HUF76113DK8 Data Sheet December 2001 6A, 30V, 0.032 Ohm, Dual N-Channel, Logic Level UltraFET Power MOSFET Features • Logic Level Gate Drive This N-Channel power MOSFET is ® manufactured using the innovative UltraFET process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and batteryoperated products. • 6A, 30V • Ultra Low On-Resistance, rDS(ON) = 0.032Ω • Temperature Compensating PSPICE® Model • Temperature Compensating SABER™ Model • Thermal Impedance SPICE Model • Thermal Impedance SABER Model • Peak Current vs Pulse Width Curve • UIS Rating Curve Formerly developmental type TA76113. • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Ordering Information Symbol PART NUMBER HUF76113DK8 PACKAGE MS-012AA BRAND D1(8) D1(7) 76113DK8 NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76113DK8T. S1(1) G1(2) D2(6) D2(5) S2(3) G2(4) Packaging JEDEC MS-012AA BRANDING DASH 5 1 2 3 ©2001 Fairchild Semiconductor Corporation 4 HUF76113DK8 Rev. B HUF76113DK8 Absolute Maximum Ratings TA = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TA= 25oC, VGS = 10V) (Figure 2) (Note 2). . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 4.5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg HUF76113DK8 30 30 ±16 UNITS V V V 6 1.8 1.7 Figure 4 Figure 6 2.5 0.02 -55 to 150 A A A W W/oC oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. TJ = 25oC to 125oC. 2. 50oC/W measured using FR-4 board at 1 second. 3. 228oC/W measured using FR-4 board with 0.006 in2 footprint at 1000 seconds. Electrical Specifications TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 30 - - V VDS = 25V, VGS = 0V - - 1 µA VDS = 25V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage BVDSS Zero Gate Voltage Drain Current IDSS Gate to Source Leakage Current IGSS ID = 250µA, VGS = 0V (Figure 12) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 6A, VGS = 10V (Figures 9, 10) - 0.026 0.032 Ω ID = 1.8A, VGS = 5V (Figure 9) - 0.033 0.041 Ω ID = 1.7A, VGS = 4.5V (Figure 9) - 0.035 0.043 Ω Pad Area = 0.76 in2 (Note 2) - - 50 oC/W Pad Area = 0.027 in2 (See TB377) - - 191 oC/W Pad Area = 0.006 in2 (See TB377) - - 228 oC/W VDD = 15V, ID ≅ 1.7A, RL = 8.8Ω, VGS = 4.5V, RGS = 18Ω, (Figure 15) - - 110 ns - 17 - ns tr - 57 - ns td(OFF) - 32 - ns tf - 38 - ns tOFF - - 105 ns THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time ©2001 Fairchild Semiconductor Corporation tON td(ON) HUF76113DK8 Rev. B HUF76113DK8 Electrical Specifications TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS VDD = 15V, ID ≅ 6A, RL = 2.5Ω, VGS = 10V, RGS = 18Ω (Figure 16) - - 60 ns - 6.5 - ns tr - 33 - ns td(OFF) - 50 - ns tf - 40 - ns tOFF - - 135 ns - 16.0 19.2 nC - 8.4 10.2 nC - 0.55 0.66 nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge VDD = 15V, ID ≅ 1.8A, RL = 8.3Ω Ig(REF) = 1.0mA (Figure 14) Gate to Source Gate Charge Qgs - 1.50 - nC Gate to Drain “Miller” Charge Qgd - 3.90 - nC - 605 - pF - 275 - pF - 40 - pF MIN TYP MAX UNITS - - 1.25 V 1.00 V CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD TEST CONDITIONS ISD = 6A ISD = 1.8A Reverse Recovery Time Reverse Recovered Charge trr ISD = 1.8A, dISD/dt = 100A/µs - - 40 ns QRR ISD = 1.8A, dISD/dt = 100A/µs - - 42 nC 1.2 7 1.0 6 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER Typical Performance Curves 0.8 0.6 0.4 0.2 VGS = 10V, RθJA = 50oC/W 5 4 3 2 VGS = 4.5V, RθJA = 228oC/W 1 0 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE ©2001 Fairchild Semiconductor Corporation 25 50 75 100 125 150 TA, AMBIENT TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE HUF76113DK8 Rev. B HUF76113DK8 Typical Performance Curves 2 ZθJA, NORMALIZED THERMAL IMPEDANCE 1 0.1 (Continued) DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 RθJA = 228oC/W PDM t1 0.01 