MICROSEMI APT100GT60JRDQ4

APT100GT60JRDQ4
600V, 100A, VCE(ON) = 2.1V Typical
Thunderbolt IGBT®
E
E
The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using
Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed.
C
G
Features
S
• Low Forward Voltage Drop
• RBSOA and SCSOA Rated
• Low Tail Current
• High Frequency Switching to 50KHz
• Integrated Gate Resistor
• Ultra Low Leakage Current
OT
22
7
"UL Recognized"
ISOTOP ®
file # E145592
Low EMI, High Reliability
• RoHS Compliant
All Ratings: TC = 25°C unless otherwise specified.
Maximum Ratings
Symbol Parameter
Ratings
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
IC1
Continuous Collector Current @ TC = 25°C
148
IC2
Continuous Collector Current @ TC = 100°C
80
ICM
Pulsed Collector Current 1
300
SSOA
PD
TJ, TSTG
Unit
Volts
Switching Safe Operating Area @ TJ = 150°C
Amps
300A @ 600V
Total Power Dissipation
Operating and Storage Junction Temperature Range
500
Watts
-55 to 150
°C
Static Electrical Characteristics
Min
Typ
Max
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 4mA)
600
-
-
VGE(TH)
Gate Threshold Voltage (VCE = VGE, IC = 1.5mA, Tj = 25°C)
3
4
5
Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 25°C)
1.7
2.1
2.5
Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 125°C)
-
2.5
-
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2
-
-
50
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2
-
-
1500
Gate-Emitter Leakage Current (VGE = ±30V)
-
-
300
VCE(ON)
ICES
IGES
Volts
μA
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
Unit
nA
052-6294 Rev B 10 - 2008
Symbol Characteristic / Test Conditions
Dynamic Characteristic
Symbol
APT100GT60JRDQ4
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Min
Typ
Max
-
5150
-
-
475
-
-
295
-
-
8.0
-
VGE = 15V
-
460
-
VGE = 0V, VCE = 25V
f = 1MHz
Gate Charge
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
VCE= 300V
-
40
-
Gate-Collector Charge
IC = 100A
-
210
-
TJ = 150°C, RG = 4.3Ω , VGE = 15V,
300
Qgc
SSOA
td(on)
tr
td(off)
tf
3
Switching Safe Operating Area
L = 100μH, VCE= 600V
Current Rise Time
Turn-Off Delay Time
40
-
Inductive Switching (25°C)
-
75
-
VCC = 400V
-
320
-
-
100
-
RG = 4.3Ω
-
3250
-
TJ = +25°C
-
3525
-
VGE = 15V
Current Fall Time
IC = 100A
Eon1
Turn-On Switching Energy
4
Eon2
Turn-On Switching Energy
5
Eoff
Turn-Off Switching Energy 6
-
3125
-
td(on)
Turn-On Delay Time
-
40
-
Inductive Switching (125°C)
-
75
-
Turn-Off Delay Time
VCC = 400V
-
350
-
Current Fall Time
VGE = 15V
-
100
-
Turn-On Switching Energy
4
IC = 100A
3275
-
Eon2
Turn-On Switching Energy
RG = 4.3Ω
-
5
-
4650
-
Eoff
Turn-Off Switching Energy 6
-
3750
-
tr
td(off)
tf
Eon1
Current Rise Time
TJ = +125°C
pF
V
nC
A
-
Turn-On Delay Time
Unit
ns
μJ
ns
μJ
Thermal and Mechanical Characteristics
Symbol Characteristic / Test Conditions
Min
Typ
Max
Unit
RθJC
Junction to Case (IGBT)
-
-
0.25
RθJC
Junction to Case (DIODE)
-
-
0.33
WT
Package Weight
-
29.2
-
g
-
-
10
in·lbf
-
-
1.1
N·m
2500
-
-
Volts
°C/W
Torque
Terminals and Mounting Screws
VIsolation
RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)
052-6294 Rev B 10 - 2008
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages.
