ETC HUF76113DK8T

HUF76113DK8
Data Sheet
December 2001
6A, 30V, 0.032 Ohm, Dual N-Channel,
Logic Level UltraFET Power MOSFET
Features
• Logic Level Gate Drive
This N-Channel power MOSFET is
® manufactured using the innovative
UltraFET process. This advanced
process technology achieves the
lowest possible on-resistance per silicon area, resulting in
outstanding performance. This device is capable of
withstanding high energy in the avalanche mode and the
diode exhibits very low reverse recovery time and stored
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators, switching
converters, motor drivers, relay drivers, low-voltage bus
switches, and power management in portable and batteryoperated products.
• 6A, 30V
• Ultra Low On-Resistance, rDS(ON) = 0.032Ω
• Temperature Compensating PSPICE® Model
• Temperature Compensating SABER™ Model
• Thermal Impedance SPICE Model
• Thermal Impedance SABER Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
Formerly developmental type TA76113.
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Ordering Information
Symbol
PART NUMBER
HUF76113DK8
PACKAGE
MS-012AA
BRAND
D1(8)
D1(7)
76113DK8
NOTE: When ordering, use the entire part number. Add the suffix T
to obtain the variant in tape and reel, e.g., HUF76113DK8T.
S1(1)
G1(2)
D2(6)
D2(5)
S2(3)
G2(4)
Packaging
JEDEC MS-012AA
BRANDING DASH
5
1
2
3
©2001 Fairchild Semiconductor Corporation
4
HUF76113DK8 Rev. B
HUF76113DK8
Absolute Maximum Ratings
TA = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Drain Current
Continuous (TA= 25oC, VGS = 10V) (Figure 2) (Note 2). . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TA= 100oC, VGS = 5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TA= 100oC, VGS = 4.5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
HUF76113DK8
30
30
±16
UNITS
V
V
V
6
1.8
1.7
Figure 4
Figure 6
2.5
0.02
-55 to 150
A
A
A
W
W/oC
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. TJ = 25oC to 125oC.
2. 50oC/W measured using FR-4 board at 1 second.
3. 228oC/W measured using FR-4 board with 0.006 in2 footprint at 1000 seconds.
Electrical Specifications
TA = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
30
-
-
V
VDS = 25V, VGS = 0V
-
-
1
µA
VDS = 25V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±16V
-
-
±100
nA
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
BVDSS
Zero Gate Voltage Drain Current
IDSS
Gate to Source Leakage Current
IGSS
ID = 250µA, VGS = 0V (Figure 12)
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 11)
1
-
3
V
Drain to Source On Resistance
rDS(ON)
ID = 6A, VGS = 10V (Figures 9, 10)
-
0.026
0.032
Ω
ID = 1.8A, VGS = 5V (Figure 9)
-
0.033
0.041
Ω
ID = 1.7A, VGS = 4.5V (Figure 9)
-
0.035
0.043
Ω
Pad Area = 0.76 in2 (Note 2)
-
-
50
oC/W
Pad Area = 0.027 in2 (See TB377)
-
-
191
oC/W
Pad Area = 0.006 in2 (See TB377)
-
-
228
oC/W
VDD = 15V, ID ≅ 1.7A, RL = 8.8Ω,
VGS = 4.5V, RGS = 18Ω,
(Figure 15)
-
-
110
ns
-
17
-
ns
tr
-
57
-
ns
td(OFF)
-
32
-
ns
tf
-
38
-
ns
tOFF
-
-
105
ns
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Ambient
RθJA
SWITCHING SPECIFICATIONS (VGS = 4.5V)
Turn-On Time
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
©2001 Fairchild Semiconductor Corporation
tON
td(ON)
HUF76113DK8 Rev. B
HUF76113DK8
Electrical Specifications
TA = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
VDD = 15V, ID ≅ 6A, RL = 2.5Ω, VGS = 10V,
RGS = 18Ω
(Figure 16)
-
-
60
ns
-
6.5
-
ns
tr
-
33
-
ns
td(OFF)
-
50
-
ns
tf
-
40
-
ns
tOFF
-
-
135
ns
-
16.0
19.2
nC
-
8.4
10.2
nC
-
0.55
0.66
nC
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
