APT100GT60JRDQ4 600V, 100A, VCE(ON) = 2.1V Typical Thunderbolt IGBT® E E The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed. C G Features S • Low Forward Voltage Drop • RBSOA and SCSOA Rated • Low Tail Current • High Frequency Switching to 50KHz • Integrated Gate Resistor • Ultra Low Leakage Current OT 22 7 "UL Recognized" ISOTOP ® file # E145592 Low EMI, High Reliability • RoHS Compliant All Ratings: TC = 25°C unless otherwise specified. Maximum Ratings Symbol Parameter Ratings VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 IC1 Continuous Collector Current @ TC = 25°C 148 IC2 Continuous Collector Current @ TC = 100°C 80 ICM Pulsed Collector Current 1 300 SSOA PD TJ, TSTG Unit Volts Switching Safe Operating Area @ TJ = 150°C Amps 300A @ 600V Total Power Dissipation Operating and Storage Junction Temperature Range 500 Watts -55 to 150 °C Static Electrical Characteristics Min Typ Max V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 4mA) 600 - - VGE(TH) Gate Threshold Voltage (VCE = VGE, IC = 1.5mA, Tj = 25°C) 3 4 5 Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 25°C) 1.7 2.1 2.5 Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 125°C) - 2.5 - Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 - - 50 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2 - - 1500 Gate-Emitter Leakage Current (VGE = ±30V) - - 300 VCE(ON) ICES IGES Volts μA CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com Unit nA 052-6294 Rev B 10 - 2008 Symbol Characteristic / Test Conditions Dynamic Characteristic Symbol APT100GT60JRDQ4 Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Min Typ Max - 5150 - - 475 - - 295 - - 8.0 - VGE = 15V - 460 - VGE = 0V, VCE = 25V f = 1MHz Gate Charge Qg Total Gate Charge Qge Gate-Emitter Charge VCE= 300V - 40 - Gate-Collector Charge IC = 100A - 210 - TJ = 150°C, RG = 4.3Ω , VGE = 15V, 300 Qgc SSOA td(on) tr td(off) tf 3 Switching Safe Operating Area L = 100μH, VCE= 600V Current Rise Time Turn-Off Delay Time 40 - Inductive Switching (25°C) - 75 - VCC = 400V - 320 - - 100 - RG = 4.3Ω - 3250 - TJ = +25°C - 3525 - VGE = 15V Current Fall Time IC = 100A Eon1 Turn-On Switching Energy 4 Eon2 Turn-On Switching Energy 5 Eoff Turn-Off Switching Energy 6 - 3125 - td(on) Turn-On Delay Time - 40 - Inductive Switching (125°C) - 75 - Turn-Off Delay Time VCC = 400V - 350 - Current Fall Time VGE = 15V - 100 - Turn-On Switching Energy 4 IC = 100A 3275 - Eon2 Turn-On Switching Energy RG = 4.3Ω - 5 - 4650 - Eoff Turn-Off Switching Energy 6 - 3750 - tr td(off) tf Eon1 Current Rise Time TJ = +125°C pF V nC A - Turn-On Delay Time Unit ns μJ ns μJ Thermal and Mechanical Characteristics Symbol Characteristic / Test Conditions Min Typ Max Unit RθJC Junction to Case (IGBT) - - 0.25 RθJC Junction to Case (DIODE) - - 0.33 WT Package Weight - 29.2 - g - - 10 in·lbf - - 1.1 N·m 2500 - - Volts °C/W Torque Terminals and Mounting Screws VIsolation RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) 052-6294 Rev B 10 - 2008 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages. 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance not including gate driver impedance. