MA-COM MRF175GU

Order this document
by MRF175GU/D
SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
N–Channel Enhancement–Mode
Designed for broadband commercial and military applications using push pull
circuits at frequencies to 500 MHz. The high power, high gain and broadband
performance of these devices makes possible solid state transmitters for FM
broadcast or TV channel frequency bands.
• Guaranteed Performance
MRF175GV @ 28 V, 225 MHz (“V” Suffix)
Output Power — 200 Watts
Power Gain — 14 dB Typ
Efficiency — 65% Typ
MRF175GU @ 28 V, 400 MHz (“U” Suffix)
Output Power — 150 Watts
Power Gain — 12 dB Typ
Efficiency — 55% Typ
200/150 WATTS, 28 V, 500 MHz
N–CHANNEL MOS
BROADBAND
RF POWER FETs
• 100% Ruggedness Tested At Rated Output Power
• Low Thermal Resistance
• Low Crss — 20 pF Typ @ VDS = 28 V
%
CASE 375–04, STYLE 2
MAXIMUM RATINGS
Symbol
Value
Unit
Drain–Source Voltage
Rating
VDSS
65
Vdc
Drain–Gate Voltage
(RGS = 1.0 MΩ)
VDGR
65
Vdc
VGS
±40
Vdc
Gate–Source Voltage
Drain Current — Continuous
ID
26
Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
400
2.27
Watts
W/°C
Storage Temperature Range
Tstg
–65 to +150
°C
Operating Junction Temperature
TJ
200
°C
Symbol
Max
Unit
RθJC
0.44
°C/W
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
V(BR)DSS
65
—
—
Vdc
Zero Gate Voltage Drain Current
(VDS = 28 V, VGS = 0)
IDSS
—
—
2.5
mAdc
Gate–Source Leakage Current
(VGS = 20 V, VDS = 0)
IGSS
—
—
1.0
µAdc
Characteristic
OFF CHARACTERISTICS (1)
Drain–Source Breakdown Voltage
(VGS = 0, ID = 50 mA)
(continued)
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
REV 8
1
ELECTRICAL CHARACTERISTICS — continued (TC = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA)
VGS(th)
1.0
3.0
6.0
Vdc
Drain–Source On–Voltage (VGS = 10 V, ID = 5.0 A)
VDS(on)
0.1
0.9
1.5
Vdc
Forward Transconductance (VDS = 10 V, ID = 2.5 A)
gfs
2.0
3.0
—
mhos
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)
Ciss
—
180
—
pF
Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)
Coss
—
200
—
pF
Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)
Crss
—
20
—
pF
Common Source Power Gain
(VDD = 28 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA)
Gps
12
14
—
dB
Drain Efficiency
(VDD = 28 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA)
η
55
65
—
%
Electrical Ruggedness
(VDD = 28 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA,
VSWR 10:1 at all Phase Angles)
ψ
Characteristic
ON CHARACTERISTICS (1)
DYNAMIC CHARACTERISTICS (1)
FUNCTIONAL CHARACTERISTICS — MRF175GV (2) (Figure 1)
No Degradation in Output Power
NOTES:
1. Each side of device measured separately.
2. Measured in push–pull configuration.
$
% (
$
(
'&
&
&
C1 — Arco 404, 8.0–60 pF
C2, C3, C7, C8 — 1000 pF Chip
C4, C9 — 0.1 µF Chip
C5 — 180 pF Chip
C6 — 100 pF and 130 pF Chips in Parallel
C10 — 0.47 µF Chip, Kemet 1215 or Equivalent
L1 — 10 Turns AWG #16 Enamel Wire, Close
L1 — Wound, 1/4″ I.D.
L2 — Ferrite Beads of Suitable Material for
L2 — 1.5D–D2.0 µH Total Inductance
Board material — .062″ fiberglass (G10),
Two sided, 1 oz. copper, εr 5
R1 — 100 Ohms, 1/2 W
R2 — 1.0 k Ohm, 1/2 W
T1 — 4:1 Impedance Ratio RF Transformer.