tON
Turn-On Delay Time
td(ON)
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
VGS = 0V to 10V
Gate Charge at 5V
Qg(5)
VGS = 0V to 5V
Qg(TH)
VGS = 0V to 1V
Threshold Gate Charge
VDD = 15V, ID ≅ 1.8A,
RL = 8.3Ω
Ig(REF) = 1.0mA
(Figure 14)
Gate to Source Gate Charge
Qgs
-
1.50
-
nC
Gate to Drain “Miller” Charge
Qgd
-
3.90
-
nC
-
605
-
pF
-
275
-
pF
-
40
-
pF
MIN
TYP
MAX
UNITS
-
-
1.25
V
1.00
V
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 13)
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
VSD
TEST CONDITIONS
ISD = 6A
ISD = 1.8A
Reverse Recovery Time
Reverse Recovered Charge
trr
ISD = 1.8A, dISD/dt = 100A/µs
-
-
40
ns
QRR
ISD = 1.8A, dISD/dt = 100A/µs
-
-
42
nC
1.2
7
1.0
6
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
Typical Performance Curves
0.8
0.6
0.4
0.2
VGS = 10V, RθJA = 50oC/W
5
4
3
2
VGS = 4.5V, RθJA = 228oC/W
1
0
0
0
25
50
75
100
125
150
TA , AMBIENT TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT
TEMPERATURE
©2001 Fairchild Semiconductor Corporation
25
50
75
100
125
150
TA, AMBIENT TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
AMBIENT TEMPERATURE
HUF76113DK8 Rev. B
HUF76113DK8
Typical Performance Curves
2
ZθJA, NORMALIZED
THERMAL IMPEDANCE
1
0.1
(Continued)
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
RθJA = 228oC/W
PDM
t1
0.01
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJA x RθJA + TA
SINGLE PULSE
0.001
10-5
10-4
10-3
10-2
10-1
100
101
102
103
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
IDM, PEAK CURRENT (A)
500
100
RθJA = 228oC/W
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
VGS = 10V
CURRENT AS FOLLOWS:
I
= I25
150 - TA
125
VGS = 5V
10
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
1
10-5
10-4
10-3
10-2
10-1
t, PULSE WIDTH (s)
100
101
102
103
FIGURE 4. PEAK CURRENT CAPABILITY
ID, DRAIN CURRENT (A)
TJ = MAX RATED
TA = 25oC
100
100µs
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10
10ms
VDSS(MAX) = 30V
1
1
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
©2001 Fairchild Semiconductor Corporation
IAS, AVALANCHE CURRENT (A)
50
500
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
STARTING TJ = 25oC
10
STARTING TJ = 150oC
1
0.1
100
1
10
tAV, TIME IN AVALANCHE (ms)
100
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
HUF76113DK8 Rev. B
HUF76113DK8
Typical Performance Curves
30
30
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
20
15
10
25oC
0
0
VGS = 3.5V
15
10
VGS = 3V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TA = 25oC
5
-55oC
0
2
3
4
1
VGS, GATE TO SOURCE VOLTAGE (V)
5
FIGURE 7. TRANSFER CHARACTERISTICS
0
1
2
3
4
VDS, DRAIN TO SOURCE VOLTAGE (V)
1.6
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
ID = 6A
150
ID = 1.8A
100
50
0
0
2
4
6
8
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 6A
1.4
1.2
1.0
0.8
0.6
-80
10
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
0
40
80
120
160
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.2
1.2
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
VGS = VDS, ID = 250µA
1.1
NORMALIZED GATE
THRESHOLD VOLTAGE
-40
TJ, JUNCTION TEMPERATURE (oC)
VGS, GATE TO SOURCE VOLTAGE (V)
1.0
0.9
0.8
0.7
0.6
-80
5
FIGURE 8. SATURATION CHARACTERISTICS
200
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
VGS = 10V
VGS = 5V
VGS = 4.5V
20
150oC
5
VGS = 4V
25
ID, DRAIN CURRENT (A)
25
ID, DRAIN CURRENT (A)
(Continued)
-40
0
40
80
120
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
©2001 Fairchild Semiconductor Corporation
160
ID = 250µA
1.1
1.0
0.9
-80
-40
0
40
80
120