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves APT100GT60JRDQ4 300 200 V GE 12, 13, &15V = 15V 10V IC, COLLECTOR CURRENT (A) 160 140 TC = 25°C 120 TC = 125°C 100 80 TC = -55°C 60 40 250 9V 200 8V 150 100 7V 50 6V 20 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 250µs PULSE TEST<0.5 % DUTY CYCLE IC, COLLECTOR CURRENT (A) 180 TJ = -55°C 160 140 120 100 80 TC = 25°C 60 TC = 125°C 40 20 0 0 FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 200 0 5 10 15 20 25 30 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) J VCE = 120V 12 VCE = 300V 10 8 VCE = 480V 6 4 2 0 2 4 6 8 10 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 100A C T = 25°C 14 0 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.5 3.0 IC = 100A 2.5 2.0 1.5 IC = 50A 1.0 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 3 2.5 1.5 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) 0.85 IC = 50A 1 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0.5 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 180 0.90 IC = 100A 2 1.10 0.95 IC = 200A 3.5 200 1.00 500 4 1.15 1.05 200 300 400 GATE CHARGE (nC) FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC = 200A 4.0 (NORMALIZED) VGS(TH), THRESHOLD VOLTAGE VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4.5 100 0 160 140 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6294 Rev B 10 - 2008 IC, COLLECTOR CURRENT (A) 180 Typical Performance Curves APT100GT60JRDQ4 450 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 35 VGE = 15V 30 25 20 15 10 VCE = 400V 5 TJ = 25°C, or 125°C RG = 4.3Ω L = 100µH 0 350 300 VGE =15V,TJ=25°C 250 VGE =15V,TJ=125°C 200 150 100 VCE = 400V RG = 4.3Ω L = 100µH 50 0 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 250 400 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 200 RG = 4.3Ω, L = 100µH, VCE = 400V RG = 4.3Ω, L = 100µH, VCE = 400V 180 160 tf, FALL TIME (ns) tr, RISE TIME (ns) 200 150 100 TJ = 25 or 125°C,VGE = 15V 16000 60 TJ = 25°C, VGE = 15V 12000 V = 400V CE V = +15V GE R = 4.3Ω 14000 G 12000 TJ = 125°C 10000 8000 6000 4000 2000 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 80 0 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current TJ = 25°C 0 Eon2,200A J 25000 20000 15000 Eoff,200A 10000 Eon2,100A Eoff,100A 5000 Eoff,50A Eon2,50A 0 TJ = 125°C 8000 6000 4000 2000 TJ = 25°C 16000 V = 400V CE = +15V V GE T = 125°C 30000 G 10000 0 25 50 70 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) 35000 V = 400V CE V = +15V GE R = 4.3Ω 0 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (µJ) 100 20 0 052-6294 Rev B 10 - 2008 120 40 50 0 TJ = 125°C, VGE = 15V 140 Eon2,200A V = 400V CE V = +15V GE R = 4.3Ω 14000 G 12000 Eoff,200A 10000 8000 6000 4000 Eon2,100A Eoff,100A 2000 Eoff,50A 0 Eon2,50A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT100GT60JRDQ4 10,000 IC, COLLECTOR CURRENT (A) 350 Cies P C, CAPACITANCE ( F) 5,000 1,000 500 C0es 300 250 200 150 100 50 Cres 0 100 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.25 0.9 0.20 0.7 0.15 0.5 0.10 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.30 0.3 t1 t2 0.05 t 0.1 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 0 10 -5 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 TC (°C) 0.0587 0.132 0.0587 Dissipated Power (Watts) 0.0120 0.420 4.48 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. ZEXT TJ (°C) FMAX, OPERATING FREQUENCY (kHz) 100 50 T = 75°C C F 10 T = 100°C C 5 T = 125°C J D = 50 % V = 400V CE R = 4.3Ω 1 = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf max f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC G FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 052-6294 Rev B 10 - 2008 10 20 APT100GT60JRDQ4 Gate Voltage APT100DQ60 10% TJ = 125°C td(on) tr V CE IC V CC 90% 5% 10% A Collector Current 5% CollectorVoltage D.U.T. Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% Gate Voltage TJ = 125°C td(off) CollectorVoltage 90% tf 10% 0 Collector Current Switching Energy 052-6294 Rev B 10 - 2008 Figure 23, Turn-off Switching Waveforms and Definitions Typical Performance Curves APT100GT60JRDQ4 ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE All Ratings: TC = 25°C unless otherwise specified. MAXIMUM RATINGS Symbol Characteristic / Test Conditions IF(AV) IF(RMS) IFSM APT100GT60JRDQ4 Maximum Average Forward Current (TC = 88°C, Duty Cycle = 0.5) 100 RMS Forward Current (Square wave, 50% duty) 146 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms) 1000 Unit Amps STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions Min Type Max IF = 100A 1.6 2.2 IF = 200A 2.05 IF = 100A, TJ = 125°C 1.28 Forward Voltage VF Unit Volts DYNAMIC CHARACTERISTICS Symbol Characteristic trr Reverse Recovery Time trr Reverse Recovery Time Qrr Reverse Recovery Charge Reverse Recovery Time Qrr Reverse Recovery Charge Max IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C - 34 - - 160 - - 290 - nC - 5 - Amps - 220 - ns - 1530 - nC - 13 - Amps - 100 - ns - 2890 - nC - 44 - Amps ns VR = 400V, TC = 25°C IF = 100A, diF/dt = -200A/µs VR = 400V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current Unit IF = 100A, diF/dt = -1000A/µs VR = 400V, TC = 125°C D = 0.9 0.30 0.25 0.7 0.20 0.5 Note: 0.15 PDM Z JC, THERMAL IMPEDANCE (°C/W) θ 0.35 0.3 0.10 t1 t2 0.05 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.1 SINGLE PULSE 0.05 0 10 -5 10-4 10-3 10-2 10-1 1.0 10 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION TJ (°C) TC (°C) 0.0673 0.188 0.0743 Dissipated Power (Watts) 0.0182 0.361 5.17 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL 052-6294 Rev B 10 - 2008 IRRM Typ IF = 100A, diF/dt = -200A/µs Maximum Reverse Recovery Current trr Min ZEXT IRRM Test Conditions Typical Perfromance Curves APT100GT60JRDQ4 300 300 TJ = 25°C R trr, REVERSE RECOVERY TIME (ns) IF, FORWARD CURRENT (A) 250 T =125°C J V =400V 200 TJ = 175°C 150 TJ = 125°C 100 50 250 200A 200 100A 50A 150 100 50 TJ = -55°C 0 0 0.5 1.0 1.5 2.0 2.5 3.0 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 2. Forward Current vs. Forward Voltage 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 3. Reverse Recovery Time vs. Current Rate of Change 60 T =125°C J V =400V 3500 R 200A 3000 100A 2500 2000 50A 1500 1000 500 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 4. Reverse Recovery Charge vs. Current Rate of Change 200A R 50 40 100A 30 50A 20 10 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 5. Reverse Recovery Current vs. Current Rate of Change 180 Qrr Duty cycle = 0.5 T =175°C J 160 trr 1.0 T =125°C J V =400V 0 140 trr 0.8 IRRM 120 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 IRRM, REVERSE RECOVERY CURRENT (A) Qrr, REVERSE RECOVERY CHARGE (nC) 4000 0.6 Qrr 0.4 100 80 60 40 0.2 20 0.0 0 25 50 75 100 125150 25 50 TJ, JUNCTION TEMPERATURE (°C) Figure 6. Dynamic Parameters vs. Junction Temperature CJ, JUNCTION CAPACITANCE (pF) 052-6294 Rev B 10 - 2008 1400 1200 1000 800 600 400 200 0 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 8. Junction Capacitance vs. Reverse Voltage 0 75 100 125 150 175 Case Temperature (°C) Figure 7. Maximum Average Forward Current vs. CaseTemperature APT100GT60JRDQ4 Vr diF /dt Adjust +18V APT10035LLL 0V D.U.T. 30μH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32, Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 0.25 IRRM 3 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) Collector/Cathode * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode Gate ) Dimensions in Millimeters and (Inches Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 and foreign patents. US and Foreign patents pending. All Rights Reserved. 052-6294 Rev B 10 - 2008 7.8 (.307) 8.2 (.322)