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to
z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance not including gate driver impedance.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
APT100GT60JRDQ4
300
200
V
GE
12, 13, &15V
= 15V
10V
IC, COLLECTOR CURRENT (A)
160
140
TC = 25°C
120
TC = 125°C
100
80
TC = -55°C
60
40
250
9V
200
8V
150
100
7V
50
6V
20
0
0
0 0.5
1
1.5
2
2.5
3
3.5
4
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
IC, COLLECTOR CURRENT (A)
180
TJ = -55°C
160
140
120
100
80
TC = 25°C
60
TC = 125°C
40
20
0
0
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
200
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
J
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
2
4
6
8
10
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 100A
C
T = 25°C
14
0
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.5
3.0
IC = 100A
2.5
2.0
1.5
IC = 50A
1.0
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
3
2.5
1.5
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
0.85
IC = 50A
1
VGE = 15V.
250µs
PULSE TEST <0.5 %
DUTY CYCLE
0.5
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
180
0.90
IC = 100A
2
1.10
0.95
IC = 200A
3.5
200
1.00
500
4
1.15
1.05
200
300
400
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC = 200A
4.0
(NORMALIZED)
VGS(TH), THRESHOLD VOLTAGE
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4.5
100
0
160
140
120
100
80
60
40
20
0
-50 -25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6294 Rev B 10 - 2008
IC, COLLECTOR CURRENT (A)
180
Typical Performance Curves
APT100GT60JRDQ4
450
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
35
VGE = 15V
30
25
20
15
10
VCE = 400V
5 TJ = 25°C, or 125°C
RG = 4.3Ω
L = 100µH
0
350
300
VGE =15V,TJ=25°C
250
VGE =15V,TJ=125°C
200
150
100
VCE = 400V
RG = 4.3Ω
L = 100µH
50
0
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
250
400
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
200
RG = 4.3Ω, L = 100µH, VCE = 400V
RG = 4.3Ω, L = 100µH, VCE = 400V
180
160
tf, FALL TIME (ns)
tr, RISE TIME (ns)
200
150
100
TJ = 25 or 125°C,VGE = 15V
16000
60
TJ = 25°C, VGE = 15V
12000
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
14000
G
12000
TJ = 125°C
10000
8000
6000
4000
2000
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
80
0
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
TJ = 25°C
0
Eon2,200A
J
25000
20000
15000
Eoff,200A
10000
Eon2,100A
Eoff,100A
5000
Eoff,50A
Eon2,50A
0
TJ = 125°C
8000
6000
4000
2000
TJ = 25°C
16000
V
= 400V
CE
= +15V
V
GE
T = 125°C
30000
G
10000
0 25 50 70 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
35000
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
0
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (µJ)
100
20
0
052-6294 Rev B 10 - 2008
120
40
50
0
TJ = 125°C, VGE = 15V
140
Eon2,200A
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
14000
G
12000
Eoff,200A
10000
8000
6000
4000 Eon2,100A
Eoff,100A
2000 Eoff,50A
0
Eon2,50A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT100GT60JRDQ4
10,000
IC, COLLECTOR CURRENT (A)
350
Cies
P
C, CAPACITANCE ( F)
5,000
1,000
500
C0es
300
250
200
150
100
50
Cres
0
100
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.25
0.9
0.20
0.7
0.15
0.5
0.10
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
0.3
t1
t2
0.05
t
0.1
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
0
10
-5
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
TC (°C)
0.0587
0.132
0.0587
Dissipated Power
(Watts)
0.0120
0.420
4.48
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
ZEXT
TJ (°C)
FMAX, OPERATING FREQUENCY (kHz)
100
50
T = 75°C
C
F
10
T = 100°C
C
5
T = 125°C
J
D = 50 %
V
= 400V
CE
R = 4.3Ω
1
= min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
max
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
G
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
30 40 50 60 70 80 90 100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
052-6294 Rev B 10 - 2008
10 20
APT100GT60JRDQ4
Gate Voltage
APT100DQ60
10%
TJ = 125°C
td(on)
tr
V CE
IC
V CC
90%
5%
10%
A
Collector Current
5%
CollectorVoltage
D.U.T.
