Order this document by MRF175GU/D SEMICONDUCTOR TECHNICAL DATA The RF MOSFET Line N–Channel Enhancement–Mode Designed for broadband commercial and military applications using push pull circuits at frequencies to 500 MHz. The high power, high gain and broadband performance of these devices makes possible solid state transmitters for FM broadcast or TV channel frequency bands. • Guaranteed Performance MRF175GV @ 28 V, 225 MHz (“V” Suffix) Output Power — 200 Watts Power Gain — 14 dB Typ Efficiency — 65% Typ MRF175GU @ 28 V, 400 MHz (“U” Suffix) Output Power — 150 Watts Power Gain — 12 dB Typ Efficiency — 55% Typ 200/150 WATTS, 28 V, 500 MHz N–CHANNEL MOS BROADBAND RF POWER FETs • 100% Ruggedness Tested At Rated Output Power • Low Thermal Resistance • Low Crss — 20 pF Typ @ VDS = 28 V % CASE 375–04, STYLE 2 MAXIMUM RATINGS Symbol Value Unit Drain–Source Voltage Rating VDSS 65 Vdc Drain–Gate Voltage (RGS = 1.0 MΩ) VDGR 65 Vdc VGS ±40 Vdc Gate–Source Voltage Drain Current — Continuous ID 26 Adc Total Device Dissipation @ TC = 25°C Derate above 25°C PD 400 2.27 Watts W/°C Storage Temperature Range Tstg –65 to +150 °C Operating Junction Temperature TJ 200 °C Symbol Max Unit RθJC 0.44 °C/W THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Symbol Min Typ Max Unit V(BR)DSS 65 — — Vdc Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) IDSS — — 2.5 mAdc Gate–Source Leakage Current (VGS = 20 V, VDS = 0) IGSS — — 1.0 µAdc Characteristic OFF CHARACTERISTICS (1) Drain–Source Breakdown Voltage (VGS = 0, ID = 50 mA) (continued) Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. REV 8 1 ELECTRICAL CHARACTERISTICS — continued (TC = 25°C unless otherwise noted) Symbol Min Typ Max Unit Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) VGS(th) 1.0 3.0 6.0 Vdc Drain–Source On–Voltage (VGS = 10 V, ID = 5.0 A) VDS(on) 0.1 0.9 1.5 Vdc Forward Transconductance (VDS = 10 V, ID = 2.5 A) gfs 2.0 3.0 — mhos Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss — 180 — pF Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Coss — 200 — pF Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Crss — 20 — pF Common Source Power Gain (VDD = 28 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA) Gps 12 14 — dB Drain Efficiency (VDD = 28 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA) η 55 65 — % Electrical Ruggedness (VDD = 28 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA, VSWR 10:1 at all Phase Angles) ψ Characteristic ON CHARACTERISTICS (1) DYNAMIC CHARACTERISTICS (1) FUNCTIONAL CHARACTERISTICS — MRF175GV (2) (Figure 1) No Degradation in Output Power NOTES: 1. Each side of device measured separately. 2. Measured in push–pull configuration. $ % ( $ ( '& & & C1 — Arco 404, 8.0–60 pF C2, C3, C7, C8 — 1000 pF Chip C4, C9 — 0.1 µF Chip C5 — 180 pF Chip C6 — 100 pF and 130 pF Chips in Parallel C10 — 0.47 µF Chip, Kemet 1215 or Equivalent L1 — 10 Turns AWG #16 Enamel Wire, Close L1 — Wound, 1/4″ I.D. L2 — Ferrite Beads of Suitable Material for L2 — 1.5D–D2.0 µH Total Inductance Board material — .062″ fiberglass (G10), Two sided, 1 oz. copper, εr 5 R1 — 100 Ohms, 1/2 W R2 — 1.0 k Ohm, 1/2 W T1 — 4:1 Impedance Ratio RF Transformer. T1 — Can Be Made of 25 Ohm Semirigid Coax, T1 — 47–52 Mils O.D. T2 — 1:9 Impedance Ratio RF Transformer. T2 — Can Be Made of 15–18 Ohms Semirigid T2 — Coax, 62–90 Mils O.D. NOTE: For stability, the input transformer T1 should be loaded NOTE: with ferrite toroids or beads to increase the common NOTE: mode inductance. For operation below 100 MHz. The NOTE: same is required for the output transformer. Unless otherwise noted, all chip capacitors are ATC Type 100 or Equivalent. Figure 1. 