*
XT2
RESET
X2
P53
P00/INT4
P51
P52
P50
19
20
2122232425 262728 2930 31323334353637383940
COM0
S12
P41
P42
P43
VSS
S17
S16
S15
S14
S13
10
11
12
13
14
15
16
17
18
P40
S18
4
5
COM3
BIAS
VLC0
VLC1
VLC2
S22
S21
S20
S19
2
3
COM1
COM2
S23
8079787776 757473 7271 70696867666564636261
µ PD75P336GC-3B9
µPD75P336GK-BE9
S25/BP1
S24/BP0
★
AN2
AN1
AN0
P83/AN7
60
59
58
57
56
55
54
53
52
P33/MD3
P32/MD2
51
50
49
48
47
46
45
44
43
P31/SYNC/MD1
P30/LCDCL/MD0
P23/BUZ
P22/PCL
P21/PTO1
P20/PTO0
P13/TI0
P12/INT2
P11/INT1
42
41
P10/INT0
P82/AN6
P81
P80/TI1
P03/SI/SB1
P01/SCK
P02/SO/SB0
1
P70/KR4
P63/KR3
P62/KR2
P61/KR1
P60/KR0
P73/KR7
S31/BP7
S30/BP6
S29/BP5
S28/BP4
S27/BP3
P72/KR6
P71/KR5
● 80-pin plastic QFP (■
■ 14mm)
● 80-pin plastic TQFP (fine pitch) (■
■ 12mm)
In normal operation, VPP should be connected to VDD directly.
3
µPD75P336
PIN NAME
P00 to 03
P10 to 13
P20 to 23
P30 to 33
P40 to 43
P50 to 53
P60 to 63
P70 to 73
P80 to 83
BP0 to 7
KR0 to 7
AV REF
AV SS
AN0 to 7
SCK
SI
SO
MD0 to 3
VPP
4
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
Port 0
Port 1
Port 2
Port 3
Port 4
Port 5
Port 6
Port 7
Port 8
Bit Port
Key Return
Analog Reference
Analog Ground
Analog Input 0 to 7
Serial Clock
Serial Input
Serial Output
Mode Selection
Programming/Verifying
Power Supply
SB0, 1
RESET
S12 to 31
COM0 to 3
VLC0 to 2
BIAS
LCDCL
SYNC
TI0, 1
PTO0, 1
BUZ
PCL
INT0, 1, 4
INT2
X1, 2
XT1, 2
VDD
VSS
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
Serial Bus 0,1
Reset Input
Segment Output 12 to 31
Common Output 0 to 3
LCD Power Supply 0 to 2
LCD Power Supply Bias Control
LCD Clock
LCD Synchronization
Timer Input 0, 1
Programmable Timer Output 0, 1
Buzzer Clock
Programmable Clock
External Vectored Interrupt 0, 1, 4
External Test Interrupt 2
Main System Clock Oscillation 1, 2
Subsystem Clock Oscillation 1, 2
Positive Power Supply
Ground
µPD75P336
CONTENTS
1. PIN FUNCTIONS ......................................................................................................................................... 6
1.1
1.2
PORT PINS ............................................................................................................................................................. 6
OTHER PINS .......................................................................................................................................................... 8
1.3
PIN INPUT/OUTPUT CIRCUITS ...........................................................................................................................10
2. DIFFERENCES BETWEEN µPD75P336 AND µPD75336 ......................................................................... 13
2.1
2.2
PROGRAM MEMORY (PROM) 16256 WORDS × 8 BITS .................................................................................. 14
DATA MEMORY (RAM) 768 WORDS × 4 BITS .................................................................................................. 15
3. INSTRUCTION SET AND INSTRUCTION OPERATIONS ....................................................................... 16
4. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY OPERATIONS .................................. 25
4.1
4.2
4.3
PROGRAM MEMORY WRITE/VERIFY OPERATING MODES ........................................................................... 26
PROGRAM MEMORY WRITE PROCEDURE ....................................................................................................... 27
PROGRAM MEMORY READ PROCEDURE ......................................................................................................... 28
5. ELECTRICAL SPECIFICATIONS ................................................................................................................ 29
6. PACKAGE INFORMATION ........................................................................................................................ 48
7. RECOMMENDED SOLDERING CONDITIONS ......................................................................................... 50
APPENDIX A. LIST OF FUNCTIONS.............................................................................................................. 51
APPENDIX B. DEVELOPMENT TOOLS ......................................................................................................... 52
5
µPD75P336
1. PIN FUNCTIONS
1.1
PORT PINS (1/2)
Pin Name
Input/Output
DualFunction Pin
P00
Input
INT4
P01
Input/output
SCK
P02
Input/output
SO/SB0
P03
Input/output
SI/SB1
P11
4-bit input port (PORT0)
Internal pull-up resistor specification by
software is possible for P01 to P03 as a 3-bit
unit.
P12
INT2
P13
TI0
P20
PTO0
PTO1
P21
Input/output
P22
PCL
P23
BUZ
P30 *2
LCDCL MD0
P31 *2
SYNC
MD1
Input/output
P32 *2
MD2
P33 *2
MD3
After Reset
I/O Circuit
Type *1
×
F -A
Input
F -B
M-C
With noise elimination circuit
INT1
Input
8-bit I/O
B
INT0
P10
4-bit input port (PORT1)
Internal pull-up resistor specification by
software is possible as a 4-bit unit.
4-bit input/output port (PORT2)
Internal pull-up resistor specification by
software is possible as a 4-bit unit.
Programmable 4-bit input/output port (PORT3)
Input/output settable bit-wise.
Internal pull-up resistor specification by
software is possible as a 4-bit unit.
×
Input
B -C
×
Input
E-B
×
Input
E-B
P40 to P43 *2
Input/output
—
N-ch open-drain 4-bit input/output port (PORT
4).
Data input/output pins for program memory
(PROM) write/verify (low-order 4 bits).
Input
M-B
P50 to P53 *2
Input/output
—
N-ch open-drain 4-bit input/output port (PORT
5)
Data input/output pins for program memory
(PROM) write/verify (high-order 4 bits).
Input
M-B
Input
F -A
Input
F -A
KR0
P60
P61
* 1.
2.
Input/output
KR1
P62
KR2
P63
KR3
P70
KR4
P71
6
Function
Input/output
KR5
P72
KR6
P73
KR7
Programmable 4-bit input/output port (PORT6).
Input/output settable bit-wise.
Internal pull-up resistor specification by
software is possible as a 4-bit unit.
4-bit input/output port (PORT7).
Internal pull-up resistor specification by
software is possible as a 4-bit unit.
: Indicates a Schmitt-triggered input.
Direct LED drive capability.
µPD75P336
1.1
PORT PINS (2/2)
Pin Name
Input/Output
P80
DualFunction Pin
Function
8-bit I/O
After Reset
TI1
—
P81
Input/output
P82
AN6
P83
AN7
BP0
S24
I/O Circuit
Type
E-E
4-bit input/output port (PORT8).
Internal pull-up resistor specification by
software is possible as a 4-bit unit.
×
E-B
Input
Y-B
S25
BP1
Output
BP2
S26
BP3
S27
BP4
S28
1-bit output port (BIT PORT)
Dual function as segment output pins.
×
*
G-C
S29
BP5
Output
*
BP6
S30
BP7
S31
VLCX shown below can be selected for the display outputs.
S12 to S31: VLC1, COM0 to COM2: VLC2, COM3: VLC0
However, display output levels depend on the display outputs and VLCX external circuit.
7
µPD75P336
1.2
OTHER PINS (1/2)
Pin Name
Input/Output
TI0
DualFunction Pin
TI1
I/O Circuit
Type *
B -C
External event pulse input pin for timer/event counter.
Input
P80
PTO0
B -E
P20
output
PTO1
Timer/event counter output pin
Input
E-B
P21
PCL
output
P22
Clock output pin
Input
E-B
BUZ
output
P23
Frequency output pin (for buzzer or system clock
trimming)
Input
E-B
SCK
Input/output
P01
Serial clock input/output pin
Input
F -A
SO/SB0
Input/output
P02
Serial data output pin
Serial bus input/output pin
Input
F -B
SI/SB1
Input/output
P03
Serial data input pin
Serial bus input/output pin
Input
M-C
INT4
Input
P00
Edge-detected vectored interrupt input pin (both rising
and falling edge detection valid).
Input
Edge-detected vectored
interrupt input pin (detected
edge selectable)
Input
B -C
Input
B -C
INT0
P10
Input
INT1
8
After Reset
P13
Input
*
Function
P11
Edge-detected testable input pin
(rising edge detection)
B
Clocked
Asynchronous
INT2
Input
P12
KR0 to KR3
Input
P60 to P63
Parallel falling edge detected testable input pins.
Input
F -A
KR4 to KR7
Input
P70 to P73
Parallel falling edge detected testable input pins.
Input
F -A
X1, X2
—
—
Main system clock oscillation crystal/ceramic resonator
inputs. When an external clock is used, the clock is
input to X1 and the inverted clock to X2.
—
—
—
––
—
B
Input
E-B
—
—
Asynchronous
XT1, XT2
—
—
Subsystem clock oscillation crystal reasonator inputs
When an external clock is used, the clock is input to XT1
and the inverted clock toXT2. XT1 can be used as a 1bit input (test) pin.
RESET
Input
—
System reset input pin.
MD0 to MD3
Input/output
P30 to P33
Mode selection pin for program memory (PROM) write/
verify.
VPP
—
—
Program voltage application pin for program memory
(PROM) write/verify. Applies +12.5 V in program
memory write/verify.
