MA-COM MRF175GU1111

Order this document
by MRF176GU/D
SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
N–Channel Enhancement–Mode
Designed for broadband commercial and military applications using push pull
circuits at frequencies to 500 MHz. The high power, high gain and broadband
performance of these devices makes possible solid state transmitters for FM
broadcast or TV channel frequency bands.
• Electrical Performance
MRF176GU @ 50 V, 400 MHz (“U” Suffix)
Output Power — 150 Watts
Power Gain — 14 dB Typ
Efficiency — 50% Typ
MRF176GV @ 50 V, 225 MHz (“V” Suffix)
Output Power — 200 Watts
Power Gain — 17 dB Typ
Efficiency — 55% Typ
• 100% Ruggedness Tested At Rated Output Power
• Low Thermal Resistance
• Low Crss — 7.0 pF Typ @ VDS = 50 V
200/150 W, 50 V, 500 MHz
N–CHANNEL MOS
BROADBAND
RF POWER FETs
&
!
CASE 375–04, STYLE 2
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Drain–Source Voltage
VDSS
125
Vdc
Gate–Source Voltage
VGS
±40
Vdc
Drain Current — Continuous
ID
16
Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
400
2.27
Watts
W/°C
Storage Temperature Range
Tstg
–65 to +150
°C
Operating Junction Temperature
TJ
200
°C
Symbol
Max
Unit
RθJC
0.44
°C/W
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
V(BR)DSS
125
—
—
Vdc
Zero Gate Voltage Drain Current
(VDS = 50 V, VGS = 0)
IDSS
—
—
2.5
mAdc
Gate–Body Leakage Current
(VGS = 20 V, VDS = 0)
IGSS
—
—
1.0
µAdc
OFF CHARACTERISTICS (1)
Drain–Source Breakdown Voltage
(VGS = 0, ID = 100 mA)
NOTE:
1. Each side of device measured separately.
REV 9
1
ELECTRICAL CHARACTERISTICS — continued (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA)
VGS(th)
1.0
3.0
6.0
Vdc
Drain–Source On–Voltage (VGS = 10 V, ID = 5.0 A)
VDS(on)
1.0
3.0
5.0
Vdc
Forward Transconductance (VDS = 10 V, ID = 2.5 A)
gfs
2.0
3.0
—
mhos
Input Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz)
Ciss
—
180
—
pF
Output Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz)
Coss
—
100
—
pF
Reverse Transfer Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz)
Crss
—
6.0
—
pF
Common Source Power Gain
(VDD = 50 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA)
Gps
15
17
—
dB
Drain Efficiency
(VDD = 50 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA)
η
50
55
—
%
Electrical Ruggedness
(VDD = 50 Vdc, Pout = 200 W, f = 225 MHz, IDQ = 2.0 x 100 mA,
VSWR 10:1 at all Phase Angles)
ψ
ON CHARACTERISTICS (1)
DYNAMIC CHARACTERISTICS (1)
FUNCTIONAL CHARACTERISTICS — MRF176GV (2) (Figure 1)
No Degradation in Output Power
NOTES:
1. Each side of device measured separately.
2. Measured in push–pull configuration.
%
& EE )
('
%
)
'
'
C1 — Arco 404, 8.0E–E60 pF
C2, C3, C6, C8 — 1000 pF Chip
C4, C9 — 0.1 µF Chip
C5 — 180 pF Chip
C7 — Arco 403, 3.0E–E35 pF
C10 — 0.47 µF Chip, Kemet 1215 or Equivalent
L1 — 10 Turns AWG #16 Enameled Wire,
L1 — Close Wound, 1/4″ I.D.
Board material — .062″ fiberglass (G10),
Two sided, 1 oz. copper, εr 5
Unless otherwise noted, all chip capacitors
are ATC Type 100 or Equivalent
L2 — Ferrite Beads of Suitable Material
L2 — for 1.5E–E2.0 µH, Total Inductance
R1 — 100 Ohms, 1/2 W
R2 — 1.0 kOhms, 1/2 W
T1 — 4:1 Impedance Ratio RF Transformer.
T1 — Can Be Made of 25 Ohm Semirigid
T1 — Co–Ax, 47E–E62 Mils O.D.
T2 — 1:4 Impedance Ratio RF Transformer.
T2 — Can Be Made of 25 Ohm Semirigid
T2 — Co–Ax, 62E–E90 Mils O.D.
NOTE: For stability, the input transformer T1 should be loaded
NOTE: with ferrite toroids or beads to increase the common
NOTE: mode inductance. For operation below 100 MHz. The
NOTE: same is required for the output transformer.