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 0.001 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 500 100 RθJA = 228oC/W TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK VGS = 10V CURRENT AS FOLLOWS: I = I25 150 - TA 125 VGS = 5V 10 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 1 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101 102 103 FIGURE 4. PEAK CURRENT CAPABILITY ID, DRAIN CURRENT (A) TJ = MAX RATED TA = 25oC 100 100µs 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10 10ms VDSS(MAX) = 30V 1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 5. FORWARD BIAS SAFE OPERATING AREA ©2001 Fairchild Semiconductor Corporation IAS, AVALANCHE CURRENT (A) 50 500 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC 10 STARTING TJ = 150oC 1 0.1 100 1 10 tAV, TIME IN AVALANCHE (ms) 100 NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY HUF76113DK8 Rev. B HUF76113DK8 Typical Performance Curves 30 30 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 20 15 10 25oC 0 0 VGS = 3.5V 15 10 VGS = 3V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25oC 5 -55oC 0 2 3 4 1 VGS, GATE TO SOURCE VOLTAGE (V) 5 FIGURE 7. TRANSFER CHARACTERISTICS 0 1 2 3 4 VDS, DRAIN TO SOURCE VOLTAGE (V) 1.6 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID = 6A 150 ID = 1.8A 100 50 0 0 2 4 6 8 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 6A 1.4 1.2 1.0 0.8 0.6 -80 10 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 0 40 80 120 160 FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA 1.1 NORMALIZED GATE THRESHOLD VOLTAGE -40 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) 1.0 0.9 0.8 0.7 0.6 -80 5 FIGURE 8. SATURATION CHARACTERISTICS 200 rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) VGS = 10V VGS = 5V VGS = 4.5V 20 150oC 5 VGS = 4V 25 ID, DRAIN CURRENT (A) 25 ID, DRAIN CURRENT (A) (Continued) -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE ©2001 Fairchild Semiconductor Corporation 160 ID = 250µA 1.1 1.0 0.9 -80 -40 0 40 80 120 TJ , JUNCTION TEMPERATURE (oC) 160 FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE HUF76113DK8 Rev. B HUF76113DK8 Typical Performance Curves (Continued) C, CAPACITANCE (pF) VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD 800 CISS 600 400 COSS 200 CRSS 0 VGS , GATE TO SOURCE VOLTAGE (V) 10 1000 VDD = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 6A ID = 1.8A 2 0 0 5 10 15 20 25 30 0 5 10 15 20 Qg, GATE CHARGE (nC) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 150 120 VGS = 10V, VDD = 15V, ID = 6A, RL= 2.5Ω tr 90 SWITCHING TIME (ns) SWITCHING TIME (ns) VGS = 4.5V, VDD = 15V, ID = 1.7A, RL= 8.8Ω tf 60 td(OFF) 30 td(ON) 120 td(OFF) 90 tf 60 tr 30 td(ON) 0 10 0 20 30 40 0 50 0 RGS, GATE TO SOURCE RESISTANCE (Ω) 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT ©2001 Fairchild Semiconductor Corporation FIGURE 18. UNCLAMPED ENERGY WAVEFORMS HUF76113DK8 Rev. B HUF76113DK8 Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 10 VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS - VDD 10% 0 10% DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM Thermal Resistance vs. Mounting Pad Area 3. The use of external heat sinks. The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. 