Directly connected to VDD in normal operation.
VDD
—
—
Positive power supply pin
—
—
VSS
—
—
GND potential pin
—
—
: indicates a Schmitt-triggered input.
µPD75P336
1.2
OTHER PINS (2/2)
Pin Name
Input/Output
DualFunction Pin
After Reset
I/O Circuit
Type
S12 to S23
Output
—
Segment signal output pins
*2
G-A
S24 to S31
Output
BP0 to 7
Segment signal output pins
*2
G-C
COM0 to COM3
Output
—
Common signal output pins
*2
G-B
VLC0 to VLC2
Input
—
LCD drive power supply pins
—
—
BIAS
Output
—
External split cutting output pin
LCDCL*1
Output
P30
External extension driver drive clock output pin
Input
SYNC *1
Output
P31
External extension driver synchronization drive clock
output pin
Input
Function
High impedance
—
AN0 to AN5
AN6
E-B
—
Input
P82
E-B
Y
A/D converter analog signal input pins
Input
Y -B
AN7
* 1.
2.
P83
AVREF
Input
—
A/D converter reference voltage input pin
—
Z
AVSS
—
—
A/D converter GND potential pin
—
Z
Pins provided for future system expansion. Currently used only as pins 30 and 31.
VLCX shown below can be selected for the display outputs.
S12 to S31: VLC1, COM0 to COM2: VLC2, COM3:VLC0
However, display output levels depend on the display outputs and VLCX external circuit.
9
µPD75P336
1.3 PIN INPUT/OUTPUT CIRCUITS
The input/output circuits for each of the pin µPD75P336 are shown below in partially simplified form.
TYPE A (For TYPE E-B)
TYPE D (For TYPE E-B, F-A)
VDD
VDD
data
P-ch
OUT
P-ch
IN
N-ch
CMOS Standard Input Buffer
TYPE B
output
disable
N-ch
Push-Pull Output that can be Made High-Impedance
Output (P-ch and N-ch OFF)
TYPE E-B
VDD
P.U.R.
output
disable
IN
P-ch
data
IN/OUT
Type D
output
disable
Type A
P.U.R.:Pull-Up Resistor
Schmitt-Trigger Input with Hysteresis Characteristic
TYPE B-C
TYPE E-E
VDD
P.U.R.
P.U.R.
enable
VDD
P.U.R.
P-ch
P-ch
data
P.U.R.
enable
output
disable
IN/OUT
Type D
Type A
IN
Type B
P.U.R. : Pull-Up Resistor
Schmitt-Trigger Input with Hysteresis Characteristic
10
P.U.R.:Pull-Up Resistor
µPD75P336
TYPE F-A
TYPE G-B
VDD
VLC0
P.U.R.
P.U.R.
enable
P-ch
VLC1
P-ch
P-ch N-ch
data
IN/OUT
Type D
output
disable
OUT
COM
data
N-ch
Type B
P-ch
VLC2
N-ch
P.U.R.:Pull-Up Resistor
TYPE F-B
TYPE G-C
VDD
P.U.R.
P.U.R.
enable
VDD
P-ch
P-ch
VLC0
VDD
output
disable
(P)
P-ch
data
output
disable
VLC1
IN/OUT
P-ch
SEG
data/Bit Port data
N-ch
output
disable
(N)
OUT
N-ch
VLC2
N-ch
P.U.R.:Pull-Up Resistor
TYPE G-A
TYPE M-B
IN/OUT
VLC0
P-ch
data
VLC1
P-ch
SEG
data
OUT
N-ch
output
disable
N-ch
VLC2
N-ch
Middle-High Voltage Input Buffer
11
µPD75P336
TYPE M-C
VDD
TYPE Y-B
VDD
P.U.R.
P.U.R.
enable
P.U.R
enable
P-ch
IN/OUT
data
data
output
disable
N-ch
P-ch
output
disable
IN/OUT
Type D
Type A
Type Y
P.U.R.:Pull-Up Resistor
P.U.R:Pull-Up Resistor
TYPE Y
TYPE Z
VDD
IN
P-ch
N-ch
VDD
+
Sampling C
-
AVSS
AVSS
input
enable
12
IN
Reference Voltage
Reference Voltage
(From Series Resistance
Voltage Tap)
AVSS
µPD75P336
2. DIFFERENCES BETWEEN µPD75P336 AND µPD75336
µPD75336
Parameter
µPD75P336
Program memory
Mask ROM 16256 × 8 bits
One-time PROM 16256 × 8 bits
Data memory
768 × 4 bits
768 × 4 bits
Ports 4, 5 pull-up resistor
Incorporation specifiable by mask
option
No
LCD drive power supply split
resistor
Incorporation specifiable by mask
option
No
Subsystem clock oscillation
feedback resistor
Incorporation specifiable by mask
option
Incorporated
Pin 69
IC
VPP
13
µPD75P336
2.1 PROGRAM MEMORY (PROM) ..... 16256 WORDS × 8 BITS
The program memory consists of 16256-byte PROM. The program memory map is shown in Fig. 2-1.
Fig. 2-1 Program Memory Map
0000H
7
6
MBE
RBE
0
Internal Reset Start Address (High-Order 6 Bits)
(Low-Order 8 Bits)
0002H
MBE
RBE
INTBT/INT4 Start Address
(High-Order 6 Bits)
(Low-Order 8 Bits)
0004H
MBE
RBE
INT0 Start Address
(High-Order 6 Bits)
(Low-Order 8 Bits)
0006H
MBE
RBE
INT1 Start Address
CALLF
!faddr
Instruction
Entry
Address
(High-Order 6 Bits)
(Low-Order 8 Bits)
0008H
MBE
RBE
INTCSI Start Address
(High-Order 6 Bits)
BRCB !caddr
Instruction
Branch
Address
BR !addr
Instruction
Branch Address
(Low-Order 8 Bits)
000AH
MBE
RBE
INTT0 Start Address
(High-Order 6 Bits)
(Low-Order 8 Bits)
000CH
MBE
RBE
INTT1 Start Address
(High-Order 6 Bits)
(Low-Order 8 Bits)
≈
≈
0020H
CALL !addr
Instruction
Branch Address
Branch/Call
Address, by
GETI
GETI Instruction Reference Table
007FH
0080H
≈
≈
07FFH
0800H
≈
≈
≈
≈
≈
≈
BR $addr
Instruction
Relative
Branch Address
(-15 to -1,
+2 to +16)
0FFFH
1000H
1FFFH
2000H
2FFFH
3000H
≈
3F7FH
14
≈
BRCB !caddr
Instruction
Branch Address
BRCB !caddr
Instruction
Branch Address
BRCB !caddr
Instruction
Branch Address
µPD75P336
Remarks
2.2
In addition to the above, branching is possible with the BR PCDE and BR PCXA instructions to addresses
with the low-order 8 bits only of the PC modified.
DATA MEMORY (RAM) .......768 WORDS × 4 BITS
The configuration of the data memory is shown in Fig. 2-2. The data memory comprises a data area and peripheral
hardware area, the data area comprises 768 × 4-bit static RAM.
Fig. 2-2 Data Memory Map
Data Memory
General
Register Area
Stack Area
000H
(32 × 4)
01FH
020H
Memory Bank 0
256 × 4
0FFH
100H
Data Area
Static RAM
768 × 4
Memory Bank 1
Display Data
Memory Area
1EBH
1ECH
256 × 4
1FFH
200H
(20 × 4)
Memory Bank 2
256 × 4
2FFH
Not On-Chip
F80H
Memory Bank 15
Peripheral Hardware Area
FFFH
128 × 4
15
µPD75P336
3. INSTRUCTION SET AND INSTRUCTION OPERATIONS
(1) Operand identifier and description
Operand identifiers and description method operands are written in the operand column for each instruction in
accordance with the description method for the operand identifier for that instruction (refer to "RA75X Assembler
Package User's Manual Language Volume (EEU-730)" for details). Where multiple items are included in the
description method, one of those elements should be selected. Uppercase letters and the symbols + and – are
keywords and should be written as they are.
In the case of immediate data, an appropriate number or label is written.
Description Method
Descriptor
reg
X, A, B, C, D, E, H, L
reg1
X, B, C, D, E, H, L
rp
XA, BC, DE, HL
rp1
BC, DE, HL
rp2
BC, DE
rp'
XA, BC, DE, HL, XA', BC', DE' HL'
rp'1
BC, DE, HL, XA', BC', DE', HL'
rpa
HL, HL+, HL–, DE, DL
rpa1
DE, DL
n4
4-bit immediate date or label
n8
8-bit immediate date or label
mem
8-bit immediate date or label*
bit
2-bit immediate date or label
fmem
FB0H to FBFH, FF0H to FFFH immediate data or label
pmem
FC0H to FFFH immediate data or label
addr
0000H to 3F7FH immediate data or label
caddr
12-bit immediate date or label
faddr
11-bit immediate date or label
taddr
20H to 7FH immediate date (bit 0 = 0) or label
PORTn
PORT0 to PORT8
IE×××
IEBT, IECSI, IET0, IET1, IE0 to IE2, IE4, IEW
RBn
RB0 to RB3
MBn
MB0, MB1, MB2, MB15
*
16
In 8-bit data processing, only an even address can be specified.