TJ , JUNCTION TEMPERATURE (oC)
160
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
HUF76113DK8 Rev. B
HUF76113DK8
Typical Performance Curves
(Continued)
C, CAPACITANCE (pF)
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS = CDS + CGD
800
CISS
600
400
COSS
200
CRSS
0
VGS , GATE TO SOURCE VOLTAGE (V)
10
1000
VDD = 15V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 6A
ID = 1.8A
2
0
0
5
10
15
20
25
30
0
5
10
15
20
Qg, GATE CHARGE (nC)
VDS , DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
150
120
VGS = 10V, VDD = 15V, ID = 6A, RL= 2.5Ω
tr
90
SWITCHING TIME (ns)
SWITCHING TIME (ns)
VGS = 4.5V, VDD = 15V, ID = 1.7A, RL= 8.8Ω
tf
60
td(OFF)
30
td(ON)
120
td(OFF)
90
tf
60
tr
30
td(ON)
0
10
0
20
30
40
0
50
0
RGS, GATE TO SOURCE RESISTANCE (Ω)
10
20
30
40
50
RGS, GATE TO SOURCE RESISTANCE (Ω)
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
Test Circuits and Waveforms
VDS
BVDSS
L
VARY tP TO OBTAIN
REQUIRED PEAK IAS
tP
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
0V
tP
IAS
0
0.01Ω
tAV
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT
©2001 Fairchild Semiconductor Corporation
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
HUF76113DK8 Rev. B
HUF76113DK8
Test Circuits and Waveforms
(Continued)
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 10
VGS
Qg(5)
+
VDD
VGS = 5V
VGS
DUT
VGS = 1V
Ig(REF)
0
Qg(TH)
Ig(REF)
0
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
VDS
tON
tOFF
td(ON)
td(OFF)
tr
RL
VDS
tf
90%
90%
+
VGS
-
VDD
10%
0
10%
DUT
90%
RGS
VGS
VGS
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT
10%
50%
50%
PULSE WIDTH
FIGURE 22. SWITCHING TIME WAVEFORM
Thermal Resistance vs. Mounting Pad Area
3. The use of external heat sinks.
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the
maximum allowable device power dissipation, PDM, in an
application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be
reviewed to ensure that TJM is never exceeded. Equation 1
mathematically represents the relationship and serves as
the basis for establishing the rating of the part.
4. The use of thermal vias.
( T JM – T A )
P DM = ------------------------------Z θJA
(EQ. 1)
In using surface mount devices such as the SOP-8 package,
the environment in which it is applied will have a significant
influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and
influenced by many factors:
1. Mounting pad area onto which the device is attached and
whether there is copper on one side or both sides of the
board.
2. The number of copper layers and the thickness of the
board.
©2001 Fairchild Semiconductor Corporation
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the
duty cycle and the transient thermal response of the part,
the board and the environment they are in.
Fairchild provides thermal information to assist the
designer’s preliminary application evaluation. Figure 23
defines the RθJA for the device as a function of the top
copper (component side) area. This is for a horizontally
positioned FR-4 board with 1oz copper after 1000 seconds
of steady state power with no air flow. This graph provides
the necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse
applications can be evaluated using the Fairchild device
Spice thermal model or manually utilizing the normalized
maximum transient thermal impedance curve.
Displayed on the curve are RθJA values listed in the Electrical
Specifications table. The points were chosen to depict the
compromise between the copper board area, the thermal
resistance and ultimately the power dissipation, PDM.