225 MHz Test Circuit REV 8 2 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Common Source Power Gain (VDD = 28 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA) Gps 10 12 — dB Drain Efficiency (VDD = 28 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA) η 50 55 — % Electrical Ruggedness (VDD = 28 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA, VSWR 10:1 at all Phase Angles) ψ FUNCTIONAL CHARACTERISTICS — MRF175GU (1) (Figure 2) No Degradation in Output Power NOTE: 1. Measured in push–pull configuration. % $ $ + + + + B1 — Balun 50 Ω Semi Rigid Coax 0.086″ O.D. 2″ Long B2 — Balun 50 Ω Semi Rigid Coax 0.141″ O.D. 2″ Long C1, C2, C8, C9 — 270 pF ATC Chip Cap C3, C5, C7 — 1.0–20 pF Trimmer Cap C4 — 15 pF ATC Chip Cap C6 — 33 pF ATC Chip Cap C10, C12, C13, C16, C17 — 0.01 µF Ceramic Cap C11 — 1.0 µF 50 V Tantalum C14, C15 — 680 pF Feedthru Cap C18 — 20 µF 50 V Tantalum ″ L1, L2 — Hairpin Inductor #18 Wire L3, L4 — 12 Turns #18 Enameled Wire 0.340″ I.D. L5 — Ferroxcube VK200 20/4B L6 — 3 Turns #16 Enameled Wire 0.340″ I.D. R1 — 1.0 kΩ 1/4 W Resistor R2, R3 — 10 kΩ 1/4 W Resistor Z1, Z2 — Microstrip Line 0.400″ x 0.250″ Z3, Z4 — Microstrip Line 0.870″ x 0.250″ Z5, Z6 — Microstrip Line 0.500″ x 0.250″ Board material — 0.060″ Teflon–fiberglass, εr = 2.55, copper clad both sides, 2 oz. copper. Figure 2. 400 MHz Test Circuit REV 8 + $ 3 ( + '& ″ TYPICAL CHARACTERISTICS $ '$$ &"% 0E' &* $#' *C & (% ( (% ( $ '$$ & "% & ° (% $ %!'$ (!& (!&% Figure 4. DC Safe Operating Area (%&F%!'$(!& !$+ Figure 3. Common Source Unity Current Gain Frequency versus Drain Current $ '$$ &"% (% ( &*" ( %!) (%=2 ( (% &%!'$ (!& (!&% Figure 5. Drain Current versus Gate Voltage (Transfer Characteristics) ( ( 6 D & % &"$&'$ ° (% ( 0 C "& 9 8<< 3<< ;<< (% $ %!'$ (!& (!&% Figure 7. Capacitance versus Drain–Source Voltage* * Data shown applies to each half of MRF175GU/GV. REV 8 4 Figure 6. Gate–Source Voltage versus Case Temperature TYPICAL CHARACTERISTICS MRF175GV "!'&"'&"!)$)&&% 8>= ""!)$!'&"'&)&&% 8>= # A 6 0 C "37 ) ) ( ( # A 6 0 C "37 "!)$ "'& )&&% ) Figure 8. Power Input versus Power Output ( %'""* (!& (!&% Figure 9. Output Power versus Supply Voltage MRF175GU "37 ) "!'&"'&"!)$)&&% 8>= "!'&"'&"!)$)&&% 8>= ) ( %'""* (!& (!&% (% ( # A 6 0 C C ) 0 C Figure 10. Output Power versus Supply Voltage "37 "'& "!)$ )&&% Figure 11. Output Power versus Input Power MRF175GV "!)$ . "8>= ) (% ( # A 6 ) 0 $#' * C Figure 12. Power Gain versus Frequency REV 8 5 S11 S21 S12 S22 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ f MHz |S11| ∠φ |S21| ∠φ |S12| ∠φ |S22| ∠φ 50 0.926 –174 5.43 81 0.009 12 0.861 –177 70 0.924 –176 3.85 76 0.009 6 0.869 –178 80 0.923 –176 3.35 73 0.008 18 0.864 –178 90 0.921 –177 2.94 70 0.008 17 0.871 –178 100 0.918 –178 2.57 68 0.008 17 0.875 –178 103 0.920 –178 2.52 67 0.007 23 0.871 –178 105 0.920 –178 2.47 67 0.008 20 0.875 –179 110 0.921 –178 2.32 65 0.008 21 0.877 –178 120 0.923 –179 2.08 63 0.005 27 0.862 –178 130 0.928 –179 1.93 61 0.008 34 0.883 –178 135 0.929 –180 1.86 60 0.007 22 0.887 –178 140 0.929 –180 1.77 59 0.009 27 0.887 –178 145 0.931 180 1.68 58 0.008 30 0.890 –178 150 0.931 180 1.63 57 0.007 39 0.894 –178 155 0.934 180 1.55 56 0.008 29 0.891 –178 160 0.936 180 1.48 55 0.007 35 0.889 –178 165 0.934 180 1.44 54 0.009 36 0.888 –178 