µPD75P336
(2) Operation description legend
A
: A register; 4-bit accumulator
B
: B register; 4-bit accumulator
C
D
E
H
:
:
:
:
C register; 4-bit accumulator
D register; 4-bit accumulator
E register; 4-bit accumulator
H register; 4-bit accumulator
L
X
XA
BC
:
:
:
:
L register; 4-bit accumulator
X register; 4-bit accumulator
Register pair (XA); 8-bit accumulator
Register pair (BC); 8-bit accumulator
DE
HL
XA'
BC'
:
:
:
:
Register pair (DE); 8-bit accumulator
Register pair (HL); 8-bit accumulator
Extended register pair (XA')
Extended register pair (BC')
DE'
HL'
PC
SP
:
:
:
:
Extended register pair (DE')
Extended register pair (HL')
Program counter
Stack pointer
CY
PSW
MBE
RBE
:
:
:
:
Carry flag; bit accumulator
Program status word
Memory bank enable flag
Register bank enable flag
PORTn
IME
IPS
IE×××
:
:
:
:
Portn (n = 0 to 8)
Interrupt master enable flag
Interrupt priority selection register
Interrupt enable flag
RBS
MBS
PCC
.
:
:
:
:
Register bank selection register
Memory bank selection register
Processor clock control register
Address, bit delimiter
(××)
××H
: Contents addressed by ××
: Hexadecimal data
17
µPD75P336
(3) Description of addressing area field symbols
*1
MB = MBE • MBS
*2
MB = 0
*3
MBE = 0 : MB = 0 (000H to 07FH)
MB = 15 (F80H to FFFH)
MBE = 1 : MB = MBS (MBS = 0, 1, 2, 15)
*4
MB = 15, fmem = FB0H to FBFH,
FF0H to FFFH
*5
MB = 15, pmem = FC0H to FFFH
*6
addr = 0000H to 3F7FH
*7
addr = (Current PC) –15 to (Current PC) –1
(Current PC) + 2 to (Current PC) + 16
*8
caddr = 0000H to 0FFFH (PC13,12 = 00B) or
1000H to 1FFFH (PC13,12 = 01B) or
2000H to 2FFFH (PC13,12 = 10B) or
3000H to 3FFFH (PC13,12 = 11B)
*9
faddr = 0000H to 07FFH
*10
taddr = 0020H to 007FH
Remarks
1.
2.
3.
4.
MBS = 0, 1, 2, 15
Data Memory
Addressing
Program Memory
Addressing
MB indicates the accessible memory bank.
MB=0 irrespective of MBE and MBS in *2.
MB=15 irrespective of MBE and MBS in *4 and *5.
*6 to *10 indicate accessible area.
(4) Explanation of machine cycle column
"S" indicates the number of machine cycles required when an instruction with a skip function performs a
skip operation. The value of "s" is as follows:
• When a skip is not performed ....................................................................................................................... S = 0
• When the skipped instruction is a 1-byte or 2-byte instruction ................................................................ S = 1
• When the skipped instruction is a 3-byte instruction (BR !addr or CALL !addr) ................................... S = 2
Note
A GETI instruction is skipped in one machine cycle.
One machine cycle is equivalent to one cycle (=tCY)of the CPU clock cycle Φ :
selected according to the PCC setting.
18
any of four times can be
Machine
Cycles
Mnemonic
Bytes
Note 1
µPD75P336
A, #n4
1
1
A ← n4
reg1, #n4
2
2
reg1 ← n4
XA, #n8
2
2
XA ← n8
Stack A
HL, #n8
2
2
HL ← n8
Stack B
rp2, #n8
2
2
rp2 ← n8
A, @HL
1
1
A ← (HL)
*1
A, @HL+
1
2+S
A ← (HL), then L← L + 1
*1
L=0
A, @HL–
1
2+S
A ← (HL), then L← L – 1
*1
L = FH
A, @rpa1
1
1
A ← (rpa1)
*2
XA, @HL
2
2
XA ← (HL)
*1
@HL, A
1
1
(HL) ← A
*1
@HL, XA
2
2
(HL) ← XA
*1
A, mem
2
2
A ← (mem)
*3
XA, mem
2
2
XA ← (mem)
*3
mem, A
2
2
(mem) ← A
*3
mem, XA
2
2
(mem) ← XA
*3
A, reg
2
2
A ← reg
XA, rp'
2
2
XA ← rp'
reg1, A
2
2
reg1 ← A
rp'1, XA
2
2
rp'1 ← XA
A, @HL
1
1
A ↔ (HL)
*1
A, @HL+
1
2+S
A ↔ (HL), then L← L + 1
*1
L=0
A, @HL–
1
2+S
A ↔ (HL), then L← L –1
*1
L = FH
A, @rpa1
1
1
A ↔ (rpa1)
*2
XA, @HL
2
2
XA ↔ (HL)
*1
A, mem
2
2
A ↔ (mem)
*3
XA, mem
2
2
XA ↔ (mem)
*3
A,reg1
1
1
A ↔ reg1
XA, rp'
2
2
XA ↔ rp'
XA, @PCDE
1
3
XA ← (PC13–8 + DE)ROM
XA, @PCXA
1
3
XA ← (PC13–8 + XA)ROM
Operand
Transfer
MOV
Note 2
XCH
MOVT
Note 1.
2.
Operation
Addressing Area
Skip Condition
Stack A
Instruction Group
Table reference
19
CY, fmem.bit
2
2
CY ← (fmem.bit)
*4
CY, pmem.@L
2
2
CY ← (pmem7–2 + L 3–2.bit (L1–0))
*5
CY, @H + mem.bit
2
2
CY ← (H + mem3-0.bit)
*1
fmem.bit, CY
2
2
(fmem.bit)← CY
*4
pmem.@L, CY
2
2
(pmem7–2 + L 3–2.bit (L1–0)) ← CY
*5
@H + mem.bit, CY 2
2
(H + mem3-0.bit) ← CY
*1
monic
MOV1
ADDS
ADDC
SUBS
Operation
Operand
Machine
Cycles
Mne-
Bytes
Bit transfer
Note
µPD75P336
SBUC
AND
OR
XOR
Addressing Area
Skip Condition
A, #n4
1
1+S
A ← A + n4
carry
XA, #n8
2
2+S
XA ← XA + n8
carry
A, @HL
1
1+S
A ← A + (HL)
XA, rp'
2
2+S
XA ← XA + rp'
carry
rp'1, XA
2
2+S
rp'1← rp'1 + XA
carry
A, @HL
1
1
A, CY ← A + (HL) + CY
XA, rp'
2
2
XA, CY ← XA + rp' + CY
rp'1, XA
2
2
rp'1, CY ← rp'1 + XA + CY
A, @HL
1
1+S
A ← A − (HL)
XA, rp'
2
2+S
XA ← XA − rp'
borrow
rp'1, XA
2
2+S
rp'1← rp'1 − XA
borrow
A, @HL
1
1
A , CY← A − (HL) − CY
XA, rp'
2
2
XA, CY← XA − rp' − CY
rp'1, XA
2
2
rp'1, CY ← rp'1 − XA − CY
A, #n4
2
2
A←A
∧ n4
A, @HL
1
1
A←A
∧ (HL)
XA, rp'
2
2
XA ← XA
rp'1, XA
2
2
rp'1← rp'1
A, #n4
2
2
A←A
∨ n4
A, @HL
1
1
A←A
∨ (HL)
XA, rp'
2
2
XA ← XA
rp'1, XA
2
2
rp'1← rp'1
A, #n4
2
2
A←A
∨ n4
A, @HL
1
1
A←A
∨ (HL)
XA, rp'
2
2
XA ← XA
rp'1, XA
2
2
rp'1← rp'1
Note Instruction Group
20
Operation
*1
*1
*1
*1
*1
∧ rp'
∧ XA
*1
∨ rp'
∨ XA
∨ rp'
∨ XA
carry
*1
borrow
Bytes
Machine
Cycles
Note 2
Note 1
µPD75P336
RORC
A
1
1
CY ← A0, A3 ← CY, An–1 ← An
NOT
A
2
2
A←A
reg
1
1+S
reg ← reg + 1
reg = 0
rp1
1
1+S
rp1 ← rp1 + 1
rp1 = 00H
@HL
2
2+S
(HL) ← (HL) + 1
*1
(HL) = 0
mem
2
2+S
(mem) ← (mem) + 1
*3
(mem) = 0
reg
1
1+S
reg ← reg – 1
reg = FH
rp'
2
2+S
rp' ← rp' – 1
rp' = FFH
reg, #n4
2
2+S
Skip if reg = n4
reg = n4
@HL, #n4
2
2+S
Skip if (HL) = n4
*1
(HL) = n4
A, @HL
1
1+S
Skip if A = (HL)
*1
A = (HL)
XA, @HL
2
2+S
Skip if XA = (HL)
*1
XA = (HL)
A, reg
2
2+S
Skip if A = reg
A = reg
XA, rp'
2
2+S
Skip if XA = rp'
XA = rp'
SET1
CY
1
1
CY ← 1
CLR1
CY
1
1
CY ← 0
SKT
CY
1
1+S
NOT1
CY
1
1
Mnemonic
Note 3
INCS
Operand
Note 4
Comparison
DECS
SKE
Note 1.
2.
3.
4.