T1 — Can Be Made of 25 Ohm Semirigid Coax,
T1 — 47–52 Mils O.D.
T2 — 1:9 Impedance Ratio RF Transformer.
T2 — Can Be Made of 15–18 Ohms Semirigid
T2 — Coax, 62–90 Mils O.D.
NOTE: For stability, the input transformer T1 should be loaded
NOTE: with ferrite toroids or beads to increase the common
NOTE: mode inductance. For operation below 100 MHz. The
NOTE: same is required for the output transformer.
Unless otherwise noted, all chip capacitors
are ATC Type 100 or Equivalent.
Figure 1. 225 MHz Test Circuit
REV 8
2
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Common Source Power Gain
(VDD = 28 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA)
Gps
10
12
—
dB
Drain Efficiency
(VDD = 28 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA)
η
50
55
—
%
Electrical Ruggedness
(VDD = 28 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA,
VSWR 10:1 at all Phase Angles)
ψ
FUNCTIONAL CHARACTERISTICS — MRF175GU (1) (Figure 2)
No Degradation in Output Power
NOTE:
1. Measured in push–pull configuration.
%
$
$
+
+
+
+
B1 — Balun 50 Ω Semi Rigid Coax 0.086″ O.D. 2″ Long
B2 — Balun 50 Ω Semi Rigid Coax 0.141″ O.D. 2″ Long
C1, C2, C8, C9 — 270 pF ATC Chip Cap
C3, C5, C7 — 1.0–20 pF Trimmer Cap
C4 — 15 pF ATC Chip Cap
C6 — 33 pF ATC Chip Cap
C10, C12, C13, C16, C17 — 0.01 µF Ceramic Cap
C11 — 1.0 µF 50 V Tantalum
C14, C15 — 680 pF Feedthru Cap
C18 — 20 µF 50 V Tantalum
″
L1, L2 — Hairpin Inductor #18 Wire
L3, L4 — 12 Turns #18 Enameled Wire 0.340″ I.D.
L5 — Ferroxcube VK200 20/4B
L6 — 3 Turns #16 Enameled Wire 0.340″ I.D.
R1 — 1.0 kΩ 1/4 W Resistor
R2, R3 — 10 kΩ 1/4 W Resistor
Z1, Z2 — Microstrip Line 0.400″ x 0.250″
Z3, Z4 — Microstrip Line 0.870″ x 0.250″
Z5, Z6 — Microstrip Line 0.500″ x 0.250″
Board material — 0.060″ Teflon–fiberglass,
εr = 2.55, copper clad both sides, 2 oz. copper.
Figure 2. 400 MHz Test Circuit
REV 8
+
$
3
(
+
'&
″
TYPICAL CHARACTERISTICS
$ '$$ &"%
0E'
&* $#' *C
&
(% (
(% (
$ '$$ & "%
& °
(% $ %!'$ (!& (!&%
Figure 4. DC Safe Operating Area
(%&F%!'$(!& !$+
Figure 3. Common Source Unity Current Gain
Frequency versus Drain Current
$ '$$ &"%
(% (
&*" ( %!) (%=2 (
(% &%!'$ (!& (!&%
Figure 5. Drain Current versus Gate Voltage
(Transfer Characteristics)
( (
6
D
& % &"$&'$ °
(% (
0 C
"& 9
8<<
3<<
;<<
(% $ %!'$ (!& (!&%
Figure 7. Capacitance versus Drain–Source Voltage*
* Data shown applies to each half of MRF175GU/GV.
REV 8
4
Figure 6. Gate–Source Voltage versus
Case Temperature
TYPICAL CHARACTERISTICS
MRF175GV
"!'&"'&"!)$)&&%
8>=
""!)$!'&"'&)&&%
8>=
# A 6
0 C
"37 )
)
( (
# A 6
0 C
"37 "!)$ "'& )&&%
)
Figure 8. Power Input versus Power Output
( %'""* (!& (!&%
Figure 9. Output Power versus Supply Voltage
MRF175GU
"37 )
"!'&"'&"!)$)&&%
8>=
"!'&"'&"!)$)&&%
8>=
)
( %'""* (!& (!&%
(% (
# A 6
0 C
C
)
0 C
Figure 10. Output Power versus Supply Voltage
"37 "'& "!)$ )&&%
Figure 11. Output Power versus Input Power
MRF175GV
"!)$ .
