ISL9N7030BLP3, ISL9N7030BLS3ST Data Sheet January2002 30V, 0.009 Ohm, 75A, N-Channel Logic Level UltraFET® Trench Power MOSFETs This device employs a new advanced trench MOSFET technology and features low gate charge while maintaining low on-resistance. Optimized for switching applications, this device improves the overall efficiency of DC/DC converters and allows operation to higher switching frequencies. Packaging ISL9N7030BLS3ST JEDEC TO-263AB ISL9N7030BLP3 JEDEC TO-220AB SOURCE DRAIN GATE DRAIN (FLANGE) PWM Optimized Features • • • • • • Fast Switching rDS(ON) = 0.0064Ω (Typ), VGS = 10V rDS(ON) = 0.010Ω (Typ), VGS = 4.5V Qg Total 24nC (Typ), VGS = 5V Qgd (Typ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11nC CISS (Typ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600pF Symbol D G GATE SOURCE DRAIN (FLANGE) S Ordering Information PART NUMBER Absolute Maximum Ratings SYMBOL PACKAGE BRAND ISL9N7030BLP3 TO-220AB 7030BL ISL9N7030BLS3ST TO-263AB (Tape and Reel) 7030BL TC = 25oC, Unless Otherwise Specified ISL9N7030BLP3, ISL9N7030BLS3ST UNITS VDSS Drain to Source Voltage (Note 1) 30 V VDGR Drain to Gate Voltage (RGS = 20kΩ) (Note 1) 30 V Gate to Source Voltage ±20 V 75 48 15 Figure 4 A A A A 100 0.67 W W/oC -55 to 175 oC 300 260 oC oC VGS ID ID ID IDM PD TJ, TSTG TL Tpkg PARAMETER Drain Current Continuous (TC = 25oC, VGS = 10V) (Figure 2) Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) Continuous (TC = 25oC, VGS = 10V, RθJA = 43oC/W) Pulsed Drain Current Power Dissipation Derate Above 25oC Operating and Storage Temperature Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s Package Body for 10s, See Techbrief TB334 THERMAL SPECIFICATIONS RθJC Thermal Resistance Junction to Case, TO-220, TO-263 1.5 oC/W RθJA Thermal Resistance Junction to Ambient, TO-220, TO-263 62 oC/W RθJA Thermal Resistance Junction to Ambient, TO-263, 1in 2 copper pad area 43 oC/W NOTE: 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html For severe environments, see our Automotive products. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2002 Fairchild Semiconductor Corporation ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B ISL9N7030BLP3, ISL9N7030BLS3ST Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 30 - - V VDS = 25V, VGS = 0V - - 1 µA VDS = 25V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±20V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ID = 250µA, VGS = 0V (Figure 10) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 9 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 75A, VGS = 10V (Figures 7, 8) - 0.007 0.009 Ω ID = 48A, VGS = 4.5V (Figure 7) - 0.010 0.012 Ω VDD = 15V, ID = 15A VGS = 4.5V, RGS = 6.2Ω (Figures 13, 17, 18) - - 122 ns - 15 - ns tr - 67 - ns td(OFF) - 35 - ns tf - 32 - ns tOFF - - 100 ns - - 71 ns - 8 - ns tr - 40 - ns td(OFF) - 64 - ns tf - 31 - ns tOFF - - 142 ns - 45 68 nC - 24 37 nC - 2.6 4.0 nC SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time tON td(ON) SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time tON td(ON) VDD = 15V, ID = 15A, VGS = 10V, RGS = 6.2Ω, (Figures 14, 17, 18) GATE CHARGE SPECIFICATIONS Total Gate Charge at 10V Qg(TOT) VGS = 0V to 10V Total Gate Charge at 5V Qg(5) VGS = 0V to 5V Threshold Gate Charge Qg(TH) VGS = 0V to 1V VDD = 15V, ID = 48A, Ig(REF) = 1.0mA (Figures 12, 15, 16) Gate to Source Gate Charge Qgs - 7 - nC Gate to Drain “Miller” Charge Qgd - 8 - nC - 2600 - pF - 520 - pF - 225 - pF MIN TYP MAX UNITS ISD = 48A - - 1.25 V ISD = 20A - - 1.0 V trr ISD = 48A, dISD/dt = 100A/µs - - 26 ns QRR ISD = 48A, dISD/dt = 100A/µs - - 14 nC CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 15V, VGS = 0V, f = 1MHz (Figure 11) Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ©2002 Fairchild Semiconductor Corporation SYMBOL VSD TEST CONDITIONS ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B ISL9N7030BLP3, ISL9N7030BLS3ST Typical Performance Curves 80 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 60 VGS = 10V VGS = 4.5V 40 20 0.2 0 25 0 0 25 50 75 100 125 150 175 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) TC , CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 THERMAL IMPEDANCE ZθJC, NORMALIZED 1 0.1 PDM NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 t1 t2 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 1000 IDM , PEAK CURRENT (A) TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 - TC I = I25 150 VGS = 10V VGS = 5V 100 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 50 