Operation
Skip if CY = 1
Addressing Area
Skip Condition
CY = 1
CY ← CY
Instruction Group
Accumulator operation
Increment and decrement
Carry flag manipulation
21
SET1
CLR1
Memory bit manipulation
SKT
SKF
SKTCLR
AND1
OR1
Branch
XOR1
Machine
Cycles
Mnemonic
Bytes
Note
µPD75P336
mem.bit
2
2
(mem.bit) ← 1
*3
fmem.bit
2
2
(fmem.bit) ← 1
*4
pmem.@L
2
2
(pmem7–2 + L 3–2.bit (L1–0)) ← 1
*5
@H + mem.bit
2
2
(H + mem3–0.bit) ← 1
*1
mem.bit
2
2
(mem.bit) ← 0
*3
fmem.bit
2
2
(fmem.bit) ← 0
*4
pmem.@L
2
2
(pmem7–2 + L 3–2.bit (L1–0)) ← 0
*5
@H + mem.bit
2
2
(H + mem3–0.bit) ← 0
*1
mem.bit
2
2+S
Skip if (mem.bit) = 1
*3
(mem.bit) = 1
fmem.bit
2
2+S
Skip if (fmem.bit) = 1
*4
(fmem.bit) = 1
pmem.@L
2
2+S
Skip if (pmem7–2 + L 3–2.bit (L1–0)) = 1
*5
(pmem.@L) = 1
@H + mem.bit
2
2+S
Skip if (H + mem3–0.bit) = 1
*1
(@H + mem.bit) = 1
mem.bit
2
2+S
Skip if (mem.bit) = 0
*3
(mem.bit) = 0
fmem.bit
2
2+S
Skip if (fmem.bit) = 0
*4
(fmem.bit) = 0
pmem.@L
2
2+S
Skip if (pmem7–2 + L 3–2.bit (L1–0))= 0
*5
(pmem.@L) = 0
@H + mem.bit
2
2+S
Skip if (H + mem3–0.bit) = 0
*1
(@H + mem.bit) = 0
fmem.bit
2
2+S
Skip if (fmem.bit) = 1 and clear
*4
(fmem.bit) = 1
pmem.@L
2
2+S
Skip if (pmem7–2 + L 3–2.bit (L1–0)) = 1 and clear
*5
(pmem.@L) = 1
@H+mem.bit
2
2+S
Skip if (H + mem3–0.bit) = 1 and clear
*1
(@H + mem.bit) = 1
CY, fmem.bit
2
2
CY ← CY
∧ (fmem.bit)
*4
CY, pmem.@L
2
2
CY ← CY
∧ (pmem7–2 + L3–2.bit (L1–0))
*5
CY, @H + mem.bit
2
2
CY ← CY
∧ (H + mem3-0.bit)
*1
CY, fmem.bit
2
2
CY ← CY
∨ (fmem.bit)
*4
CY, pmem.@L
2
2
CY ← CY
∨ (pmem7–2 + L3–2.bit (L1–0))
*5
CY, @H + mem.bit
2
2
CY ← CY
∨ (H + mem3-0.bit)
*1
CY, fmem.bit
2
2
CY ← CY
∨ (fmem.bit)
*4
CY, pmem.@L
2
2
CY ← CY
∨ (pmem7–2 + L3–2.bit (L1–0))
*5
CY, @H + mem.bit
2
2
CY ← CY
∨ (H + mem3-0.bit)
*1
*6
*6
Operand
BR
addr
—
—
PC13–0 ← addr
(The assembler selects the optimum instruction
from among the BRCB !caddr, and BR $addr
instructions.)
BR
!addr
3
3
PC13–0 ← addr
BRCB
!caddr
2
2
PC13–0 ← PC
BR
$addr
1
2
PC13–0 ← addr
PCDE
2
3
PC13–0 ← PC
13-8
+ DE
PCXA
2
3
PC13–0 ← PC
13-8
+ XA
BR
Note
22
Operation
Instruction Group
13.12
+ caddr11–0
Addressing Area
*8
*7
Skip Condition
Bytes
Machine
Cycles
Subroutine stack control
Note 1
µPD75P336
CALL
!addr
3
3
(SP – 4) (SP – 1) (SP – 2) ← PC11–0
(SP – 3) ← MBE, RBE, PC13.12
PC13–0 ← addr, SP ← SP – 4
*6
CALLF
!faddr
2
2
(SP – 4) (SP – 1) (SP – 2) ← PC11–0
(SP – 3) ← MBE, RBE, PC13.12
PC13–0 ← 000 + faddr, SP ← SP – 4
*9
1
3
MBE, RBE, PC13.12 ← (SP + 1)
PC11–0 ← (SP) (SP + 3) (SP + 2)
SP ← SP + 4
MBE, RBE, PC13.12 ← (SP + 1)
PC11–0 ← (SP) (SP + 3) (SP + 2)
SP ← SP + 4
the skip unconditionally
Mnemonic
RET
1
3+S
RETI
1
3
×, ×, PC13.12 ← (SP + 1)
PC11–0 ← (SP) (SP + 3) (SP + 2)
PSW ← (SP + 4) (SP + 5), SP ← SP + 6
rp
1
1
(SP – 1) (SP – 2) ← rp, SP ← SP – 2
BS
2
2
(SP – 1) ← MBS, (SP – 2) ← RBS, SP ← SP – 2
rp
1
1
rp ← (SP + 1) (SP), SP ← SP + 2
BS
2
2
MBS ← (SP + 1), RBS ← (SP), SP ← SP + 2
2
2
IME (IPS.3) ← 1
2
2
IE × × × ← 1
2
2
IME (IPS.3) ← 0
IE× × ×
2
2
IE × × × ← 0
A, PORTn
2
2
A ← PORT n
XA, PORTn
2
2
XA ← PORTn+1, PORTn
(n = 4, 6)
PORTn, A
2
2
PORTn ← A
(n = 2–8)
PORTn, XA
2
2
PORTn+1, PORTn ← XA
(n =4, 6)
HALT
2
2
Set HALT Mode (PCC.2 ← 1)
STOP
2
2
Set STOP Mode (PCC.3 ← 1)
NOP
1
1
No Operation
RBn
2
2
RBS ← n
(n = 0–3)
MBn
2
2
MBS ← n
(n = 0,1,2,15)
POP
Input/Output
Note 2
EI
Note 3
Addressing Area
Operation
RETS
PUSH
DI
IN*1
OUT*1
SEL
Special
Operand
GETI*2
IE× × ×
taddr
1
3
Skip Condition
Unconditional
(n = 0–8)
• TBR Instruction
PC13–0 ← (taddr) 5–0 + (taddr + 1)
----------------------------------------------------------------------• TCALL Instruction
(SP – 4) (SP – 1) (SP – 2) ← PC11–0
(SP – 3) ← MBE, RBE, PC13, 12
PC13–0 ← (taddr) 5–0 ← (taddr + 1)
SP ← SP – 4
----------------------------------------------------------------------• Other than TBR and TCALL Instruction
Execution of an instruction addressed at
(taddr) and (taddr + 1)
*10
-----------------------------
----------------------------Conforms to
referenced
instruction.
23
µPD75P336
* 1. At IN/OUT instruction execution, MBE = 0 or MBE = 1, MBS = 15 must be set in advance.
2. TBR and TCALL instructions are assembler pseudo-instructions for table definition.
Note
24
1. Instruction Group
2. Interruput control
3. CPU control
µPD75P336
4. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY OPERATIONS
The program memory incorporated in the µPD75P336 is 32640 × 8-bit electrically writable one-time PROM.
Write/verify operations on this one-time PROM are executed using the pins shown in the table below.
Address updating is performed by means of clock input from the X1 pin rather than by address input.
Pin Name
Note
Function
VPP
Voltage applecation pin for program memory write/verify
(normally VDD potential).
X1, X2
Address update clock inputs for program memory write/verify.
Inverse of X1 pin signal is input to X2 pin.
MD0 to MD3
Operating mode selection pin for program memory write/verify.
P40 to P43 (low-order 4 bits)
P50 to P53 (high-order 4 bits)
8-bit data input/output pins for progrm memory write/verify.
VDD
Supply voltage application pin.
Applies 2.7 to 6.0 V in normal operation, and 6 V for program
memory write/verify.
1. Pins not used in a program memory write/verify operation are handled as follows:
• Pins other than XT2 .......... Connect to VSS with a pull-down resistor
• XT2 pins ............................. Leave open
2. Since the µPD75P336 is not provided with an erase window, program memory contents cannot be
erased with ultra-violet light.
4.1 PROGRAM MEMORY WRITE/VERIFY OPERATING MODES
When +6 V is applied to the VDD pin and +12.5 V to the VPP pin, the µPD75P336 enters the program memory write/
verify mode. This mode comprises one of the operating modes shown below according to the setting of pins MD0
to MD3.
Operating Mode Setting
Operating Mode
VPP
+12.5 V
VDD
MD0
MD1
MD2
MD3
H
L
H
L
Program memory address zero-clear
L
H
H
H
Write mode
L
L
H
H
Verify mode
H
X
H
H
Program inhibit mode
+6V
X: L or H
25
µPD75P336
4.2 PROGRAM MEMORY WRITE PROCEDURE
The procedure for writing to program memory is as shown below, allowing high-speed writing.
(1) Unused pins are connected to VSS with a pull-down resistor. The X1 pin is driven low.
(2) 5 V is supplied to the VDD and VPP pins.
(3)
(4)
(5)
(6)
10 µ s wait.
Program memory address zero-clear mode.
6 V is supplied to VDD, 12.5 V to VPP.
Program inhibit mode.
(7)
(8)
(9)
(10)
Data is written in 1 ms write mode.
Program inhibit mode.
Verify mode. If write is successful go to (10), otherwise repeat (7) to (9).
(Number of times written in (7) to (9): X) × 1 ms additional writes.
(11)
(12)
(13)
(14)
Program inhibit mode.
Program memory address is updated (+1) by inputting 4 pulses to the X1 pin.