170 0.936 179 1.40 53 0.008 38 0.891 –178 175 0.937 179 1.34 52 0.009 35 0.893 –178 180 0.941 179 1.29 51 0.009 40 0.894 –178 185 0.941 179 1.25 50 0.010 39 0.897 –178 190 0.939 179 1.20 49 0.009 49 0.901 –178 192 0.937 179 1.18 49 0.010 44 0.904 –178 195 0.935 179 1.15 48 0.010 44 0.903 –178 200 0.933 179 1.12 47 0.011 49 0.903 –179 205 0.923 178 1.09 47 0.012 46 0.906 –179 210 0.907 180 1.04 46 0.013 22 0.911 –179 215 0.930 –180 1.01 45 0.008 27 0.910 –179 220 0.933 180 0.99 45 0.008 39 0.912 –179 225 0.935 179 0.96 43 0.009 37 0.913 –179 230 0.932 179 0.92 43 0.009 39 0.915 –179 235 0.933 178 0.90 42 0.009 43 0.917 –180 240 0.935 178 0.87 41 0.009 46 0.918 –180 245 0.936 178 0.85 40 0.009 56 0.920 –180 250 0.935 178 0.82 39 0.010 47 0.921 180 275 0.948 176 0.72 36 0.009 55 0.928 180 300 0.966 175 0.64 33 0.010 59 0.932 179 325 0.969 175 0.57 30 0.012 66 0.935 178 350 0.957 175 0.51 27 0.013 60 0.939 178 375 0.939 174 0.45 25 0.015 80 0.941 177 Table 1. Common Source S–Parameters (VDS = 28 V, ID = 4.5 A) (continued) REV 8 6 S11 S21 S12 S22 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ f MHz |S11| ∠φ |S21| ∠φ |S12| ∠φ |S22| ∠φ 400 0.943 172 0.41 23 0.017 75 0.946 176 405 0.945 172 0.40 22 0.016 71 0.946 176 410 0.948 171 0.40 22 0.016 68 0.944 176 415 0.956 171 0.39 21 0.017 74 0.949 176 420 0.963 171 0.38 21 0.018 72 0.946 176 425 0.966 171 0.37 20 0.018 70 0.947 176 430 0.968 170 0.37 20 0.019 72 0.948 176 435 0.970 170 0.36 19 0.019 75 0.949 175 440 0.971 170 0.36 19 0.019 73 0.952 175 445 0.978 169 0.32 17 0.017 71 0.965 177 450 0.978 169 0.31 17 0.019 70 0.964 177 455 0.977 170 0.31 17 0.019 73 0.965 177 460 0.978 170 0.31 16 0.019 70 0.967 177 465 0.977 169 0.30 16 0.020 73 0.963 177 470 0.973 169 0.29 15 0.021 71 0.966 177 475 0.973 169 0.29 15 0.021 72 0.967 177 480 0.970 169 0.28 15 0.022 71 0.967 177 485 0.964 169 0.28 14 0.022 74 0.963 176 490 0.960 169 0.28 14 0.022 73 0.965 176 495 0.957 169 0.27 14 0.023 71 0.963 176 500 0.957 169 0.27 13 0.023 71 0.963 176 505 0.951 168 0.26 13 0.023 70 0.966 176 510 0.948 168 0.26 13 0.022 68 0.965 176 515 0.943 167 0.25 13 0.022 72 0.966 175 Table 1. Common Source S–Parameters (VDS = 28 V, ID = 4.5 A) (continued) REV 8 7 S11 S21 S12 S22 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ f MHz |S11| ∠φ |S21| ∠φ |S12| ∠φ |S22| ∠φ 520 0.940 167 0.25 12 0.021 68 0.966 175 525 0.940 167 0.25 12 0.022 74 0.968 175 530 0.943 166 0.24 11 0.022 67 0.965 175 535 0.944 166 0.24 11 0.022 69 0.964 174 540 0.945 165 0.23 11 0.022 69 0.965 174 545 0.951 165 0.23 11 0.023 70 0.969 174 550 0.952 164 0.23 10 0.023 72 0.969 174 555 0.956 164 0.23 10 0.023 70 0.969 174 560 0.958 164 0.22 10 0.025 70 0.968 174 565 0.962 164 0.22 9 0.024 70 0.969 174 570 0.963 164 0.22 9 0.024 71 0.972 174 575 0.970 164 0.21 9 0.024 70 0.972 174 600 0.973 164 0.20 8 0.029 71 0.973 173 625 0.955 164 0.19 8 0.030 69 0.970 172 650 0.933 162 0.17 7 0.031 69 0.966 171 675 0.928 160 0.16 6 0.034 69 0.969 170 700 0.946 158 0.15 6 0.034 67 0.973 169 750 0.952 158 0.14 4 0.040 67 0.969 168 800 0.907 155 0.13 5 0.044 65 0.962 166 850 0.928 151 0.12 5 0.049 55 0.963 164 900 0.915 152 0.11 4 0.049 52 0.955 163 950 0.869 148 0.11 4 0.053 49 0.941 161 1000 0.902 146 0.11 4 0.055 44 0.943 159 Table 1. Common Source S–Parameters (VDS = 28 V, ID = 4.5 A) (continued) REV 8 8 INPUT AND OUTPUT IMPEDANCE ( ( # A 6 +37 +! 0 C 0 C 0 C +8 Ω +! !% "8>= ) +! +37 !% +! 874>1,=/ 80 =2/ 89=36>6 58,. 369/.,7-/ 37=8 @23-2 =2/ ./?3-/ 89/;,=/< ,= , 13?