Figure 1. 225 MHz Test Circuit
REV 9
2
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Common Source Power Gain
(VDD = 50 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA)
Gps
12
14
—
dB
Drain Efficiency
(VDD = 50 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA)
η
45
50
—
%
Electrical Ruggedness
(VDD = 50 Vdc, Pout = 150 W, f = 400 MHz, IDQ = 2.0 x 100 mA,
VSWR 10:1 at all Phase Angles)
ψ
FUNCTIONAL CHARACTERISTICS — MRF176GU (1) (Figure 2)
No Degradation in Output Power
NOTE:
1. Measured in push–pull configuration.
&
%
,
)
,
,
('
B1 — Balun, 50 Ω Semirigid Coax .086 OD 2″ Long
B2 — Balun, 50 Ω Semirigid Coax .141 OD 2″ Long
C1, C2, C9, C10 — 270 pF ATC Chip Capacitor
C3 — 15 pF ATC Chip Cap
C4, C8 — 1.0E–E20 pF Piston Trimmer Cap
C5 — 27 pF ATC Chip Cap
C6, C7 — 22 pF Mini Unelco Capacitor
C11, C13, C14, C15, C16 — 0.01 µF Ceramic Capacitor
C12 — 1.0 µF 50 V Tantalum Cap
C17, C18 — 680 pF Feedthru Capacitor
C19 — 10 µF 100 V Tantalum Cap
L1, L2 — Hairpin Inductor #18 W
L3, L4 — Hairpin Inductor #18 W
″
″
″
Ckt Board Material — .060″ teflon–fiberglass, copper clad both sides, 2 oz. copper,
εr = 2.55
Figure 2. 400 MHz Test Circuit
3
%
REV 9
,
%
L5, L6 — 13T #18 W .250 ID
L7 — Ferroxcube VK–200 20/4B
L8 — 3T #18 W .340 ID
R1 — 1.0 kΩ 1/4 W Resistor
R2, R3 — 10 kΩ 1/4 W Resistor
Z1, Z2 — Microstrip Line .400L x .250W
Z3, Z4 — Microstrip Line .450L x .250W
TYPICAL CHARACTERISTICS
%!(%%!' #&
1F(!'+!G%$(!+
D
'
)& )
)
%! (%%!' #&
' °
Figure 3. Common Source Unity Current Gain*
Gain–Frequency versus Drain Current
)& %!&"(% )"' )"'&
Figure 4. DC Safe Operating Area
* Data shown applies to each half of MRF176GU/GV
!#(' ! "('#(' #!
%()
) ) $ B 7
1
D
,48
1 D
,"
,9 Ω
,"
,48
" &
,"
" &
#9?> *
1 D
5
5
5
5
5
5
5
5
#9?> *
5
5
5
5
5
5
5
5
F
5
F
5
," 985?2->0 91 >30 9:>47?7 69-/
47:0/-8.0 48>9 A34.3 >30 /[email protected] 9?>:?>
9:0<->0= -> - 24@08 9?>:?> :9A0< @96>-20
-8/ 1<0;?08.C
!"' 8:?> -8/ 9?>:?> 47:0/-8.0 @-6?0= 24@08 -<0 70-=?<0/ 1<97 2->0 >9 2->0 -8/ /<-48 >9 /<-48 <0=:0.>4@06C
Figure 5. Series Equivalent Input/Output Impedance
REV 9
4
TYPICAL CHARACTERISTICS
4==
9==
#"*%!/
#'!:
)& )
1 D
)& %!&"(% )"' )"'&
*
)& )
$ B 7
<==
#9?> *
Figure 6. Capacitance versus Drain–Source Voltage*
1 %$(!+ D
Figure 7. Power Gain versus Frequency
* Data shown applies to each half of MRF176GU/GV
MRF176GV
) )
)
$ B 7
1 D
#48 #"*% !#(' *''&
Figure 8. Power Input versus Power Output
REV 9
5
#"('#('#"*%*''&
9?>
##"*%"('#('*''&
9?>
$ B 7
1 D
#48 *
*
*
)& &(##+ )"' )"'&
Figure 9. Output Power versus Supply Voltage
TYPICAL CHARACTERISTICS
MRF176GU
#"('#('#"*%*''&
9?>
#"('#('#"*%*''&
9?>
1 D
D
D
) )
$ B 7
1 D
#48 !#(' #"*% *''&
Figure 10. Output Power versus Input Power
) )
$ B 7
#48 !#(' #"*% *''&
Figure 11. Output Power versus Input Power
#"('#('#"*%*''&
9?>
#48 *
*
*
$ B 7
1 D
) &(##+ )"' )"'&
Figure 12. Output Power versus Supply Voltage
REV 9
6
NOTE: S–Parameter data represents measurements taken from one chip only.