Steps (7) to (12) are repeated until the last address.
Program memory address zero-clear mode.
(15) V DD / VPP pin voltage is changed to 5 V.
(16) Power-off.
Steps (2) to (12) of this procedure are shown in the figure below.
Repeated X Times
Write
≈
VPP
≈
VDD
VDD + 1
VDD
VDD
Data Input
Data Output
≈
P40-P43
P50-P53
≈
X1
≈
VPP
Additional
Write
Verify
≈
MD0
(P30)
≈
MD1
(P31)
≈
MD2
(P32)
MD3
(P33)
26
Data Input
Address
Increment
µPD75P336
4.3 PROGRAM MEMORY READ PROCEDURE
µPD75P336 program memory contents can be read using the following procedure.
(1)
(2)
(3)
(4)
Unused pins are connected to VSS with a pull-down resistor. The X1 pin is driven low.
5 V is supplied to the VDD and VPP pins.
10 µs wait.
Program memory address zero-clear mode.
(5)
(6)
(7)
6 V supplied to VDD, and 12.5 V to VPP.
Program inhibit mode.
Verify mode. When clock pulses are input to the X1 pin, data is output sequentially, one address per
4-pulse-input cycle.
(8)
(9)
(10)
(11)
Program inhibit mode.
Program memory address zero-clear mode.
VDD / VPP pin voltage is changed to 5 V.
Power-off.
Steps (2) to (9) of this procedure are shown in the figure below.
VDD
≈
VPP
≈
VPP
VDD + 1
≈
VDD
MD0
(P30)
≈
Data Output
≈
MD1
(P31)
Data Output
≈
P40-P43
P50-P53
≈
X1
≈
VDD
≈
MD2
(P32)
MD3
(P33)
27
µPD75P336
µPD75P336
PD75304B
5. ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)
PARAMETER
TEST CONDITIONS
SYMBOL
RATING
VDD
★
Power supply voltage
Input voltage
Output voltage
Output current high
VPP
VI1
Except ports 4, 5
VI2
Ports 4, 5
Open-drain
VO
IOH
V
–0.3 to +13.5
V
–0.3 to VDD +0.3
V
–0.3 to +11
V
–0.3 to VDD +0.3
V
1 pin
mA
All pins
–30
mA
Peak value
30
mA
Effective value
15
mA
Peak value
100
mA
Effective value
60
mA
Peak value
100
mA
Effective value
60
mA
Total of ports 0, 2, 3, 5, 18
IOL*
–0.3 to +7.0
–15
1 pin
Output current low
UNIT
Total of ports 4, 6, 7
Operating temperature
Topt
–40 to +85
°C
Storage temperature
Tstg
–65 to +150
°C
*
Rms value is calculated from [effective value] = [peak value] × √duty
CAPACITANCE (Ta = 25 °C, VDD = 0 V)
PARAMETER
Input capacitance
28
SYMBOL
TEST CONDITIONS
CIN
Output capacitance
COUT
I/O capacitance
CIO
f = 1 MHz
Unmeasured pins returned to 0 V.
MIN.
TYP.
MAX.
UNIT
15
pF
15
pF
15
pF
µPD75P336
µPD75P336
PD75304B
MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
ESONATOR
RECOMMENDED
CONSTANT
PARAMETER
TEST
CONDITIONS
Oscillator
frequency (fx)*1
X1
TYP.
1.0
MAX.
UNIT
5.0*3
MHz
4
ms
5.0*3
MHz
10
ms
30
ms
X1
Ceramic
resonator
C1
C2
Oscillation
stabilization
time*2
VDD
X1
MIN.
Oscillator
frequency (fx)*1
X1
Crystal
resonator
C1
After VDD
reached the
MIN. of the
oscillator
voltage
range.
C2
Oscillation
stabilization
time*2
1.0
VDD = 4.5
to 6.0 V
4.19
VDD
X1
X2
External
clock
µ PD74HCU04
*
X1 input
frequency (fx)*1
1.0
5.0*3
MHz
X1 input
high-/low-level
width (tXH, tXL )
100
500
ns
1. Shows the oscillator characteristics only. For the instruction execution time, see the AC characteristics.
2. Time necessary for oscillation to stabilize after VDD applied or STOP mode released.
3. When the oscillator frequency is “4.19 MHz < fX ≤ 5.0 MHz”, it is impossible to select of “PCC = 0011” with
1 machine cycle of less than 0.95 µs as instruction execution time.
29
µPD75P336
µPD75P336
PD75304B
SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
RESONATOR
RECOMMENDED
CONSTANT
XT1
C4
MIN.
TYP.
MAX.
UNIT
32
32.768
35
kHz
1.0
2
s
10
s
VDD = 4.5
to 6.0 V
R
C3
TEST
CONDITIONS
Oscillator
frequency (f XT)
XT2
Crystal
resonator
PARAMETER
Oscillation
stabilization time
VDD
XT1 input
frequency (f XT)
XT1
External
clock
32
100
5
15
kHz
XT2
Leave
Open
XT1 input high-/
low-level width
µs
(tXTH,tXTL)
Note
When the main system clock and subsystem clock oscillation circuit are used, area inside doted lines in
the figure should be wired as follows to prevent influence from the wiring capacitance, etc..
• Wiring should be as short as possible.
• Do not cross other signal lines, and do not place the oscillator close to line in which varying high
current flows.
• Potential at the oscillator capacitor connecting point should always be the same as VDD. Do not
connect to the power supply pattern in which high current flows.
• Do not fetch signals from the oscillator.
In the subsystem clock oscillator, which is designed to be a circuit with low amplification ratio to suppress
consumption current, misoperation due to noise occurs more often than in the main system clock
oscillator. Therefore, when using the subsystem clock, special care should be taken in the wiring method.
30
µPD75P336
µPD75P336
PD75304B
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) (1/3)
PARAMETER
Input voltage
high
Input voltage
low
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
VIH1
Ports 2, 3, 8
0.7 VDD
VDD
V
VIH2
Ports 0, 1, 6, 7, RESET
0.8 VDD
VDD
V
VIH3
Ports 4 and 5
0.7 VDD
10
V
VIH4
X1, X2, XT1
VDD –0.5
VDD
V
VIL1
Ports 2, 3, 4, 5, 8
0
0.3 VDD
V
VIL2
Ports 0, 1, 6, 7 RESET
0
0.2 VDD
V
VIL3
X1, X2, XT1
0
0.4
V
VOH1
Ports
0, 2, 3, 6, 7, 8
BIAS
Open-drain
VDD = 4.5 to
6.0 V
IOH = –1 mA
VDD –1.0
V
Output voltage
IOH = –100 µA
VDD –0.5
V
high
VDD = 4.5 to
6.0 V
IOH = –100 µA
VDD –2.0
V
IOH = –50 µA
VDD –1.0
V
VOH2
BP0 to BP7
(I OH 2 outputs)
31
µPD75P336
µPD75P336
PD75304B
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) (2/3)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
0.4
2.0
V
VDD = 4.5 to
6.0 V
IOL = 1.6 mA
0.4
V
IOL = 400 µA
0.5
V
Open-drain
pull-up
0.2 VDD
V
VDD = 4.5 to
6.0 V
IOL = 100 µA
1.0
V
IOL = 50 µA
1.0
V
Other than
below
3
µA
X1, X2, XT1
20
µA
Ports 4, 5
(when opendrain)
20
µA
Other than
below
–3
µA
X1, X2, XT1
–20
µA
Other than
below
3
µA
Ports 4 and 5
(when opendrain)
20
µA
–3
µA
80
kΩ
Ports 3, 4, 5
VDD = 4.5 to
6.0 V
IOL = 15 mA
VOL1
Ports
0, 2, 3, 4, 5, 6
7, 8
Output voltage
low
SB0, 1
resistor ≥ 1 kΩ
VOL2
BP0 to BP7
(IOL 2 outputs)
ILIH1
VIN = VDD
Input leakage
current high
ILIH2
ILIH3
Input leakage
current low
VIN = 10 V
ILIL1
VIN = 0 V
ILIL2
Output leakage
current high
Output leakage
current low
Built-in Pull-up
resistor
LCD drive voltage
32
ILOH1
VOUT = VDD
ILOH2
VOUT = 10 V
ILOL
VOUT = 0 V
RL1
Ports 0, 1, 2, 3, 6
7, 8 (Except P00)
VIN = 0 V
VLCD
VDD = 5.0 V
±10%
15
VDD = 3.0 V
±10%
30
300
kΩ
2.5
VDD
V
40
µPD75P336
µPD75P336
PD75304B
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) (3/3)
PARAMETER
SYMBOL
TEST CONDITION
LCD output
voltage
deviation*1
(common)
VODC
I O = ±5 µA
LCD output
voltage
deviation*1
(segment)
VODS
I O = ±1 µA
IDD1
4.19 MHz
crystal
oscillation
C1= C2 = 22 pF*3
VLCD0 = VLCD
VLCD1 =
VLCD × 2/3
VLCD2 =
VLCD × 1/3
2.7 V ≤ VLCD
≤ VDD
IDD3
32 kHz
crystal
oscillation*6
UNIT
0
±0.2V
V
0
±0.2V
V
15
mA
VDD = 3 V
±10 %*5
1
3
mA
VDD =
5V
±10 %
500
1500
µA
VDD =
3V
±10 %
300
900
µA
Operat- VDD =
3V
ing
±10 %
mode
100
300
µA
VDD =
3V
±10 %
20
60
µA
VDD = 5 V ±10 %
0.5
20
µA
VDD =
0.1
10
µA
0.1
5
µA
HALT
mode
IDD4
MAX.
