MA-COM MRF151A

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
V(BR)DSS
125
—
—
Vdc
Zero Gate Voltage Drain Current (VDS = 50 V, VGS = 0)
IDSS
—
—
5.0
mAdc
Gate–Body Leakage Current (VGS = 20 V, VDS = 0)
IGSS
—
—
1.0
µAdc
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA)
VGS(th)
1.0
3.0
5.0
Vdc
Drain–Source On–Voltage (VGS = 10 V, ID = 10 A)
VDS(on)
1.0
3.0
5.0
Vdc
gfs
5.0
7.0
—
mhos
Input Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz)
Ciss
—
350
—
pF
Output Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz)
Coss
—
220
—
pF
Reverse Transfer Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz)
Crss
—
15
—
pF
Gps
18
—
22
13
—
—
dB
η
40
45
—
%
IMD(d3)
IMD(d11)
—
—
– 32
– 60
– 30
—
OFF CHARACTERISTICS
Drain–Source Breakdown Voltage (VGS = 0, ID = 100 mA)
ON CHARACTERISTICS
Forward Transconductance (VDS = 10 V, ID = 5.0 A)
DYNAMIC CHARACTERISTICS
FUNCTIONAL TESTS
Common Source Amplifier Power Gain, f = 30; 30.001 MHz
(VDD = 50 V, Pout = 150 W (PEP), IDQ = 250 mA) f = 175 MHz
Drain Efficiency
(VDD = 50 V, Pout = 150 W (PEP), f = 30; 30.001 MHz,
ID (Max) = 3.75 A)
Intermodulation Distortion (1)
(VDD = 50 V, Pout = 150 W (PEP), f = 30 MHz,
f2 = 30.001 MHz, IDQ = 250 mA)
dB
ψ
Load Mismatch
(VDD = 50 V, Pout = 150 W (PEP), f1 = 30; 30.001 MHz,
IDQ = 250 mA, VSWR 30:1 at all Phase Angles)
No Degradation in Output Power
CLASS A PERFORMANCE
Intermodulation Distortion (1) and Power Gain
(VDD = 50 V, Pout = 50 W (PEP), f1 = 30 MHz,
f2 = 30.001 MHz, IDQ = 3.0 A)
GPS
IMD(d3)
IMD(d9 – 13)
—
—
—
23
– 50
– 75
—
—
—
dB
NOTE:
1. To MIL–STD–1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.
BIAS +
0 – 12 V –
C5
D.U.T.
R1
RF
INPUT
R3
T1
C7
C8
T2
C1 — 470 pF Dipped Mica
C2, C5, C6, C7, C8, C9 — 0.1 µ F Ceramic Chip or
Monolythic with Short Leads
C3 — 200 pF Unencapsulated Mica or Dipped Mica
with Short Leads
C4 — 15 pF Unencapsulated Mica or Dipped Mica
with Short Leads
C10 — 10 µ F/100 V Electrolytic
R2
C9
+
–
C10
50 V
–
RF
OUTPUT
C3
L1 — VK200/4B Ferrite Choke or Equivalent, 3.0 µ H
L2 — Ferrite Bead(s), 2.0 µ H
R1, R2 — 51 Ω /1.0 W Carbon
R3 — 3.3 Ω /1.0 W Carbon (or 2.0 x 6.8 Ω /1/2 W in Parallel)
T1 — 9:1 Broadband Transformer Communication Concepts, Inc. RF800-9 material 43 or equiv.
T2 — 1:9 Broadband Transformer
Board Material — 0.062″ Fiberglass (G10),
1 oz. Copper Clad, 2 Sides, e r = 5
Figure 1. 30 MHz Test Circuit
2
L2
C4
C2
C1
REV 1
+
L1
C6
RFC2
+50 V
+
C10
R1
BIAS
0 – 12 V
C11
L4
+
C4
C5
R3
D.U.T.