"8>= )
(% (
# A 6
)
0 $#' * C
Figure 12. Power Gain versus Frequency
REV 8
5
S11
S21
S12
S22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
50
0.926
–174
5.43
81
0.009
12
0.861
–177
70
0.924
–176
3.85
76
0.009
6
0.869
–178
80
0.923
–176
3.35
73
0.008
18
0.864
–178
90
0.921
–177
2.94
70
0.008
17
0.871
–178
100
0.918
–178
2.57
68
0.008
17
0.875
–178
103
0.920
–178
2.52
67
0.007
23
0.871
–178
105
0.920
–178
2.47
67
0.008
20
0.875
–179
110
0.921
–178
2.32
65
0.008
21
0.877
–178
120
0.923
–179
2.08
63
0.005
27
0.862
–178
130
0.928
–179
1.93
61
0.008
34
0.883
–178
135
0.929
–180
1.86
60
0.007
22
0.887
–178
140
0.929
–180
1.77
59
0.009
27
0.887
–178
145
0.931
180
1.68
58
0.008
30
0.890
–178
150
0.931
180
1.63
57
0.007
39
0.894
–178
155
0.934
180
1.55
56
0.008
29
0.891
–178
160
0.936
180
1.48
55
0.007
35
0.889
–178
165
0.934
180
1.44
54
0.009
36
0.888
–178
170
0.936
179
1.40
53
0.008
38
0.891
–178
175
0.937
179
1.34
52
0.009
35
0.893
–178
180
0.941
179
1.29
51
0.009
40
0.894
–178
185
0.941
179
1.25
50
0.010
39
0.897
–178
190
0.939
179
1.20
49
0.009
49
0.901
–178
192
0.937
179
1.18
49
0.010
44
0.904
–178
195
0.935
179
1.15
48
0.010
44
0.903
–178
200
0.933
179
1.12
47
0.011
49
0.903
–179
205
0.923
178
1.09
47
0.012
46
0.906
–179
210
0.907
180
1.04
46
0.013
22
0.911
–179
215
0.930
–180
1.01
45
0.008
27
0.910
–179
220
0.933
180
0.99
45
0.008
39
0.912
–179
225
0.935
179
0.96
43
0.009
37
0.913
–179
230
0.932
179
0.92
43
0.009
39
0.915
–179
235
0.933
178
0.90
42
0.009
43
0.917
–180
240
0.935
178
0.87
41
0.009
46
0.918
–180
245
0.936
178
0.85
40
0.009
56
0.920
–180
250
0.935
178
0.82
39
0.010
47
0.921
180
275
0.948
176
0.72
36
0.009
55
0.928
180
300
0.966
175
0.64
33
0.010
59
0.932
179
325
0.969
175
0.57
30
0.012
66
0.935
178
350
0.957
175
0.51
27
0.013
60
0.939
178
375
0.939
174
0.45
25
0.015
80
0.941
177
Table 1. Common Source S–Parameters (VDS = 28 V, ID = 4.5 A) (continued)
REV 8
6
S11
S21
S12
S22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
400
0.943
172
0.41
23
0.017
75
0.946
176
405
0.945
172
0.40
22
0.016
71
0.946
176
410
0.948
171
0.40
22
0.016
68
0.944
176
415
0.956
171
0.39
21
0.017
74
0.949
176
420
0.963
171
0.38
21
0.018
72
0.946
176
425
0.966
171
0.37
20
0.018
70
0.947
176
430
0.968
170
0.37
20
0.019
72
0.948
176
435
0.970
170
0.36
19
0.019
75
0.949
175
440
0.971
170
0.36
19
0.019
73
0.952
175
445
0.978
169
0.32
17
0.017
71
0.965
177
450
0.978
169
0.31
17
0.019
70
0.964
177
455
0.977
170
0.31
17
0.019
73
0.965
177
460
0.978
170
0.31
16
0.019
70
0.967
177
465
0.977
169
0.30
16
0.020
73
0.963
177
470
0.973
169
0.29
15
0.021
71
0.966
177
475
0.973
169
0.29
15
0.021
72
0.967
177
480
0.970
169
0.28
15
0.022
71
0.967
177
485