5
mode
Power supply
current
*2
TYP.
VDD = 5 V
±10 %*4
HALT
IDD2
MIN.
XT1 = 0 V
STOP mode
IDD5
3V
±10 %
*
Ta =
25 °C
1. The voltage deviation means a difference between the ideal value of segment or common output (VLCDn;
n = 0, 1, 2) and the output voltage.
2. Current flowing in the built-in pull-up resistor and the LCD split resistor is not include.
3. Including the case where the subsystem clock is operating.
4. When the processor clock control register (PCC) is set to 0011 and operated in high-speed mode.
5. When PCC is set to 0000 and operated in the low-speed mode.
6. The case where the system clock control register (SCC) is set to 1001, the main system clock oscillatio stopped
and the device is operated on the subsystem clock.
33
µPD75P336
µPD75P336
PD75304B
A/D CONVERTER CHARACTERISTICS
PARAMETER
(Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V, AVSS = VSS = 0 V)
SYMBOL
TEST CONDITION
Resolution
2.5 V ≤ AVREF ≤ V DD
AVREF ≥ 0.6 VDD
Absolute
MIN.
TYP.
MAX.
UNIT
8
8
8
bit
–10 ≤ Ta ≤
+ 85 oC
±1.5
–40 ≤ Ta <
–10 oC
±2.0
–10 ≤
Ta ≤
+ 85 oC
accuracy*1
2.5 V ≤ AVREF ≤ V DD
AVREF < 0.6 VDD
±1.5
tCY ≥
1.91 µs –40 ≤
Ta ≤
– 10 oC
LSB
±2.0
–40 ≤
tCY <
1.91 µs Ta ≤
+ 85 oC
±3.0
Conversion time
tCONV
*2
168/fx
s
Sampling time
tSAMP
*3
44x
s
Analog input
voltage
V IAN
AVREF
V
Analog input
impedance
R AN
1000
AVREF current
I REF
1.0
*
AVSS
2.0
1. Absolute accuracy excluding quantization (±1/2LSB) error.
2. Time up to end of conversion (EOC = 1) after execution of the conversion start instruction.
(40.1 µs: fx = 4.19 MHz operation)
3. Time up to end of sampling after execution of the conversion start instruction.
(10.5 µs: fx = 4.19 MHz operation)
34
MΩ
mA
µPD75P336
µPD75P336
PD75304B
AC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
PARAMETER
CPU clock cycle
time (minimum
instruction
execution time = 1
machine cycle)*1
TI0, 1 input
frequency
TI0, 1 input high/
low level width
Interrupt input high/
low level width
RESET low
level width
* 1.
SYMBOL
tCY
TEST CONDITIONS
Operated
by main
system
clock
VDD = 4.5
to 6.0 V
Operated
by subsystem
clock
fTI
tTIH,
TYP.
MAX.
UNIT
0.95
64
µs
3.8
64
µs
125
µs
0
1
MHz
0
275
kHz
114
VDD = 4.5 to 6.0 V
122
0.48
µs
1.8
µs
INT0
*2
µs
INT1, 2, 4
10
µs
KR0 to KR7
10
µs
10
µs
VDD = 4.5 to 6.0 V
tTIL
tINTH,
tINTL
tRSL
tcy vs VDD
(Operating on Main System Clock)
The CPU clock (Φ) cycle time is determined by the
oscillator frequency of the connected resonator
and the system clock control register (SCC) and
the processor clock control register (PCC). The
figure below shows the main system clock operation power supply voltage VDD vs cycle time tCY
characteristics.
Becomes 2tCY or 128/fX depending on the
interrupt mode register (IM0) setting.
70
64
30
6
5
Operating Guaranteed
Range
4
Cycle Time tcy [µ s]
2.
MIN.
3
2
1
0.5
0
1
2
3
4
5
6
Supply Voltage VDD [V]
35
µPD75P336
µPD75P336
PD75304B
SERIAL TRANSFER OPERATION
2-wired and 3-wired serial I/O modes (SCK ... Internal clock output)
PARAMETER
SYMBOL
TEST CONDITIONS
VDD = 4.5 to 6.0 V
SCK cycle time
TYP.
MAX.
UNIT
1600
ns
3800
ns
tKCY1
/2-50
ns
tKCY1
/2-150
ns
tKCY1
tKL1
SCK high/low
level width
MIN.
VDD = 4.5 to 6.0 V
tKH1
SI setup time
(to SCK↑)
tSIK1
150
ns
SI hold time
(from SCK↑)
tKSI1
400
ns
SO output
delay time
from SCK↓
tKSO1
RL = 1 kΩ ,
CL = 100 pF*
VDD = 4.5
to 6.0 V
250
ns
1000
ns
MAX.
UNIT
2-wired and 3-wired serial I/O modes (SCK ... External clock input)
PARAMETER
SYMBOL
TEST CONDITIONS
VDD = 4.5 to 6.0 V
SCK cycle time
MIN.
TYP.
800
ns
3200
ns
400
ns
1600
ns
tKCY2
VDD = 4.5 to 6.0 V
SCK high/low
level width
tKL2
tKH2
SI setup time
(to SCK↑)
tSIK2
100
ns
SI hold time
(from SCK ↑)
tKSI2
400
ns
SO output
delay time
from SCK↓
*
36
tKSO2
RL = 1 kΩ,
CL = 100 pF*
VDD = 4.5
to 6.0 V
RL and CL are the SO output line load resistance and load capacitance, respectively.
300
ns
1000
ns
µPD75P336
µPD75P336
PD75304B
SBI mode (SCK ... Internal clock output (master))
PARAMETER
SYMBOL
TEST CONDITIONS
VDD = 4.5 to 6.0 V
TYP.
MAX.
UNIT
1600
ns
3800
ns
tKCY3
/2-50
ns
tKH3
tKCY3
/2-150
ns
SB0,1 setup time
(to SCK↑)
tSIK3
150
ns
SB0,1 hold time
(from SCK↑)
tKSI3
tKCY3/2
ns
SCK cycle time
tKCY3
tKL3
SCK high/low
level width
SB0,1 output
delay time
from SCK↓
*
MIN.
tKSO3
VDD = 4.5 to 6.0 V
RL = 1 kΩ ,
CL = 100 pF*
VDD = 4.5 to 6.0 V
0
250
ns
0
1000
ns
SB0,1 ↓
from SCK↑
tKSB
tKCY3
ns
SCK from SB0, 1 ↓
tSBK
tKCY3
ns
SB0,1 low
level width
tSBL
tKCY3
ns
SB0,1 high
level width
tSBH
tKCY3
ns
RL and CL are the SB0 and SB1 output line load resistance and load capacitance, respectively.
37
µPD75P336
µPD75P336
PD75304B
SBI mode (SCK ... External clock input (slave))
PARAMETER
SYMBOL
TEST CONDITIONS
VDD = 4.5 to 6.0 V
SCK cycle time
tKCY4
tKL4
SCK high/low
level width
t KH4
MAX.
UNIT
800
ns
3200
ns
400
ns
1600
ns
tSIK4
100
ns
SB0,1 hold time
(from SCK↑)
tKSI4
tKCY4/2
ns
delay time
from SCK↓
38
TYP.
SB0,1 setup time
(to SCK↑)
SB0,1 output
*
VDD = 4.5 to 6.0 V
MIN.
tKSO4
RL = 1 kΩ ,
CL = 100 pF*
VDD = 4.5 to 6.0 V
0
300
ns
0
1000
ns
SB0,1 ↓
from SCK↑
tKSB
tKCY4
ns
SCK↓ from SB0, 1 ↓
tSBK
tKCY4
ns
SB0,1 low
level width
tSBL
tKCY4
ns
SB0,1 high
level width
tSBH
tKCY4
ns
RL and CL are the SB0 and SB1 output line load resistance and load capacitance, respectively.
µPD75P336
µPD75P336
PD75304B
AC Timing Test Point(Exculuding X1 and XT1 Inputs)
0.8 VDD
0.8 VDD
Test Points
0.2 VDD
0.2 VDD
Clock Timings
1/fX
tXL
tXH
VDD -0.5 V
0.4 V
X1 Input
1/fXT
tXTL
tXTH
VDD -0.5 V
0.4 V
XT1 Input
TI0 Timing
1/fTI
tTIL
tTIH
TI0
39
µPD75P336
µPD75P336
PD75304B
Serial Transfer Timing
3-wired serial I/O mode:
tKCY1
tKL1
tKH1
SCK
tSIK1
tKSI1
Input Data
SI
tKSO1
SO
Output Data
2-wired serial I/O mode:
tKCY2
tKL2
tKH2
SCK
tSIK2
SB0,1
tKSO2
40
tKSI2
µPD75P336
µPD75P336
PD75304B
Serial Transfer Timing
Bus release signal transfer:
tKL3,4
tKCY3,4
tKH3,4
SCK
tKSB
tSBL
tSBH
tSIK3,4
tSBK
tKSI3,4
SB0,1
tKSO3,4
Command signal transfer:
tKL3,4
tKCY3,4
tKH3,4
SCK
tKSB
tSIK3,4
tSBK
tKSI3,4
SB0,1
tKSO3,4
Interrupt Input Timing
tINTL
tINTH
INT0,1,2,4
KR0-7
RESET Input Timing
tRSL
RESET
41
µPD75P336
µPD75P336
PD75304B
DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DAT RETENTION CHARACTERISTICS (Ta = –40 to 85 °C)
PARAMETER
SYMBOL
Data retention
supply voltage
VDDDR
Data retention
supply current*1
IDDDR
Release signal
set time
tSREL
Oscillation
stabilization
wait time*2
tWAIT
*
TEST CONDITIONS
MIN.