HUF76113DK8 Rev. B
HUF76113DK8
Thermal resistances corresponding to other copper areas can
be obtained from Figure 23 or by calculation using Equation 2.
RθJA is defined as the natural log of the area times a cofficient
added to a constant. The area, in square inches is the top
copper area including the gate and source pads.
R θJA = 103.2 – 24.3 ×
ln ( Area )
300
RθJA = 103.2 - 24.3
Rθβ, RθJA (oC/W)
250
(EQ. 2)
* ln(AREA)
228 oC/W - 0.006in2
200
191 oC/W - 0.027in2
Rθβ1 = Rθβ2 = 97oC/W
TJ1 and TJ2 define the junction temerature of the respective
die. Similarly, P1 and P2 define the power dissipated in each
die. The steady state junction temperature can be calculated
using Equation 4 for die 1and Equation 5 for die 2.
Example: To calculate the junction temperature of each die
when die 2 is dissipating 0.5 Watts and die 1 is dissipating 0
Watts. The ambient temperature is 70˚C and the package is
mounted to a top copper area of 0.1 square inches per die.
Use Equation 4 to calulate TJ1 and and Equation 5 to
calulate TJ2..
T J1 = P 1 R θJA + P 2 R θβ + T A
150
(EQ. 4)
TJ1 = (0 Watts)(159˚C/W) + (0.5 Watts)(97˚C/W) + 70˚C
100
TJ1 = 119˚C
50
T J2 = P 2 R θJA + P 1 R θβ + T A
Rθβ = 46.4 - 21.7 * ln(AREA)
0
0.001
0.01
0.1
1
AREA, TOP COPPER AREA (in2) PER DIE
FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA
While Equation 2 describes the thermal resistance of a
single die, several of the new UltraFETs are offered with two
die in the SOP-8 package. The dual die SOP-8 package
introduces an additional thermal component, thermal
coupling resistance, Rθβ. Equation 3 describes Rθβ as a
function of the top copper mounting pad area.
Rθβ
= 46.4 – 21.7 ×
ln ( Area )
(EQ. 3)
The thermal coupling resistance vs. copper area is also
graphically depicted in Figure 23. It is important to note the
thermal resistance (RθJA) and thermal coupling resistance
(Rθβ) are equivalent for both die. For example at 0.1 square
inches of copper:
RθJA1 = RθJA2 = 159oC/W
IMPEDANCE (oC/W)
ZθJA, THERMAL
160
120
(EQ. 5)
TJ2 = (0.5 Watts)(159oC/W) + (0 Watts)(97oC/W) + 70oC
TJ2 = 150oC
The transient thermal impedance (ZθJA) is also effected by
varied top copper board area. Figure 24 shows the effect of
copper pad area on single pulse transient thermal
impedance. Each trace represents a copper pad area in
square inches corresponding to the descending list in the
graph. Spice and SABER thermal models are provided for
each of the listed pad areas.
Copper pad area has no perceivable effect on transient
thermal impedance for pulse widths less than 100ms. For
pulse widths less than 100ms the transient thermal
impedance is determined by the die and package. Therefore,
CTHERM1 through CTHERM5 and RTHERM1 through
RTHERM5 remain constant for each of the thermal models. A
listing of the model component values is available in Table 1.