0.964
169
0.28
14
0.022
74
0.963
176
490
0.960
169
0.28
14
0.022
73
0.965
176
495
0.957
169
0.27
14
0.023
71
0.963
176
500
0.957
169
0.27
13
0.023
71
0.963
176
505
0.951
168
0.26
13
0.023
70
0.966
176
510
0.948
168
0.26
13
0.022
68
0.965
176
515
0.943
167
0.25
13
0.022
72
0.966
175
Table 1. Common Source S–Parameters (VDS = 28 V, ID = 4.5 A) (continued)
REV 8
7
S11
S21
S12
S22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
520
0.940
167
0.25
12
0.021
68
0.966
175
525
0.940
167
0.25
12
0.022
74
0.968
175
530
0.943
166
0.24
11
0.022
67
0.965
175
535
0.944
166
0.24
11
0.022
69
0.964
174
540
0.945
165
0.23
11
0.022
69
0.965
174
545
0.951
165
0.23
11
0.023
70
0.969
174
550
0.952
164
0.23
10
0.023
72
0.969
174
555
0.956
164
0.23
10
0.023
70
0.969
174
560
0.958
164
0.22
10
0.025
70
0.968
174
565
0.962
164
0.22
9
0.024
70
0.969
174
570
0.963
164
0.22
9
0.024
71
0.972
174
575
0.970
164
0.21
9
0.024
70
0.972
174
600
0.973
164
0.20
8
0.029
71
0.973
173
625
0.955
164
0.19
8
0.030
69
0.970
172
650
0.933
162
0.17
7
0.031
69
0.966
171
675
0.928
160
0.16
6
0.034
69
0.969
170
700
0.946
158
0.15
6
0.034
67
0.973
169
750
0.952
158
0.14
4
0.040
67
0.969
168
800
0.907
155
0.13
5
0.044
65
0.962
166
850
0.928
151
0.12
5
0.049
55
0.963
164
900
0.915
152
0.11
4
0.049
52
0.955
163
950
0.869
148
0.11
4
0.053
49
0.941
161
1000
0.902
146
0.11
4
0.055
44
0.943
159
Table 1. Common Source S–Parameters (VDS = 28 V, ID = 4.5 A) (continued)
REV 8
8
INPUT AND OUTPUT IMPEDANCE
( ( # A 6
+37
+!
0
C
0 C
0 C
+8 Ω
+!
!%
"8>= )
+!
+37
!%
+! 874>1,=/ 80 =2/ 89=36>6 58,.
369/.,7-/ 37=8 @23-2 =2/ ./?3-/
89/;,=/< ,= , 13?/7 8>=9>= 98@/;
?85=,1/ ,7. 0;/:>/7-B
4
4
4
4
4
4
4
4
4
4
4
4
4
"8>= )
4
4
4
4
4
NOTE: Input and output impedance values given are measured from gate to gate and drain to drain respectively.
Figure 13. Series Equivalent Input/Output Impedance
RF POWER MOSFET CONSIDERATIONS
MOSFET CAPACITANCES
The physical structure of a MOSFET results in capacitors
between the terminals. The metal oxide gate structure determines the capacitors from gate–to–drain (Cgd), and gate–to–
source (Cgs). The PN junction formed during the fabrication
of the MOSFET results in a junction capacitance from drain–
to–source (Cds).
These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data
sheets. The relationships between the inter–terminal capacitances and those given on data sheets are shown below. The
Ciss can be specified in two ways:
1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero
volts at the gate. In the latter case the numbers are lower.
However, neither method represents the actual operating conditions in RF applications.
1.
&
$
.<
1<
3<< 1. 1<
8<< 1. .<
;<< 1.