L3
C9
L2
RF OUTPUT
C1
L1
RF INPUT
C6
C2
C7
C8
R2
C3
L1 — 3/4″, #18 AWG into Hairpin
L2 — Printed Line, 0.200″ x 0.500″
L3 — 1″, #16 AWG into Hairpin
L4 — 2 Turns, #16 AWG, 5/16 ID
RFC1 — 5.6 µH, Choke
RFC2 — VK200–4B
R1 — 150 Ω, 1.0 W Carbon
R2 — 10 kΩ, 1/2 W Carbon
R3 — 120 Ω, 1/2 W Carbon
Board Material — 0.062″ Fiberglass (G10),
1 oz. Copper Clad, 2 Sides, εr = 5.0
C1, C2, C8 — Arco 463 or equivalent
C3 — 25 pF, Unelco
C4 — 0.1 µF, Ceramic
C5 — 1.0 µF, 15 WV Tantalum
C6 — 15 pF, Unelco J101
C7 — 25 pF, Unelco J101
C9 — Arco 262 or equivalent
C10 — 0.05 µF, Ceramic
C11 — 15 µF, 60 WV Electrolytic
D1 — 1N5347 Zener Diode
Figure 2. 175 MHz Test Circuit
VGS , DRAIN-SOURCE VOLTAGE (NORMALIZED)
TYPICAL CHARACTERISTICS
1000
Ciss
C, CAPACITANCE (pF)
500
Coss
200
100
50
Crss
20
0
0
10
20
30
40
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
Figure 3. Capacitance versus
Drain–Source Voltage
REV 1
3
50
1.04
1.03
1.02
1.01
1
0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91
0.9
– 25
1D = 5 A
4A
2A
1A
250 mA
0
100 mA
25
50
75
TC, CASE TEMPERATURE (°C)
Figure 4. Gate–Source Voltage versus
Case Temperature
100
TYPICAL CHARACTERISTICS
2000
f T, UNITY GAIN FREQUENCY (MHz)
I D, DRAIN CURRENT (AMPS)
100
10
TC = 25°C
1
2
20
VDS, DRAIN–TO–SOURCE VOLTAGE (VOLTS)
VDS = 30 V
VDS = 15 V
1000
0
200
0
Figure 5. DC Safe Operating Area
8
12
6
10
14
ID, DRAIN CURRENT (AMPS)
Pout , OUTPUT POWER (WATTS)
20
15
VDD = 50 V
IDQ = 250 mA
Pout = 150 W
10
20
2
5
f = 175 MHz
IDQ = 250 mA
100
0
0
5
10
15
10
30
f, FREQUENCY (MHz)
100
200
40 V
f = 30 MHz
IDQ = 250 mA
0
0
1
2
3
Pin, INPUT POWER (WATTS)
IMD, INTERMODULATION DISTORTION
d5
IDQ = 250 mA
55
VDD = 50 V, f = 30 MHz, TONE SEPARATION = 1 kHz
25
35
d3
55
d5
0
20
40
4
Figure 8. Output Power versus Input Power
d3
45
25
VDD = 50 V
200
35
45
20
300
25
IDQ = 500 mA
60
100 120 140 160
80
Pout, OUTPUT POWER (WATTS PEP)
Figure 9. IMD versus Pout
4
18
VDD = 50 V
200
100
Figure 7. Power Gain versus Frequency
REV 1
16
300
25
GPS, POWER GAIN (dB)
4
Figure 6. Common Source Unity Gain Frequency
versus Drain Current
30
5
2
180
200
5
150
f = 175 MHz
100
Zin
30
150
15
30
f = 175 MHz
100
15
7.5
7.5
Zo = 10 Ω
ZOL*
4
VDD = 50 V
IDQ = 250 mA
Pout = 150 W
2
4
ZOL* = Conjugate of the optimum load impedance
ZOL* = into which the device output operates at a
ZOL* = given output power, voltage and frequency.
2
NOTE: Gate Shunted by 25 Ohms.