/7 8>=9>= 98@/; ?85=,1/ ,7. 0;/:>/7-B 4 4 4 4 4 4 4 4 4 4 4 4 4 "8>= ) 4 4 4 4 4 NOTE: Input and output impedance values given are measured from gate to gate and drain to drain respectively. Figure 13. Series Equivalent Input/Output Impedance RF POWER MOSFET CONSIDERATIONS MOSFET CAPACITANCES The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate–to–drain (Cgd), and gate–to– source (Cgs). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain– to–source (Cds). These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter–terminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways: 1. Drain shorted to source and positive voltage at the gate. 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications. 1. & $ .< 1< 3<< 1. 1< 8<< 1. .< ;<< 1. %!'$ The Ciss given in the electrical characteristics table was measured using method 2 above. It should be noted that Ciss, Coss, Crss are measured at zero drain current and are REV 8 9 provided for general information about the device. They are not RF design parameters and no attempt should be made to use them as such. LINEARITY AND GAIN CHARACTERISTICS In addition to the typical IMD and power gain, data presented in Figure 3 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent. DRAIN CHARACTERISTICS One figure of merit for a FET is its static resistance in the full–on condition. This on–resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device. GATE CHARACTERISTICS The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 109 ohms — resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage slightly in excess of the gate–to–source threshold voltage, VGS(th). Gate Voltage Rating — Never exceed the gate voltage rating (or any of the maximum ratings on the front page). Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region. Gate Termination — The gates of this device are essentially capacitors. Circuits that leave the gate open–circuited or floating should be avoided. These conditions can result in turn–on of the devices due to voltage build–up on the input capacitor due to leakage currents or pickup. Gate Protection — These devices do not have an internal monolithic zener diode from gate–to–source. If gate protection is required, an external zener diode is recommended. Using a resistor to keep the gate–to–source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate–drain capacitance. If the gate–to–source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate–threshold voltage and turn the device on. HANDLING CONSIDERATIONS When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with grounded equipment. REV 8 10 DESIGN CONSIDERATIONS The MRF175G is a RF power N–channel enhancement mode field–effect transistor (FETs) designed for HF, VHF and UHF power amplifier applications. M/A-COM RF MOSFETs feature a vertical structure with a planar design. M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal. DC BIAS The MRF175G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF175G was characterized at IDQ = 100 mA, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias sytem. GAIN CONTROL Power output of the MRF175G may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. PACKAGE DIMENSIONS U G Q RADIUS 2 PL & –B– D N J H –T– –A– C CASE 375–04 ISSUE D Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020 Visit www.macom.com for additional data sheets and product information. REV 8 11 E R K !&% %! &!$ "$ % * ! &$! %! %&* " % $ $ & & %!'$ %