TYP.
2.0
VDDDR = 2.0 V
0.1
Release by interrupt request
UNIT
6.0
V
10
µA
µs
0
Release by RESET
MAX.
217/fx
ms
*3
ms
1. Current flng in the built-in pull-up resistor is not included.
2. The oscillation stabilization wait time is the time CPU operation is stopped to prevent unstable operation at
start of oscillation.
3. Depends on the basic interval timer mode register (BTM) setting (table below).
42
BTM3
BTM2
BTM1
BTM0
Waite Time
(Figures in parentheses are for operation at fxx = 4.19 MHz)
—
0
0
0
220/fxx (approx. 250 ms)
—
0
1
1
217/fxx (approx. 31.3 ms)
—
1
0
1
215/fxx (approx. 7.82 ms)
—
1
1
1
213/fxx (approx. 1.95 ms)
µPD75P336
µPD75P336
PD75304B
Data Retention Timing (STOP Mode Release by RESET)
Internal Reset Operation
HALT Mode
STOP Mode
Operating
Mode
Data Retention Mode
VDD
VDDDR
tSREL
STOP Instruction Execution
RESET
tWAIT
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)
HALT Mode
STOP Mode
Operating
Mode
Data Retention Mode
VDD
VDDDR
tSREL
STOP Instruction Execution
Standby Release Signal
(Interrupt Request)
tWAIT
43
µPD75P336
µPD75P336
PD75304B
D/C PROGRAMING CHARACTERISTICS (Ta = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, VSS = 0 V)
PARAMETER
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
VIH1
Except X1, X2
0.7VDD
VDD
V
VIH2
X1, X2
VDD -0.5
VDD
V
VIL1
Except X1, X2
0
0.3VDD
V
VIL2
X1, X2
0
0.4
V
Input leakage
current
VL1
VIN = VIL or VIH
10
µA
Output voltage
high
VOH
IOH = –1 mA
Output voltage
low
VOL
IOL = 1.6 mA
VDD power supply
current
IDD
VPP power supply
current
IPP
Input voltage
high
Input voltage
low
* 1.
2.
VDD -1.0
V
0.4
MD0 = VIL , MD1 = VIH
V
30
mA
30
mA
VPP must not exceed +13.5 V including overshoot.
VDD should be applied before VPP and cut after VPP.
A/D PROGRAMING CHARACTERISTICS (Ta = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, VSS = 0 V) (1/2)
PARAMETER
UNIT
*1
Address setup time *2
(to MD0↓)
tAS
tAS
MD1 setup time
(to MD0↓)
tMIS
tOES
Data setup time
(to MD0↓)
tDS
tDS
2
µs
Address hold time *2
(from MD0↑)
tAH
tAH
2
µs
Data hold time
(from MD0↑)
tDH
tDH
2
µs
Data output float
delay time from MD0↑
tDF
tDF
0
VPP setup time
(to MD3↑)
tVPS
tVPS
2
µs
VDD setup time
(to MD3↑)
tVDS
tVCS
2
µs
Initial program
pulse width
tPW
tPW
0.95
TEST CONDITION
MIN.
TYP.
MAX.
SYMBOL
µs
2
µs
2
130
1.0
1.05
µs
ms
* 1. Symbol of the corresponding µ PD27C256.
2. The internal address signal is incremented (+1) at the rising edge of the forth X1 input. The signal is not
connected to pins.
44
µPD75P336
µPD75P336
PD75304B
A/D PROGRAMING CHARACTERISTICS (Ta = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, VSS = 0 V) (2/2)
PARAMETER
SYMBOL
*1
Additional program
pulse width
tOPW
tOPW
0.95
MD0 setup time
(to MD1↑)
tMOS
tCES
2
Data output delay time
from MD0↓
tDV
tDV
MD1 hold time
(from MD0↑)
tM1H
tOEH
MD1 recover time
(from MD0↓)
tM1R
Program conuter
reset time
X1 input
TYP.
MAX.
21.0
ms
µs
1
MD0 = MD1 = VIL
UNIT
µs
2
µs
tOR
2
µs
tPCR

10
µs
tXH, tXL

0.125
µs
fx

tI

2
µs
MD3 setup time
(to MD1↑)
tM3S

2
µs
MD3 hold time
(to MD1↓)
tM3H

2
µs
MD3 setup time
(to MD0 ↓)
tM3SR

Program memory read
2
µs
Data output delay time
from address *2
tDAD
tACC
Program memory read
Data output hold time
from address *2
t HAD
tOH
Program memory read
0
tM3HR

Program memory read
2
tDFR

Program memory read
Initial mode set time
MD3 hold time
(from MD0↑)
Data output float
delay time from MD3 ↓
*
MIN.
tM1H + t M1R ≥ 50 µs
high/low width
X1 input frequency
TEST CONDITION
4.19
MHz
2
µs
130
µs
µs
2
µs
1. Symbol of the corresponding µPD27C256.
2. The internal address signal is incremented (+1) at the rising edge of the fourth X1 input. The signal is not
connected to pins.
45
µPD75P336
µPD75P336
PD75304B
Program Memory Write Timing mode:
≈
VDD
≈
tVDS
VDD + 1
≈
VPP
≈
tVPS
VPP
tXH
VDD
VDD
Data Output
tDS
tOH
tDV
tDF
≈
Data Input
tDH
tDS
tAH
≈
tI
tXL
Data Input
≈
Data Input
tAS
≈
P40-P43
P50-P53
≈
≈
X1
MD0
tPW
tM0S
tOPW
≈
≈
tM1R
MD1
tM1H
≈
tM1S
≈
tPCR
MD2
tM3H
≈
≈
tM3S
MD3
Program Memory Read Timing mode:
tVPS
VPP
≈
VPP
VDD
tVDS
VDD
≈
VDD + 1
VDD
tXH
≈
X1
tXL
tDAD
P40-P43
P50-P53
Data Output
≈
Data Output
≈
tHAD
tDV
tI
≈
MD0
tDFR
tM3HR
≈
MD1
≈
tPCR
MD2
≈
tM3SR
MD3
46
µPD75P336
★
6. PACKAGE INFORMATION
80 PIN PLASTIC QFP ( 14)
A
B
60
61
41
40
Q
5°±5°
S
D
C
detail of lead end
21
20
F
80
1
G
H
I M
J
M
P
K
N
L
S80GC-65-3B9-3
NOTE
Each lead centerline is located within 0.13
mm (0.005 inch) of its true position (T.P.) at
maximum material condition.
ITEM
MILLIMETERS
INCHES
A
17.2 ± 0.4
0.677 ± 0.016
B
14.0 ± 0.2
0.551+0.009
–0.008
C
14.0 ± 0.2
0.551+0.009
–0.008
D
17.2 ± 0.4
0.677 ± 0.016
F
0.8
0.031
G
0.8
0.031
H
0.30 ± 0.10
0.012+0.004
–0.005
I
0.13
0.005
J
0.65 (T.P.)
0.026 (T.P.)
K
1.6 ± 0.2
0.063 ± 0.008
L
0.8 ± 0.2
0.031+0.009
–0.008
M
0.15+0.10
–0.05
0.006+0.004
–0.003
N
0.10
0.004
P
2.7
0.106
Q
0.1 ± 0.1
0.004 ± 0.004
S
3.0 MAX.
0.119 MAX.
47
µPD75P336
80 PIN PLASTIC TQFP (FINE PITCH) (
12)
A
B
60
41
61
40
21
F
80
1
20
H
I
M
J
K
M
P
G
R
Q
S
D
C
detail of lead end
N
L
NOTE
Each lead centerline is located within 0.10 mm (0.004 inch) of
its true position (T.P.) at maximum material condition.
ITEM MILLIMETERS
A
14.0±0.2
INCHES
0.551 +0.009
–0.008
B
12.0±0.2
0.472 +0.009
–0.008
C
12.0±0.2
0.472 +0.009
–0.008
D
14.0±0.2
0.551 +0.009
–0.008
F
1.25
G
1.25
H
0.22 +0.05
–0.04
0.049
0.049
0.009±0.002
I
0.10
J
0.5 (T.P.)
K
1.0±0.2
0.039 +0.009
–0.008
L
0.5±0.2
0.020 +0.008
–0.009
M
0.145 +0.055
–0.045 0.006±0.002
N
0.10
P
1.05
Q
0.05±0.05
R
5°±5°
S
1.27 MAX.
0.004
0.020 (T.P.)
0.004
0.041
0.002±0.002
5°±5°
0.050 MAX.
P80GK-50-BE9-4
48
µPD75P336
★
7. RECOMMENDED SOLDERING CONDITIONS
This product should be soldered and mounted under the conditions in the table below.
For detail of recommended soldering conditions, refer to the information document "Surface Mount Technology
Manual" (IEI-1207).
For soldering methods and conditions other than those recommended below, contact our salesman.