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY ©2002 Fairchild Semiconductor Corporation ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B ISL9N7030BLP3, ISL9N7030BLS3ST Typical Performance Curves (Continued) 150 TC = 25oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 125 ID, DRAIN CURRENT (A) ID , DRAIN CURRENT (A) 150 100 75 50 TJ = 175oC TJ = -55oC TJ = 25oC 25 2 3 VGS = 4.5V 100 75 VGS = 3.5V 50 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 25 0 1 VGS = 3V 0 5 4 0 0.5 VGS , GATE TO SOURCE VOLTAGE (V) NORMALIZED DRAIN TO SOURCE ON RESISTANCE rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 15 ID = 75A 10 4 6 8 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.5 1.0 VGS = 10V, ID = 75A 0.5 -80 5 2 10 -40 FIGURE 7. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 40 80 120 160 200 FIGURE 8. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 0 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) 1.0 0.8 0.6 0.4 -80 2.0 2.0 20 ID = 14A 1.5 FIGURE 6. SATURATION CHARACTERISTICS PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC ID = 50A 1.0 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 5. TRANSFER CHARACTERISTICS 25 VGS = 10V 125 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE ©2002 Fairchild Semiconductor Corporation ID = 250µA 1.1 1.0 0.9 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B ISL9N7030BLP3, ISL9N7030BLS3ST Typical Performance Curves (Continued) 10 VGS , GATE TO SOURCE VOLTAGE (V) 4000 C, CAPACITANCE (pF) CISS = CGS + CGD COSS ≅ CDS + CGD 1000 CRSS = CGD VGS = 0V, f = 1MHz 100 0.1 1 10 VDD = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 48A ID = 14A 2 0 30 0 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 20 30 Qg, GATE CHARGE (nC) 40 50 NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 12. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 350 250 VGS = 10V, VDD = 15V, ID = 15A 300 200 tr 150 SWITCHING TIME (ns) SWITCHING TIME (ns) VGS = 4.5V, VDD = 15V, ID = 15A td(OFF) tf 100 td(ON) 50 250 td(OFF) 200 150 tf 100 tr 50 td(ON) 0 0 0 10 20 30 40 0 50 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 13. SWITCHING TIME vs GATE RESISTANCE FIGURE 14. SWITCHING TIME vs GATE RESISTANCE Test Circuits and Waveforms VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD DUT Ig(REF) VGS = 5V VGS - VGS = 1V 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 15. GATE CHARGE TEST CIRCUIT ©2002 Fairchild Semiconductor Corporation FIGURE 16. GATE CHARGE WAVEFORMS ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B ISL9N7030BLP3, ISL9N7030BLS3ST Test Circuits and Waveforms (Continued) VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS VDD 10% 0 - 10% DUT 90% RGS VGS VGS 0 50% 10% FIGURE 17. SWITCHING TIME TEST CIRCUIT 50% PULSE WIDTH FIGURE 18. SWITCHING TIME WAVEFORM Thermal Resistance vs. Mounting Pad Area The maximum rated junction temperature, TJM , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM , in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. ( T JM – TA ) P DM = -----------------------------Z θJA (EQ. 1) In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM . Thermal resistances corresponding to other copper areas can be obtained from Figure 19 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. R 19.84 θJA = 26.51 + --------------------------------------( 0.262 + Area ) 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. (EQ. 2) 80 RθJA = 26.51+ 19.84/(0.262+Area) 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 19 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications ©2002 Fairchild Semiconductor Corporation RθJA (oC/W) 2. The number of copper layers and the thickness of the board. 60 40 20 0.1 1 10 AREA, TOP COPPER AREA (in2) FIGURE 19. THERMAL RESISTANCE vs MOUNTING PAD AREA ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B ISL9N7030BLP3, ISL9N7030BLS3ST PSPICE Electrical Model .SUBCKT ISL9N7030BL 2 1 3 ; rev Dec2000 CA 12 8 1.5e-9 CB 15 14 1.75e-9 CIN 6 8 2.35e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP DRAIN 2 5 10 5 51 ESLC 11 - RDRAIN 6 8 EVTHRES + 19 8 + LGATE GATE 1 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD + 50 - IT 8 17 1 EVTEMP RGATE + 18 22 9 20 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2.5e-3 RGATE 9 20 3.4 RLDRAIN 2 5 10 RLGATE 1 9 45.8 RLSOURCE 3 7 14.7 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 2.55e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 ESG LDRAIN 2 5 1e-9 LGATE 1 9 4.58e-9 LSOURCE 3 7 1.47e-9 