COPPER BOARD AREA - DESCENDING ORDER
0.020 in2
0.140 in2
0.257 in2
0.380 in2
0.493 in2
80
40
0
10-1
100
101
102
103
t, RECTANGULAR PULSE DURATION (s)
FIGURE 24. THERMAL RESISTANCE vs MOUNTING PAD AREA
©2001 Fairchild Semiconductor Corporation
HUF76113DK8 Rev. B
HUF76113DK8
PSPICE Electrical Model
.SUBCKT HUF76113 2 1 3 ;
REV July 1998
CA 12 8 8.50e-10
CB 15 14 8.05e-10
CIN 6 8 5.71e-10
LDRAIN
DPLCAP
DRAIN
2
5
10
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
ESLC
11
-
EBREAK 11 7 17 18 38.7
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
+
17
EBREAK 18
50
-
LDRAIN 2 5 1e-9
LGATE 1 9 9.67e-10
LSOURCE 3 7 3.27e-10
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RLSOURCE
S1A
12
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 3.04e-3
RGATE 9 20 2.65
RLDRAIN 2 5 10
RLGATE 1 9 9.67
RLSOURCE 3 7 3.27
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 25.0e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
DBREAK
+
RSLC2
5
51
IT 8 17 1
RLDRAIN
RSLC1
51
S2A
13
8
14
13
S1B
17
18
RVTEMP
S2B
13
CA
RBREAK
15
CB
6
8
-
-
IT
14
+
+
EGS
19
VBAT
5
8
EDS
-
+
8
22
RVTHRES
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*256),2))}
.MODEL DBODYMOD D (IS = 8.35e-13 RS = 1.39e-2 TRS1 = 1.03e-3 TRS2 = 6.85e-6 CJO = 9.11e-10 TT = 2.14e-8 M = 0.42)
.MODEL DBREAKMOD D (RS = 8.21e-2 TRS1 = 2.25e-3 TRS2 = 4.14e-5)
.MODEL DPLCAPMOD D (CJO = 3.76e-10 IS = 1e-30 N = 10 M = 0.68)
.MODEL MMEDMOD NMOS (VTO = 2.03 KP = 3.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.65)
.MODEL MSTROMOD NMOS (VTO = 2.36 KP = 50 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.77 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 26.5 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 1e-3 TC2 = 1e-7)
.MODEL RDRAINMOD RES (TC1 = 3.67e-2 TC2 = 4.11e-5)
.MODEL RSLCMOD RES (TC1 = 2.26e-3 TC2 = 1.23e-6)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC = -2.97e-3 TC2 = -5.91e-6)
.MODEL RVTEMPMOD RES (TC1 = -7.41e-4 TC2 = 9.41e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -6.05 VOFF= -2.00)
VON = -2.00 VOFF= -6.05)
VON = 0.00 VOFF= 0.60)
VON = 0.60 VOFF= 0.00)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2001 Fairchild Semiconductor Corporation
HUF76113DK8 Rev. B
HUF76113DK8
SABER Electrical Model
REV July 1998
template huf76113 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is = 8.35e-13, cjo = 9.11e-10, tt = 2.14e-8, m = 0.42)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 3.76e-10, is = 1e-30, n = 10, m = 0.68)
m..model mmedmod = (type=_n, vto = 2.03, kp = 3.75, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 2.36, kp = 50, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 1.77, kp = 0.1, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.05, voff = -2)
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2, voff = -6.05)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = 0.6)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.6, voff = 0)
LDRAIN
DPLCAP
10
RSLC1
51
c.ca n12 n8 = 8.5e-10
c.cb n15 n14 = 8.05e-10
c.cin n6 n8 = 5.71e-10
RLDRAIN
RDBREAK
RSLC2
72
ISCL
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
EVTEMP
RGATE + 18 22
9
20
MWEAK
MSTRO
CIN
DBODY
EBREAK
+
17
18
MMED
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
71
11
16
6
RLGATE