4. The use of thermal vias. ( T JM – T A ) P DM = ------------------------------Z θJA (EQ. 1) In using surface mount devices such as the SOP-8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. ©2001 Fairchild Semiconductor Corporation 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 23 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. HUF76113DK8 Rev. B HUF76113DK8 Thermal resistances corresponding to other copper areas can be obtained from Figure 23 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a cofficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. R θJA = 103.2 – 24.3 × ln ( Area ) 300 RθJA = 103.2 - 24.3 Rθβ, RθJA (oC/W) 250 (EQ. 2) * ln(AREA) 228 oC/W - 0.006in2 200 191 oC/W - 0.027in2 Rθβ1 = Rθβ2 = 97oC/W TJ1 and TJ2 define the junction temerature of the respective die. Similarly, P1 and P2 define the power dissipated in each die. The steady state junction temperature can be calculated using Equation 4 for die 1and Equation 5 for die 2. Example: To calculate the junction temperature of each die when die 2 is dissipating 0.5 Watts and die 1 is dissipating 0 Watts. The ambient temperature is 70˚C and the package is mounted to a top copper area of 0.1 square inches per die. Use Equation 4 to calulate TJ1 and and Equation 5 to calulate TJ2.. T J1 = P 1 R θJA + P 2 R θβ + T A 150 (EQ. 4) TJ1 = (0 Watts)(159˚C/W) + (0.5 Watts)(97˚C/W) + 70˚C 100 TJ1 = 119˚C 50 T J2 = P 2 R θJA + P 1 R θβ + T A Rθβ = 46.4 - 21.7 * ln(AREA) 0 0.001 0.01 0.1 1 AREA, TOP COPPER AREA (in2) PER DIE FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA While Equation 2 describes the thermal resistance of a single die, several of the new UltraFETs are offered with two die in the SOP-8 package. The dual die SOP-8 package introduces an additional thermal component, thermal coupling resistance, Rθβ. Equation 3 describes Rθβ as a function of the top copper mounting pad area. Rθβ = 46.4 – 21.7 × ln ( Area ) (EQ. 3) The thermal coupling resistance vs. copper area is also graphically depicted in Figure 23. It is important to note the thermal resistance (RθJA) and thermal coupling resistance (Rθβ) are equivalent for both die. For example at 0.1 square inches of copper: RθJA1 = RθJA2 = 159oC/W IMPEDANCE (oC/W) ZθJA, THERMAL 160 120 (EQ. 5) TJ2 = (0.5 Watts)(159oC/W) + (0 Watts)(97oC/W) + 70oC TJ2 = 150oC The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 24 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. COPPER BOARD AREA - DESCENDING ORDER 0.020 in2 0.140 in2 0.257 in2 0.380 in2 0.493 in2 80 40 0 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 24. THERMAL RESISTANCE vs MOUNTING PAD AREA ©2001 Fairchild Semiconductor Corporation HUF76113DK8 Rev. B HUF76113DK8 PSPICE Electrical Model .SUBCKT HUF76113 2 1 3 ; REV July 1998 CA 12 8 8.50e-10 CB 15 14 8.05e-10 CIN 6 8 5.71e-10 LDRAIN DPLCAP DRAIN 2 5 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD ESLC 11 - EBREAK 11 7 17 18 38.7 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 + 17 EBREAK 18 50 - LDRAIN 2 5 1e-9 LGATE 1 9 9.67e-10 LSOURCE 3 7 3.27e-10 EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 3.04e-3 RGATE 9 20 2.65 RLDRAIN 2 5 10 RLGATE 1 9 9.67 RLSOURCE 3 7 3.27 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 25.0e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 5 51 IT 8 17 1 RLDRAIN RSLC1 51 S2A 13 8 14 13 S1B 17 18 RVTEMP S2B 13 CA RBREAK 15 CB 6 8 - - IT 14 + + EGS 19 VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*256),2))} .MODEL DBODYMOD D (IS = 8.35e-13 RS = 1.39e-2 TRS1 = 1.03e-3 TRS2 = 6.85e-6 CJO = 9.11e-10 TT = 2.14e-8 M = 0.42) .MODEL DBREAKMOD D (RS = 8.21e-2 TRS1 = 2.25e-3 TRS2 = 4.14e-5) .MODEL DPLCAPMOD D (CJO = 3.76e-10 IS = 1e-30 N = 10 M = 0.68) .MODEL MMEDMOD NMOS (VTO = 2.03 KP = 3.