Figure 10. Series Equivalent Impedance
Table 1. Common Source S–Parameters (VDS = 50 V, ID = 2 A)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
|S11|
30
0.877
40
REV 1
5
S11
f
MHz
S21
φ
S12
S22
|S21|
φ
|S12|
φ
|S22|
φ
–174
10.10
77
0.008
19
0.707
–169
0.886
–175
7.47
69
0.009
24
0.715
–172
50
0.895
–175
5.76
63
0.008
33
0.756
–171
60
0.902
–176
4.73
58
0.009
39
0.764
–171
70
0.912
–176
3.86
52
0.009
46
0.784
–172
80
0.918
–177
3.19
48
0.010
54
0.802
–171
90
0.925
–177
2.69
45
0.011
62
0.808
–171
100
0.932
–177
2.34
40
0.013
67
0.850
–173
110
0.936
–178
2.06
37
0.014
72
0.865
–175
120
0.942
–178
1.77
35
0.015
76
0.875
–173
130
0.946
–179
1.55
32
0.017
77
0.874
–172
140
0.950
–179
1.39
30
0.019
77
0.884
–174
150
0.954
–180
1.23
27
0.021
78
0.909
–175
160
0.957
–180
1.13
24
0.023
79
0.911
–176
170
0.960
180
1.01
22
0.024
82
0.904
–177
180
0.962
179
0.90
20
0.026
82
0.931
–176
190
0.964
179
0.84
19
0.028
80
0.929
–178
200
0.967
179
0.75
18
0.030
79
0.922
–179
210
0.967
178
0.71
16
0.032
80
0.937
–180
220
0.969
178
0.67
14
0.035
82
0.949
180
230
0.971
178
0.60
12
0.038
81
0.950
179
240
0.970
177
0.57
12
0.037
80
0.950
179
Table 1. Common Source S–Parameters (VDS = 50 V, ID = 2 A) continued
S11
S21
S12
S22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
f
MHz
|S11|
φ
|S21|
φ
|S12|
φ
|S22|
φ
250
0.972
177
0.51
12
0.039
80
0.935
179
260
0.973
177
0.47
11
0.041
79
0.954
178
270
0.972
176
0.45
9
0.044
80
0.953
176
280
0.974
176
0.41
9
0.046
80
0.965
175
290
0.974
176
0.40
6
0.046
79
0.944
175
300
0.975
176
0.39
10
0.048
82
0.929
176
310
0.976
175
0.36
9
0.049
82
0.943
176
320
0.974
175
0.33
7
0.053
78
0.954
173
330
0.975
174
0.31
4
0.056
78
0.935
172
340
0.976
174
0.30
10
0.056
77
0.948
172
350
0.975
174
0.29
7
0.058
80
0.950
174
360
0.977
174
0.28
8
0.059
79
0.978
172
370
0.976
173
0.26
8
0.061
76
0.981
170
380
0.976
173
0.26
7
0.065
75
0.944
171
390
0.977
173
0.24
10
0.066
76
0.960
171
400
0.976
172
0.23
7
0.068
80
0.955
173
410
0.976
172
0.22
9
0.071
77
0.999
170
420
0.977
172
0.21
9
0.071
76
0.962
168
430
0.976
171
0.19
10
0.073
76
0.950
168
440
0.976
171
0.20
12
0.075
75
0.953
168
450
0.978
171
0.19
10
0.080
77
0.982
168
460
0.978
170
0.18
13
0.082
74
0.990
165
470
0.978
170
0.18
10
0.081
77
0.953
168
480
0.974
170
0.18
13
0.085
78
0.944
167
490
0.973
169
0.17
13
0.086
75
0.966
165
500
0.972
169
0.17
14
0.089
73
0.980
165
REV 1
6
RF POWER MOSFET CONSIDERATIONS
MOSFET CAPACITANCES
The physical structure of a MOSFET results in capacitors
between the terminals. The metal anode gate structure determines the capacitors from gate–to–drain (Cgd), and gate–
to–source (C gs ). The PN junction formed during the
fabrication of the MOSFET results in a junction capacitance
from drain–to–source (Cds).
These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data
sheets. The relationships between the inter–terminal capacitances and those given on data sheets are shown below. The
Ciss can be specified in two ways:
1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero
volts at the gate. In the latter case the numbers are lower.
However, neither method represents the actual operating conditions in RF applications.
DRAIN
Cgd
GATE
Cds
Cgs
Ciss = Cgd = Cgs
Coss = Cgd = Cds
Crss = Cgd
SOURCE
LINEARITY AND GAIN CHARACTERISTICS
In addition to the typical IMD and power gain data presented, Figure 6 may give the designer additional information
on the capabilities of this device. The graph represents the
small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors.