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
Gate Voltage
TJ = 125°C
td(off)
CollectorVoltage
90%
tf
10%
0
Collector Current
Switching Energy
052-6294 Rev B 10 - 2008
Figure 23, Turn-off Switching Waveforms and Definitions
Typical Performance Curves
APT100GT60JRDQ4
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
All Ratings: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Symbol Characteristic / Test Conditions
IF(AV)
IF(RMS)
IFSM
APT100GT60JRDQ4
Maximum Average Forward Current (TC = 88°C, Duty Cycle = 0.5)
100
RMS Forward Current (Square wave, 50% duty)
146
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms)
1000
Unit
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol Characteristic / Test Conditions
Min
Type
Max
IF = 100A
1.6
2.2
IF = 200A
2.05
IF = 100A, TJ = 125°C
1.28
Forward Voltage
VF
Unit
Volts
DYNAMIC CHARACTERISTICS
Symbol Characteristic
trr
Reverse Recovery Time
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Max
IF = 1A, diF/dt = -100A/µs,
VR = 30V, TJ = 25°C
-
34
-
-
160
-
-
290
-
nC
-
5
-
Amps
-
220
-
ns
-
1530
-
nC
-
13
-
Amps
-
100
-
ns
-
2890
-
nC
-
44
-
Amps
ns
VR = 400V, TC = 25°C
IF = 100A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
Unit
IF = 100A, diF/dt = -1000A/µs
VR = 400V, TC = 125°C
D = 0.9
0.30
0.25
0.7
0.20
0.5
Note:
0.15
PDM
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.35
0.3
0.10
t1
t2
0.05
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.1
SINGLE PULSE
0.05
0
10
-5
10-4
10-3
10-2
10-1
1.0
10
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
TJ (°C)
TC (°C)
0.0673
0.188
0.0743
Dissipated Power
(Watts)
0.0182
0.361
5.17
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
052-6294 Rev B 10 - 2008
IRRM
Typ
IF = 100A, diF/dt = -200A/µs
Maximum Reverse Recovery Current
trr
Min
ZEXT
IRRM
Test Conditions
Typical Perfromance Curves
APT100GT60JRDQ4
300
300
TJ = 25°C
R
trr, REVERSE RECOVERY TIME
(ns)
IF, FORWARD CURRENT
(A)
250
T =125°C
J
V =400V
200
TJ = 175°C
150
TJ = 125°C
100
50
250
200A
200
100A
50A
150
100
50
TJ = -55°C
0
0
0.5
1.0
1.5
2.0
2.5
3.0
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 2. Forward Current vs. Forward Voltage
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 3. Reverse Recovery Time vs. Current Rate of Change
60
T =125°C
J
V =400V
3500
R
200A
3000
100A
2500
2000
50A
1500
1000
500
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 4. Reverse Recovery Charge vs. Current Rate of Change
200A
R
50
40
100A
30
50A
20
10
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 5. Reverse Recovery Current vs. Current Rate of Change
180
Qrr
Duty cycle = 0.5
T =175°C
J
160
trr
1.0
T =125°C
J
V =400V
0
140
trr
0.8
IRRM
120
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
IRRM, REVERSE RECOVERY CURRENT
(A)
Qrr, REVERSE RECOVERY CHARGE
(nC)
4000
0.6
Qrr
0.4
100
80
60
40
0.2
20
0.0
0
25
50 75 100
125150 25
50
TJ, JUNCTION TEMPERATURE (°C)
Figure 6. Dynamic Parameters vs. Junction Temperature
CJ, JUNCTION CAPACITANCE
(pF)
052-6294 Rev B 10 - 2008
1400
1200
1000
800
600
400
200
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 8. Junction Capacitance vs. Reverse Voltage
0
75
100
125 150
175
Case Temperature (°C)
Figure 7. Maximum Average Forward Current vs. CaseTemperature
APT100GT60JRDQ4
Vr
diF /dt Adjust
+18V
APT10035LLL
0V
D.U.T.
30μH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32, Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
0.25 IRRM
3
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
Collector/Cathode
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
Gate
)
Dimensions in Millimeters and (Inches
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 and foreign patents. US and Foreign patents pending. All Rights Reserved.
052-6294 Rev B 10 - 2008
7.8 (.307)
8.2 (.322)