Table 1. Common Source S–Parameters (VDS = 50 V, ID = 0.35 A)
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
30
0.804
–159
17.80
87
0.018
–1
0.602
–149
40
0.851
–163
12.50
77
0.018
–9
0.606
–147
50
0.846
–166
10.40
70
0.018
–14
0.610
–149
60
0.842
–167
8.45
67
0.017
–16
0.652
–154
70
0.846
–168
7.28
65
0.017
–15
0.708
–157
80
0.858
–169
6.13
63
0.016
–15
0.786
–159
90
0.875
–170
5.36
59
0.015
–17
0.883
–158
100
0.890
–171
4.61
53
0.014
–22
0.916
–157
110
0.902
–171
4.04
46
0.013
–29
0.919
–158
120
0.909
–172
3.41
41
0.012
–31
0.857
–156
130
0.915
–172
2.92
39
0.011
–29
0.819
–157
140
0.920
–173
2.61
38
0.010
–24
0.816
–160
150
0.924
–173
2.41
38
0.009
–20
0.858
–162
160
0.928
–174
2.24
38
0.008
–21
0.951
–164
170
0.934
–174
2.10
35
0.007
–24
1.046
–164
180
0.940
–175
1.96
30
0.008
–23
1.130
–163
190
0.945
–175
1.78
24
0.007
–18
1.120
–165
200
0.950
–176
1.56
22
0.006
–8
1.030
–165
210
0.953
–176
1.36
20
0.005
2
0.940
–165
220
0.955
–176
1.22
21
0.004
7
0.900
–164
230
0.956
–177
1.14
21
0.004
6
0.940
–167
240
0.958
–177
1.08
22
0.004
13
0.940
–170
250
0.960
–178
1.05
21
0.005
29
1.010
–169
260
0.963
–178
1.01
18
0.006
44
1.120
–170
270
0.965
–178
0.96
13
0.005
55
1.160
–172
280
0.967
–179
0.87
10
0.005
57
1.150
–172
290
0.968
–179
0.78
8
0.005
47
1.030
–171
300
0.969
–180
0.72
8
0.006
46
0.964
–170
310
0.970
–180
0.68
11
0.008
58
0.926
–169
320
0.971
180
0.65
11
0.009
72
0.940
–172
330
0.973
179
0.61
10
0.009
83
0.980
–173
340
0.973
179
0.61
11
0.008
82
1.053
–175
350
0.974
179
0.58
7
0.008
70
1.095
–174
360
0.975
178
0.55
3
0.010
61
1.135
–173
370
0.975
178
0.50
1
0.013
65
1.086
–175
380
0.976
178
0.47
–1
0.013
74
1.045
–175
390
0.976
177
0.44
1
0.012
84
0.979
–174
400
0.976
177
0.42
4
0.010
84
0.940
–174
410
0.977
177
0.40
4
0.011
71
1.015
–175
420
0.978
176
0.39
4
0.015
67
1.038
–177
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
REV 9
7
Table 1. Common Source S–Parameters (VDS = 50 V, ID = 0.35 A) continued
S11
S21
S12
S22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
430
0.978
176
0.38
3
0.017
74
1.073
–178
440
0.979
176
0.37
0
0.017
83
1.091
–178
450
0.979
176
0.37
–2
0.015
86
1.107
–177
460
0.979
175
0.32
–6
0.013
71
1.118
–178
470
0.979
175
0.30
–5
0.015
60
1.003
–178
480
0.979
175
0.30
–3
0.019
66
0.975
–176
490
0.980
174
0.29
–1
0.021
80
0.963
–178
500
0.981
174
0.28
0
0.021
92
0.993
–179
600
0.972
172
0.24
–5
0.012
93
0.943
178
700
0.971
169
0.15
–8
0.027
75
0.999
176
800
0.971
166
0.13
–9
0.022
70
0.977
174
900
0.972
164
0.10
–5
0.032
73
0.972
172
1000
0.972
161
0.08
–9
0.030
83
0.999
169
RF POWER MOSFET CONSIDERATIONS
MOSFET CAPACITANCES
The physical structure of a MOSFET results in capacitors
between the terminals. The metal oxide gate structure determines the capacitors from gate–to–drain (Cgd), and gate–to–
source (Cgs). The PN junction formed during the fabrication
of the MOSFET results in a junction capacitance from drain–
to–source (Cds).
These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data
sheets. The relationships between the inter–terminal capacitances and those given on data sheets are shown below. The
Ciss can be specified in two ways:
1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero
volts at the gate. In the latter case the numbers are lower.
However, neither method represents the actual operating conditions in RF applications.
2/
'
%!
/=
2=
4== 2/ 2=
9== 2/ /=
<== 2/
&"(%
The Ciss given in the electrical characteristics table was
measured using method 2 above. It should be noted that
Ciss, Coss, Crss are measured at zero drain current and are
provided for general information about the device. They are
not RF design parameters and no attempt should be made to
use them as such.