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 32.7 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD RBREAK 15 VBAT 5 8 EDS - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*200),5))} .MODEL DBODYMOD D (IS = 1.9e-11 N=1.075 RS = 4.2e-3 TRS1 = 9e-4 TRS2 = 1e-6 XTI=2.2 CJO = 1.1e-9 TT = 8e-11 M = 0.49) .MODEL DBREAKMOD D (RS = 1.7e- 1TRS1 = 1e- 3TRS2 = -8.9e-6) .MODEL DPLCAPMOD D (CJO = 8.2e-1 0IS = 1e-3 0N = 10 M = 0.45) .MODEL MMEDMOD NMOS (VTO = 1.9 KP = 3 IS=1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.4) .MODEL MSTROMOD NMOS (VTO = 2.35KP = 90 IS = 1e-30 N= 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.6 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 34 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1e- 3TC2 = -7e-7) .MODEL RDRAINMOD RES (TC1 = 7e-3 TC2 = 1e-5) .MODEL RSLCMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -2.7e-3 TC2 = -1e-5) .MODEL RVTEMPMOD RES (TC1 = -1.8e- 3TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.0 VOFF= -0.8) VON = -0.8 VOFF= -4.0) VON = -0.3 VOFF= 0.2) VON = 0.2 VOFF= -0.3) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2002 Fairchild Semiconductor Corporation ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B ISL9N7030BLP3, ISL9N7030BLS3ST SABER Electrical Model REV Dec 2000 template ISL9N7030BL n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 1.9e-11, nl=1.075 , rs = 4.2e-3, trs1 = 9e-4, trs2 = 1e-6, xti=2.2, cjo = 1.1e-9, tt = 8e-11, m = 0.49,) dp..model dbreakmod = (rs =0.17, trs1 = 1e-3, trs2 = -8.9e-6) dp..model dplcapmod = (cjo = 8.2e-10, isl=10e-30, nl=10, m=0.45) m..model mmedmod = (type=_n, vto = 1.9, kp=3, is=1e-30, tox=1) m..model mstrongmod = (type=_n, vto = 2.35, kp = 90, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.6, kp = 0.05, is = 1e-30, tox = 1, rs=0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.0, voff = -0.8) DPLCAP 5 sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -0.8, voff = -4.0) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.3, voff = 0.2) 10 sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.3) DRAIN 2 RLDRAIN RSLC1 51 c.ca n12 n8 = 1.5e-9 c.cb n15 n14 = 1.75e-9 c.cin n6 n8 = 2.35e-9 RSLC2 ISCL dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod RDRAIN 6 8 ESG i.it n8 n17 = 1 LGATE GATE 1 EVTHRES + 19 8 EVTEMP RGATE + 18 22 9 20 21 11 DBODY 16 MWEAK 6 EBREAK + 17 18 MMED MSTRO RLGATE CIN m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 1e-3, tc2 = -7e-7 res.rdrain n50 n16 = 2.5e-3, tc1 = 7e-3, tc2 = 1e-5 res.rgate n9 n20 = 3.4 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 45.8 res.rlsource n3 n7 = 14.7 res.rslc1 n5 n51= 1e-6, tc1 = 1e-3, tc2 =1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 2.55e-3, tc1 = 1e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.8e-3, tc2 = -1e-6 res.rvthres n22 n8 = 1, tc1 = -2.7e-3, tc2 = -1e-5 DBREAK 50 + l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 4.58e-9 l.lsource n3 n7 = 1.47e-9 LDRAIN - 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A 12 S2A S1B CA RBREAK 15 14 13 13 8 17 18 RVTEMP S2B 13 CB + + 6 8 EGS - 19 - IT 14 VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 32.7 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e-6/200))** 5)) } } ©2002 Fairchild Semiconductor Corporation ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B ISL9N7030BLP3, ISL9N7030BLS3ST SPICE Thermal Model th REV 23 Sept 2000 JUNCTION ISL9N7030BL CTHERM1 th 6 2.0e-4 CTHERM2 6 5 3.0e-3 CTHERM3 5 4 3.4e-3 CTHERM4 4 3 4.0e-3 CTHERM5 3 2 1.0e-2 CTHERM6 2 tl 5.0e-2 RTHERM1 th 6 1.5e-3 RTHERM2 6 5 5.5e-3 RTHERM3 5 4 5.2e-2 RTHERM4 4 3 3.5e-1 RTHERM5 3 2 3.8e-1 RTHERM6 2 tl 4.1e-1 SABER Thermal Model CTHERM1 RTHERM1 6 CTHERM2 RTHERM2 5 CTHERM3 RTHERM3 SABER thermal model ISL9N7030BL template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 2.0e-4 ctherm.ctherm2 6 5 = 3.0e-3 ctherm.ctherm3 5 4 = 3.4e-3 ctherm.ctherm4 4 3 = 4.0e-3 ctherm.ctherm5 3 2 = 1.0e-2 ctherm.ctherm6 2 tl = 5.0e-2 rtherm.rtherm1 th 6 = 1.5e-3 rtherm.rtherm2 6 5 = 5.5e-3 rtherm.rtherm3 5 4 = 5.2e-2 rtherm.rtherm4 4 3 = 3.5e-1 rtherm.rtherm5 3 2 = 3.8e-1 rtherm.rtherm6 2 tl = 4.1e-1 } 4 CTHERM4 RTHERM4 3 CTHERM5 RTHERM5 2 CTHERM6 RTHERM6 tl ©2002 Fairchild Semiconductor Corporation CASE ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOSTM EnSignaTM FACT™ FACT Quiet Series™ FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET VCX™ STAR*POWER is used under license DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H4