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.65) .MODEL MSTROMOD NMOS (VTO = 2.36 KP = 50 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.77 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 26.5 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1e-3 TC2 = 1e-7) .MODEL RDRAINMOD RES (TC1 = 3.67e-2 TC2 = 4.11e-5) .MODEL RSLCMOD RES (TC1 = 2.26e-3 TC2 = 1.23e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -2.97e-3 TC2 = -5.91e-6) .MODEL RVTEMPMOD RES (TC1 = -7.41e-4 TC2 = 9.41e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -6.05 VOFF= -2.00) VON = -2.00 VOFF= -6.05) VON = 0.00 VOFF= 0.60) VON = 0.60 VOFF= 0.00) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2001 Fairchild Semiconductor Corporation HUF76113DK8 Rev. B HUF76113DK8 SABER Electrical Model REV July 1998 template huf76113 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 8.35e-13, cjo = 9.11e-10, tt = 2.14e-8, m = 0.42) d..model dbreakmod = () d..model dplcapmod = (cjo = 3.76e-10, is = 1e-30, n = 10, m = 0.68) m..model mmedmod = (type=_n, vto = 2.03, kp = 3.75, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.36, kp = 50, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.77, kp = 0.1, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.05, voff = -2) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2, voff = -6.05) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = 0.6) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.6, voff = 0) LDRAIN DPLCAP 10 RSLC1 51 c.ca n12 n8 = 8.5e-10 c.cb n15 n14 = 8.05e-10 c.cin n6 n8 = 5.71e-10 RLDRAIN RDBREAK RSLC2 72 ISCL d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 MWEAK MSTRO CIN DBODY EBREAK + 17 18 MMED m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u 71 11 16 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 1e-3, tc2 = 1e-7 res.rdbody n71 n5 = 1.39e-2, tc1 = 1.03e-3, tc2 = 6.85e-6 res.rdbreak n72 n5 = 8.21e-2, tc1 = 2.25e-3, tc2 = 4.14e-5 res.rdrain n50 n16 = 3.04e-3, tc1 = 3.67e-2, tc2 = 4.11e-5 res.rgate n9 n20 = 2.65 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 9.67 res.rlsource n3 n7 = 3.27 res.rslc1 n5 n51 = 1e-6, tc1 = 2.26e-3, tc2 = 1.23e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 25e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -7.41e-4, tc2 = 9.41e-7 res.rvthres n22 n8 = 1, tc1 = -2.97e-3, tc2 = -5.91e-6 21 RDBODY DBREAK 50 - i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 9.67e-10 l.lsource n3 n7 = 3.27e-10 DRAIN 2 5 - 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 38.7 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/256))** 2)) } } ©2001 Fairchild Semiconductor Corporation HUF76113DK8 Rev. B HUF76113DK8 SPICE Thermal Model th REV June 1998 HUF76113DK8 Copper Area = 0.02 in2 CTHERM1 th 8 8.5e-4 CTHERM2 8 7 1.8e-3 CTHERM3 7 6 5.0e-3 CTHERM4 6 5 1.3e-2 CTHERM5 5 4 4.0e-2 CTHERM6 4 3 9.0e-2 CTHERM7 3 2 4.0e-1 CTHERM8 2 tl 1.4 JUNCTION RTHERM1 CTHERM1 8 RTHERM2 CTHERM2 7 RTHERM1 th 8 3.5e-2 RTHERM2 8 7 6.0e-1 RTHERM3 7 6 2 RTHERM4 6 5 8 RTHERM5 5 4 18 RTHERM6 4 3 39 RTHERM7 3 2 42 RTHERM8 2 tl 48 RTHERM3 CTHERM3 6 RTHERM4 CTHERM4 5 SABER Thermal Model CTHERM5 RTHERM5 Copper Area = 0.02 in2 4 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 8.5e-4 ctherm.ctherm2 8 7 = 1.8e-3 ctherm.ctherm3 7 6 = 5.0e-3 ctherm.ctherm4 6 5 = 1.3e-2 ctherm.ctherm5 5 4 = 4.0e-2 ctherm.ctherm6 4 3 = 9.0e-2 ctherm.ctherm7 3 2 = 4.0e-1 ctherm.ctherm8 2 tl = 1.4 RTHERM6 CTHERM6 3 CTHERM7 RTHERM7 2 CTHERM8 RTHERM8 rtherm.rtherm1 th 8 = 3.0e-2 rtherm.rtherm2 8 7 = 6.0e-1 rtherm.rtherm3 7 6 = 3.8 rtherm.rtherm4 6 5 = 9.5 rtherm.rtherm5 5 4 = 25 rtherm.rtherm6 4 3 = 38 rtherm.rtherm7 3 2 = 25 rtherm.rtherm8 2 tl = 38 } tl CASE TABLE 1. Thermal Models COMPONANT 0.02 in2 0.14 in2 0.25 in2 0.38 in2 0.50 in2 CTHERM6 9.0e-2 1.3e-1 1.5e-1 1.5e-1 1.5e-1 CTHERM7 4.0e-1 6.0e-1 4.5e-1 6.5e-1 7.5e-1 CTHERM8 1.4 2.5 2.2 3 3 RTHERM6 39 26 20 20 20 RTHERM7 42 32 31 29 23 RTHERM8 48 35 38 31 25 ©2001 Fairchild Semiconductor Corporation HUF76113DK8 Rev. B TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOSTM EnSignaTM FACT™ FACT Quiet Series™ FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET VCX™ STAR*POWER is used under license DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H4