Table 7-1 Soldering Conditions
(1) µPD75P336GC-3B9 : 80-pin plastic QFP ( 14mm)
Solderring Method
Solderring Conditions
Recommended
Condition Symbol
Wave soldering
Solder bath temperature: 260 °C. max., Duration: 10 sec. max.,
Number of times: Once,
Time limit: 2 days* (thereafter 20 hours prebaking required at 125 °C)
Preheat temperature: 120 °C max. (package surface temperature)
WS60-202-1
Infrared reflow
Package Peak temperature: 230 °C, Duration: 30 sec. max., (at 210 °C or above),
Number of times: Once,
Time limit: 2 days* (thereafter 20 hours prebaking required at 125 °C)
IR30-202-1
VPS reflow
Package Peak temperature: 215 °C, Duration: 40 sec. max., (at 200 °C or above),
Number of times: Once,
Time limit: 2 days* (thereafter 20 hours prebaking required at 125 °C)
VP15-202-1
Pin part heating
Pin part temperature: 300 °C or below,
Duration: 3 sec. max. (per device side)
(2) µPD75P336GK-BE9 : 80-pin plastic TQFP (fine pitch) ( 12mm)
Solderring Method
*
Solderring Conditions
Recommended
Condition Symbol
Infrared reflow
Package Peak temperature: 235 °C, Duration: 30 sec. max., (at 210 °C or above),
Number of times: Once,
Time limit: 1 day* (thereafter 10 hours prebaking required at 125 °C)
IR35-101-1
VPS reflow
Package Peak temperature: 215 °C, Duration: 40 sec. max., (at 200 °C or above),
Number of times: Once,
Time limit: 1 day* (thereafter 10 hours prebaking required at 125 °C)
VP15-101-1
Pin part heating
Pin part temperature: 300 °C or below,
Duration: 3 sec. max. (per device side)
For the storage period after dry-pack decapsulation, storage conditions are max. 25 °C, 65 % RH.
Note
Use of more than one soldering method should be avoided (except in the case of pin part heating).
49
µPD75P336
µPD75P336
µPD75304B
PD75304B
APPENDIX A. LIST OF FUNCTIONS
Name
µPD75P336
µPD75336
Item
CPU core
75X-Standard
75X-High End
ROM (bytes)
16256 (mask ROM)
RAM ( × 4 bits)
General registers
Instruction
cycle
µPD75328
768
512
4 bits × 8 × 4 banks
4 bits × 8 × 1 bank
0.95 µs, 1.91 µs, 3.81 µs, 15.3 µs
(at 4.19 MHz operation)
Main system
clock
8064 (mask ROM)
16256 (PROM)
0.95 µs, 1.91 µs, 15.3 µs
(at 4.19 MHz operation)
122 µs (at 32.768 KHz operation)
Subsystem clock
CMOS input
8
Internal pull-up resistor specifiable by software
CMOS input/output
Input/
output
ports
CMOS output
20
44
Dual function as segment pins
8 (10 V withstand
voltage, mask option
pull-up capability)
N-ch open-drain
input/output
LCD controller/driver
8
•
•
8-bit resolution × 8-ch (successive approximation
type)
Low-voltage operation capability: VDD = 2.7 to 6.0 V
• 8-bit resolution × 6-ch
(successive approximation type)
• Low-voltage operation
capability: VDD = 3.5 to
6.0 V
• Basic interval timer × 1
• Timer/event counter × 1
• Watch timer × 1
Timer/counter
• Basic interval timer × 1
• Timer/event counter × 2
• Watch timer × 1
Serial Interface
• NEC standard serial interface (SBI)
• Clocked serial interface
Vectored interrupt
External: 3 Internal: 4
External: 3 Internal: 3
Test input
External: 1 Internal: 1
External: 1 Internal: 1
Clock output (PCL)
Φ, 524kHz, 262kHz, 65.5kHz (at 4.19MHz operation)
Buzzer output (BUZ)
2kHz, 4kHz, 32kHz
2kHz
8-bit data processing
Transfer, addition/subtraction, increment/decrement,
comparison
Transfer
Operating voltage
Package
On-chip PROM product
50
8 (10 V, withstand voltage
mask option pull-up
capability)
Max.20 × 4 segment drive, variable duty: static, 1/2, 1/3, 1/4
A/D converter
★
Same as at left
(but no pull-up resistor)
VDD = 2.7 - 6.0 V
80-pin plastic QFP ( 14 mm)
80-pin plastic TQFP (fine pitch) (
µPD75P336
12mm)
—
µPD75P328
µPD75P336
µµµPD75P336
PD75P336
PD75304B
PD75304B
APPENDIX B. DEVELOPMENT TOOLS
The following support tools are available for system development using the µPD75P336.
Language Processor
Host Machine
RA75X relocatable
assembler
PC-9800
series
IBM PC/AT
Remarks
OS
MS-DOS™
Ver. 3.30
to
Ver. 5.00A*
PC DOS™
(Ver. 3.1)
Supply Medium
Ordering Code (Product Name)
3.5-inch 2HD
µS5A13RA75X
5-inch 2HD
µS5A10RA75X
5-inch 2HC
µS7B10RA75X
Assembler operation is only guaranteed for the host machines and operating systems quoted above.
Hardware
PROM Write Tools
PG-1500
PROM programmer which enables a single-chip microcomputer with on-chip PROM to be
programmed in stand-alone mode or by operations from a host machine by connection of the
supplied board and a separately available programmer adapter.
Typical PROMs from 256K bits to 4M bits can also be programmed.
PA-75P328GC
PROM programmer adapter for the µPD75P336GC, used connected to the PG-1500.
PA-75P336GK
PROM program adapter for the µPD75P336GK, used connect to the PG-1500.
Software
Controls the PG-1500 on the host machine, with the PG-1500 and host machine connected via a
serial or parallel interface.
Host Machine
PG-1500
controller
PC-9800
series
IBM PC/AT
*
OS
MS-DOS
Ver. 3.30
to
Ver. 5.00A*
PC DOS
(Ver. 3.1)
Supply Medium
Ordering Code (Product Name)
3.5-inch 2HD
µS5A13PG1500
5-inch 2HD
µS5A10PG1500
5-inch 2HC
µS7B10PG1500
★
★
The task-swap function is provided with Ver.5.00/5.00A, but the function cannot be used with this software.
Remarks
PG-1500 controller operation is only guaranteed for the host machines and operating systems quoted
above.
51
µPD75P336
µPD75P336
µPD75304B
PD75304B
Debugging Tools
IE-75000-R*1
Hardware
IE-75000-R-EM
IE-75001-R
EP-75338GC-R
EV-9200G-80
EP-75336GK-R
The IE-75000-R is an in-circuit emulator which corresponds to the 75X series. For µPD75P336
development the IE-75000-R is used in conjunction with an emulation probe.
Efficient debugging is possible by connection to a host machine and PROM programmer.
Emulation board for the IE-75000-R and IE-75001-R. Incorporated in the IE-75000-R. Used in
conjunction with the IE-75000-R or IE-75001-R to perform µPD75P336 evaluation.
The IE-75001-R is an in-circuit emulator which corresponds to 75X series. For µPD75P336
development the IE-75001-R is used in conjunction with an emulation board IE-75000-R-EM*2
and emulation probe. Efficient debugging is possible by connection to a host machine and
PROM programer.
Emulation probe for µPD75P336GC. Used connect with the IE-75000-R or IE-75001-R, IE-75000-REM.
An 80-pin LCC socket (EV-9200GC-80) is also available to simplify connection to the user system.
Emulation probe for µPD75336GK. Used connected with the IE-75000-R or IE-75001-R, IE-75000-REM. An 80-pin conversion adapter (EV-9500GK-80 is also available to simplify connection to the
user system.
EV-9500GK-80
Connects the IE-75000-R or IE-75001-R to the host machine via by RS-232-C and contronix I/F and
controls the IE-75000-R or IE-75001-R on the host machine.
Software
Host Machine
IE control
program
PC-9800
series
IBM PC/AT
PC DOS
(Ver. 3.1)
Ordering Code (Product Name)
3.5-inch 2HD
µS5A13IE75X
5-inch 2HD
µS5A10IE75X
5-inch 2HC
µS7B10IE75X
Maintenance product
IE-75000-R-EM sold sparately
3.
The task-swap function is provided with Ver.5.00/5.00A, but the function cannot be used with this software.
Remarks
52
MS-DOS
Ver. 3.30
to
Ver. 5.00A*3
Supply Medium
2.
* 1.
★
OS
Operations of the IE control program is only guaranteed for the host machines and operating systems
quoted above.
Development Tools Configuration ★
In-Circuit Emulator
IE-75000-R
IE-75001-R*1
Centronics I/F
RS-232-C
Host Machine
PC-9800 Series
IBM PC/AT
(Symbolic Debugging
Possible)
Emulation Probe
EP-75336GC-R
EP-75336GK-R
IE-75000-R-EM
IE
Control
Program
*2
User System
PG-1500
Controller
Pruducts
Incorporating
PROM
µPD75P336GC
µPD75P336GK
PROM Programmer
PG-1500
Relocatable
Assembler
+
Programmer Adapter
*
1. The IE-75001-R does not incorporate the IE-75000-R-EM
(Available separately.)
PA-75P328GC
PA-75P336GK
2. EV-9200GC-80
EV-9500GK-80
µPD75P336
µPD75P336
PD75P336
PD75304B
µPD75304B
53
µPD75P336
µPD75P336
µPD75304B
PD75304B
54
µPD75P336
µµµPD75P336
PD75P336
PD75304B
PD75304B
55
µPD75P336
[MEMO]
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this
document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights
or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear
reactor control systems and life support systems. If customers intend to use NEC devices for above applications
or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact
our sales people in advance.
Application examples recommended by NEC Corporation
Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment,
Special
:
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,
Anticrime systems, etc.
M4 92.6
MS-DOS is a trademark of MicroSoft Corporation.
PC DOS and PC/AT is a trademark of IBM Corporation.