Since this test is performed at a fast sweep speed, heating of
the device does not occur. Thus, in normal use, the higher
temperatures may degrade these characteristics to some extent.
DRAIN CHARACTERISTICS
One figure of merit for a FET is its static resistance in the
full–on condition. This on–resistance, VDS(on), occurs in the
linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain
current. For MOSFETs, VDS(on) has a positive temperature
coefficient and constitutes an important design consideration
at high temperatures, because it contributes to the power
dissipation within the device.
GATE CHARACTERISTICS
The gate of the MOSFET is a polysilicon material, and is
electrically isolated from the source by a layer of oxide. The
input resistance is very high — on the order of 109 ohms —
resulting in a leakage current of a few nanoamperes.
Gate control is achieved by applying a positive voltage
slightly in excess of the gate–to–source threshold voltage,
VGS(th).
Gate Voltage Rating — Never exceed the gate voltage
rating. Exceeding the rated VGS can result in permanent
damage to the oxide layer in the gate region.
Gate Termination — The gate of this device is essentially
capacitor. Circuits that leave the gate open–circuited or floatREV 1
7
ing should be avoided. These conditions can result in turn–
on of the device due to voltage build–up on the input
capacitor due to leakage currents or pickup.
Gate Protection — This device does not have an internal
monolithic zener diode from gate–to–source. If gate protection is required, an external zener diode is recommended.
Using a resistor to keep the gate–to–source impedance
low also helps damp transients and serves another important
function. Voltage transients on the drain can be coupled to
the gate through the parasitic gate–drain capacitance. If the
gate–to–source impedance and the rate of voltage change
on the drain are both high, then the signal coupled to the gate
may be large enough to exceed the gate–threshold voltage
and turn the device on.
HANDLING CONSIDERATIONS
When shipping, the devices should be transported only in
antistatic bags or conductive foam. Upon removal from the
packaging, careful handling procedures should be adhered
to. Those handling the devices should wear grounding straps
and devices not in the antistatic packaging should be kept in
metal tote bins. MOSFETs should be handled by the case
and not by the leads, and when testing the device, all leads
should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it
is designed for, soldering should be done with a grounded
iron.
DESIGN CONSIDERATIONS
The MRF151A is an RF Power, MOS, N–channel enhancement mode field–effect transistor (FET) designed for HF and
VHF power amplifier applications.
M/A-COM Application Note AN211A, FETs in Theory and
Practice, is suggested reading for those not familiar with the
construction and characteristics of FETs.
The major advantages of RF power MOSFETs include
high gain, low noise, simple bias systems, relative immunity
from thermal runaway, and the ability to withstand severely
mismatched loads without suffering damage. Power output
can be varied over a wide range with a low power dc control
signal.
DC BIAS
The MRF151A is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain
current flows when a positive voltage is applied to the gate.
RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF151A was characterized at
IDQ = 250 mA, each side, which is the suggested minimum
value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical
parameters.
The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate
bias system.
GAIN CONTROL
Power output of the MRF151A may be controlled from its
rated value down to zero (negative gain) by varying the dc
gate voltage. This feature facilitates the design of manual
gain control, AGC/ALC and modulation systems.
PACKAGE DIMENSIONS
A
U
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
M
1
M
Q
DIM
A
B
C
D
E
H
J
K
M
Q
R
U
4
R
2
B
3
D
K
J
H
C
E
SEATING
PLANE
CASE P-244
Specifications subject to change without notice.
n North America: Tel. (800) 366-2266, Fax (800) 618-8883
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 1
8
INCHES
MIN
MAX
0.960
0.990
0.465
0.510
0.229
0.275
0.216
0.235
0.084
0.110
0.144
0.178
0.003
0.007
0.435
–––
45 _NOM
0.115
0.130
0.246
0.255
0.720
0.730
STYLE 2:
PIN 1.
2.
3.
4.
SOURCE
GATE
SOURCE
DRAIN
MILLIMETERS
MIN
MAX
24.39
25.14
11.82
12.95
5.82
6.98
5.49
5.96
2.14
2.79
3.66
4.52
0.08
0.17
11.05
–––
45 _NOM
2.93
3.30
6.25
6.47
18.29
18.54