res.rbreak n17 n18 = 1, tc1 = 1e-3, tc2 = 1e-7
res.rdbody n71 n5 = 1.39e-2, tc1 = 1.03e-3, tc2 = 6.85e-6
res.rdbreak n72 n5 = 8.21e-2, tc1 = 2.25e-3, tc2 = 4.14e-5
res.rdrain n50 n16 = 3.04e-3, tc1 = 3.67e-2, tc2 = 4.11e-5
res.rgate n9 n20 = 2.65
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 9.67
res.rlsource n3 n7 = 3.27
res.rslc1 n5 n51 = 1e-6, tc1 = 2.26e-3, tc2 = 1.23e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 25e-3, tc1 = 0, tc2 = 0
res.rvtemp n18 n19 = 1, tc1 = -7.41e-4, tc2 = 9.41e-7
res.rvthres n22 n8 = 1, tc1 = -2.97e-3, tc2 = -5.91e-6
21
RDBODY
DBREAK
50
-
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 9.67e-10
l.lsource n3 n7 = 3.27e-10
DRAIN
2
5
-
8
LSOURCE
7
SOURCE
3
RSOURCE
RLSOURCE
S1A
12
S2A
13
8
S1B
CA
RBREAK
15
14
13
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
-
IT
14
+
+
VBAT
5
8
EDS
-
+
8
22
RVTHRES
spe.ebreak n11 n7 n17 n18 = 38.7
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/256))** 2))
}
}
©2001 Fairchild Semiconductor Corporation
HUF76113DK8 Rev. B
HUF76113DK8
SPICE Thermal Model
th
REV June 1998
HUF76113DK8
Copper Area = 0.02 in2
CTHERM1 th 8 8.5e-4
CTHERM2 8 7 1.8e-3
CTHERM3 7 6 5.0e-3
CTHERM4 6 5 1.3e-2
CTHERM5 5 4 4.0e-2
CTHERM6 4 3 9.0e-2
CTHERM7 3 2 4.0e-1
CTHERM8 2 tl 1.4
JUNCTION
RTHERM1
CTHERM1
8
RTHERM2
CTHERM2
7
RTHERM1 th 8 3.5e-2
RTHERM2 8 7 6.0e-1
RTHERM3 7 6 2
RTHERM4 6 5 8
RTHERM5 5 4 18
RTHERM6 4 3 39
RTHERM7 3 2 42
RTHERM8 2 tl 48
RTHERM3
CTHERM3
6
RTHERM4
CTHERM4
5
SABER Thermal Model
CTHERM5
RTHERM5
Copper Area = 0.02 in2
4
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 8 = 8.5e-4
ctherm.ctherm2 8 7 = 1.8e-3
ctherm.ctherm3 7 6 = 5.0e-3
ctherm.ctherm4 6 5 = 1.3e-2
ctherm.ctherm5 5 4 = 4.0e-2
ctherm.ctherm6 4 3 = 9.0e-2
ctherm.ctherm7 3 2 = 4.0e-1
ctherm.ctherm8 2 tl = 1.4
RTHERM6
CTHERM6
3
CTHERM7
RTHERM7
2
CTHERM8
RTHERM8
rtherm.rtherm1 th 8 = 3.0e-2
rtherm.rtherm2 8 7 = 6.0e-1
rtherm.rtherm3 7 6 = 3.8
rtherm.rtherm4 6 5 = 9.5
rtherm.rtherm5 5 4 = 25
rtherm.rtherm6 4 3 = 38
rtherm.rtherm7 3 2 = 25
rtherm.rtherm8 2 tl = 38
}
tl
CASE
TABLE 1. Thermal Models
COMPONANT
0.02 in2
0.14 in2
0.25 in2
0.38 in2
0.50 in2
CTHERM6
9.0e-2
1.3e-1
1.5e-1
1.5e-1
1.5e-1
CTHERM7
4.0e-1
6.0e-1
4.5e-1
6.5e-1
7.5e-1
CTHERM8
1.4
2.5
2.2
3
3
RTHERM6
39
26
20
20
20
RTHERM7
42
32
31
29
23
RTHERM8
48
35
38
31
25
©2001 Fairchild Semiconductor Corporation
HUF76113DK8 Rev. B
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
Bottomless™
CoolFET™
CROSSVOLT™
DenseTrench™
DOME™
EcoSPARK™
E2CMOSTM
EnSignaTM
FACT™
FACT Quiet Series™
FAST 
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench 
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER 
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET 
VCX™
STAR*POWER is used under license
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
2. A critical component is any component of a life
systems which, (a) are intended for surgical implant into
support device or system whose failure to perform can
the body, or (b) support or sustain life, or (c) whose
be reasonably expected to cause the failure of the life
failure to perform when properly used in accordance
support device or system, or to affect its safety or
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. H4