LINEARITY AND GAIN CHARACTERISTICS
In addition to the typical IMD and power gain, data presented in Figure 3 may give the designer additional information on the capabilities of this device. The graph represents
REV 9
8
the small signal unity current gain frequency at a given drain
current level. This is equivalent to fT for bipolar transistors.
Since this test is performed at a fast sweep speed, heating of
the device does not occur. Thus, in normal use, the higher
temperatures may degrade these characteristics to some extent.
DRAIN CHARACTERISTICS
One figure of merit for a FET is its static resistance in the
full–on condition. This on–resistance, VDS(on), occurs in the
linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain
current. For MOSFETs, VDS(on) has a positive temperature
coefficient and constitutes an important design consideration
at high temperatures, because it contributes to the power
dissipation within the device.
GATE CHARACTERISTICS
The gate of the MOSFET is a polysilicon material, and is
electrically isolated from the source by a layer of oxide. The
input resistance is very high — on the order of 109 ohms —
resulting in a leakage current of a few nanoamperes.
Gate control is achieved by applying a positive voltage
slightly in excess of the gate–to–source threshold voltage,
VGS(th).
Gate Voltage Rating — Never exceed the gate voltage
rating (or any of the maximum ratings on the front page). Exceeding the rated VGS can result in permanent damage to
the oxide layer in the gate region.
Gate Termination — The gates of this device are essentially capacitors. Circuits that leave the gate open–circuited
or floating should be avoided. These conditions can result in
turn–on of the devices due to voltage build–up on the input
capacitor due to leakage currents or pickup.
Gate Protection — This device does not have an internal
monolithic zener diode from gate–to–source. The addition of
an internal zener diode may result in detrimental effects on
the reliability of a power MOSFET. If gate protection is required, an external zener diode is recommended.
HANDLING CONSIDERATIONS
The gate of the MOSFET, which is electrically isolated
from the rest of the die by a very thin layer of SiO2, may be
damaged if the power MOSFET is handled or installed improperly. Exceeding the 40 V maximum gate–to–source voltage rating, VGS(max), can rupture the gate insulation and
destroy the FET. RF Power MOSFETs are not nearly as susceptible as CMOS devices to damage due to static discharge
because the input capacitances of power MOSFETs are
much larger and absorb more energy before being charged
to the gate breakdown voltage. However, once breakdown
begins, there is enough energy stored in the gate–source capacitance to ensure the complete perforation of the gate oxide. To avoid the possibility of device failure caused by static
discharge, precautions similar to those taken with small–signal MOSFET and CMOS devices apply to power MOSFETs.
When shipping, the devices should be transported only in
antistatic bags or conductive foam. Upon removal from the
packaging, careful handling procedures should be adhered
to. Those handling the devices should wear grounding straps
and devices not in the antistatic packaging should be kept in
metal tote bins. MOSFETs should be handled by the case
and not by the leads, and when testing the device, all leads
should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it
is designed for, soldering should be done with grounded
equipment.
The gate of the power MOSFET could still be in danger after the device is placed in the intended circuit. If the gate may
see voltage transients which exceed VGS(max), the circuit designer should place a 40 V zener across the gate and source
terminals to clamp any potentially destructive spikes. Using a
resistor to keep the gate–to–source impedance low also
helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the
gate through the parasitic gate–drain capacitance. If the
gate–to–source impedance and the rate of voltage change
on the drain are both high, then the signal coupled to the gate
may be large enough to exceed the gate–threshold voltage
and turn the device on.
REV 9
9
DESIGN CONSIDERATIONS
The MRF176G is a RF power N–channel enhancement
mode field–effect transistor (FETs) designed for VHF and
UHF power amplifier applications. M/A-COM RF MOSFETs
feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V–groove
MOS power FETs.
M/A-COM Application Note AN211A, FETs in Theory and
Practice, is suggested reading for those not familiar with the
construction and characteristics of FETs.
The major advantages of RF power FETs include high
gain, low noise, simple bias systems, relative immunity from
thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can
be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.
DC BIAS
The MRF176G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain
current flows when a positive voltage is applied to the gate.
RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF176G was characterized
at IDQ = 100 mA, each side, which is the suggested minimum
value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical
parameters.
The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate
bias system.
GAIN CONTROL
Power output of the MRF176G may be controlled from its
rated value down to zero (negative gain) by varying the dc
gate voltage. This feature facilitates the design of manual
gain control, AGC/ALC and modulation systems.
PACKAGE DIMENSIONS
U
G
Q
RADIUS 2 PL
' –B–
R
K
D
E
N
J
H
–T–
–A–
C
CASE 375–04
ISSUE D
Specifications subject to change without notice.
n North America: Tel. (800) 366-2266, Fax (800) 618-8883
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 9
10
!"'&
!&"!! ! '"%!! #% !&
+ "!'%"! !&"! !
&'+ #! &
%!
%!
'
'
&"(%
&