%!'$
The Ciss given in the electrical characteristics table was
measured using method 2 above. It should be noted that
Ciss, Coss, Crss are measured at zero drain current and are
REV 8
9
provided for general information about the device. They are
not RF design parameters and no attempt should be made to
use them as such.
LINEARITY AND GAIN CHARACTERISTICS
In addition to the typical IMD and power gain, data presented in Figure 3 may give the designer additional information on the capabilities of this device. The graph represents
the small signal unity current gain frequency at a given drain
current level. This is equivalent to fT for bipolar transistors.
Since this test is performed at a fast sweep speed, heating of
the device does not occur. Thus, in normal use, the higher
temperatures may degrade these characteristics to some extent.
DRAIN CHARACTERISTICS
One figure of merit for a FET is its static resistance in the
full–on condition. This on–resistance, VDS(on), occurs in the
linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain
current. For MOSFETs, VDS(on) has a positive temperature
coefficient and constitutes an important design consideration
at high temperatures, because it contributes to the power
dissipation within the device.
GATE CHARACTERISTICS
The gate of the MOSFET is a polysilicon material, and is
electrically isolated from the source by a layer of oxide. The
input resistance is very high — on the order of 109 ohms —
resulting in a leakage current of a few nanoamperes.
Gate control is achieved by applying a positive voltage
slightly in excess of the gate–to–source threshold voltage,
VGS(th).
Gate Voltage Rating — Never exceed the gate voltage
rating (or any of the maximum ratings on the front page). Exceeding the rated VGS can result in permanent damage to
the oxide layer in the gate region.
Gate Termination — The gates of this device are essentially capacitors. Circuits that leave the gate open–circuited
or floating should be avoided. These conditions can result in
turn–on of the devices due to voltage build–up on the input
capacitor due to leakage currents or pickup.
Gate Protection — These devices do not have an internal
monolithic zener diode from gate–to–source. If gate protection is required, an external zener diode is recommended.
Using a resistor to keep the gate–to–source impedance
low also helps damp transients and serves another important
function. Voltage transients on the drain can be coupled to
the gate through the parasitic gate–drain capacitance. If the
gate–to–source impedance and the rate of voltage change
on the drain are both high, then the signal coupled to the gate
may be large enough to exceed the gate–threshold voltage
and turn the device on.
HANDLING CONSIDERATIONS
When shipping, the devices should be transported only in
antistatic bags or conductive foam. Upon removal from the
packaging, careful handling procedures should be adhered
to. Those handling the devices should wear grounding straps
and devices not in the antistatic packaging should be kept in
metal tote bins. MOSFETs should be handled by the case
and not by the leads, and when testing the device, all leads
should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it
is designed for, soldering should be done with grounded
equipment.
REV 8
10
DESIGN CONSIDERATIONS
The MRF175G is a RF power N–channel enhancement
mode field–effect transistor (FETs) designed for HF, VHF and
UHF power amplifier applications. M/A-COM RF MOSFETs
feature a vertical structure with a planar design.
M/A-COM Application Note AN211A, FETs in Theory and
Practice, is suggested reading for those not familiar with the
construction and characteristics of FETs.
The major advantages of RF power FETs include high
gain, low noise, simple bias systems, relative immunity from
thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can
be varied over a wide range with a low power dc control signal.
DC BIAS
The MRF175G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain
current flows when a positive voltage is applied to the gate.
RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF175G was characterized
at IDQ = 100 mA, each side, which is the suggested minimum
value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical
parameters.
The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate
bias sytem.
GAIN CONTROL
Power output of the MRF175G may be controlled from its
rated value down to zero (negative gain) by varying the dc
gate voltage. This feature facilitates the design of manual
gain control, AGC/ALC and modulation systems.
PACKAGE DIMENSIONS
U
G
Q
RADIUS 2 PL
& –B–
D
N
J
H
–T–
–A–
C
CASE 375–04
ISSUE D
Specifications subject to change without notice.
n North America: Tel. (800) 366-2266, Fax (800) 618-8883
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 8
11
E
R
K
!&%
%! &!$ "$ %
*
! &$! %! %&* " %
$
$
&
&
%!'$
%