UMF6N Transistors Power management (dual transistors) UMF6N 2SA2018 and 2SK3019 are housed independently in a UMT package. 0.65 (1) 1.25 2.0 1.3 (3) (2) (4) (5) (6) 0.2 !Features 1) Power switching circuit in a single package. 2) Mounting cost and area can be cut in half. 0.65 !External dimensions (Units : mm) !Application Power management circuit ROHM : UMT6 EIAJ : SC-88 !Equivalent circuits (3) (2) 0.1Min. 0.9 0.7 0~0.1 !Structure Silicon epitaxial planar transistor 0.15 2.1 Each lead has same dimensions (1) Tr1 Tr2 (4) (5) (6) !Packaging specifications Type Package Marking Code Basic ordering unit (pieces) UMF6N UMT6 F6 TR 3000 1/5 UMF6N Transistors !Absolute maximum ratings (Ta=25°C) Tr1 Limits Symbol −15 VCBO −12 VCEO −6 VEBO −500 IC Collector current −1.0 ICP 150(TOTAL) PC Power dissipation Tj 150 Junction temperature Tstg −55~+150 Range of storage temperature Parameter Collector-base voltage Collector-emitter voltage Emitter-base voltage Unit V V V mA A mW °C °C ∗1 ∗2 ∗1 Single pulse PW=1ms ∗2 120mW per element must not be exceeded. Each terminal mounted on a recommended land. Tr2 Symbol Limits Parameter VDSS 30 Drain-source voltage VGSS ±20 Gate-source voltage ID 100 Continuous Drain current 200 IDP Pulsed IDR 100 Continuous Reverse drain current IDRP 200 Pulsed Total power dissipation 150(TOTAL) PD Tch 150 Channel temperature Tstg −55~+150 Range of storage temperature Unit V V mA mA mA mA mW °C °C ∗1 ∗1 ∗2 ∗1 PW≤10ms Duty cycle≤50% ∗2 120mW per element must not be exceeded. Each terminal mounted on a recommended land. !Electrical characteristics (Ta=25°C) Tr1 Parameter Collector-emitter breakdown voltage Collector-base breakdown voltage Emitter-base breakdown voltage Collector cut-off current Emitter cut-off current Collector-emitter saturation voltage DC current gain Transition frequency Collector output capacitance Symbol BVCEO BVCBO BVEBO ICBO IEBO VCE(sat) hFE fT Cob Min. −12 −15 −6 − − − 270 − − Typ. − − − − − −100 − 260 6.5 Max. − − − −100 −100 −250 680 − − Unit V V V nA nA mV − MHz pF Conditions IC=−1mA IC=−10µA IE=−10µA VCB=−15V VEB=−6V IC=−200mA, IB=−10mA VCE=−2V, IC=−10mA VCE=−2V, IE=10mA, f=100MHz VCB=−10V, IE=0mA, f=1MHz Symbol IGSS V(BR)DSS IDSS VGS(th) Min. − 30 − 0.8 − − 20 − − − − − − − Typ. − − − − 5 7 − 13 9 4 15 35 80 80 Max. ±1 − 1.0 1.5 8 13 − − − − − − − − Unit µA V µA V Ω Ω ms pF pF pF ns ns ns ns Conditions VGS=±20V, VDS=0V ID=10µA, VGS=0V VDS=30V, VGS=0V VDS=3V, ID=100µA ID=10mA, VGS=4V ID=1mA, VGS=2.5V VDS=3V, ID=10mA Tr2 Parameter Gate-source leakage Drain-source breakdown voltage Zero gate voltage drain current Gate-threshold voltage Static drain-source on-state resistance Forward transfer admittance Input capacitance Output capacitance Reverce transfer capacitance Turn-on delay time Rise time Turn-off delay time Fall time RDS(on) |Yfs| Ciss Coss Crss td(on) tr td(off) tf VDS=5V, VGS=0V, f=1MHz ID=10mA, VDD 5V, VGS=5V, RL=500Ω, RGS=10Ω 2/5 UMF6N Transistors 0.2 10 0.4 0.6 0.8 1.0 1.2 1 1.4 10 BASE TO EMITTER VOLTAGE : VBE (V) Ta=25°C Ta=−40°C 10 1 10 100 1000 1000 IE=0A f=1MHz Ta=25°C 100 Cib 10 Cob 1 0.1 1 10 100 EMITTER TO BASE VOLTAGE : VEB(V) Fig.7 Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage 1000 Ta=−40°C Ta=25°C 1000 Ta=125°C 100 10 1 10 100 Ta=25°C Pulsed 100 IC/IB=50 IC/IB=20 IC/IB=10 10 1 1 1000 10 100 1000 COLLECTOR CURRENT : IC (mA) 1000 IC/IB=20 Pulsed VCE=2V Ta=25°C Pulsed 100 10 1 1 10 100 1000 COLLECTOR CURRENT : IC (mA) EMITTER CURRENT : IE (mA) Fig.5 Base-emitter saturation voltage vs. collector current Fig.6 Gain bandwidth product vs. emitter current COLLECTOR CURRENT : IC (mA) Fig.4 Collector-emitter saturation voltage vs. collector current ( ΙΙ ) EMITTER INPUT CAPACITANCE : Cib (pF) COLLECTOR OUTPUT CAPACITANCE : Cob (pF) BASER SATURATION VOLTAGE : VBE (sat) (mV) Ta=125°C 100 1 100 10000 IC/IB=20 Pulsed 10 TRANSITION FREQUENCY : IC (A) COLLECTOR SATURATION VOLTAGE : VCE (sat) (V) Fig.1 Grounded emitter propagation characteristics 1000 Fig.3 Collector-emitter saturation voltage vs. collector current ( Ι ) Ta=−40°C 100 1 0 Fig.2 DC current gain vs. collector current Ta=25°C 1000 TRANSITION FREQUENCY : fT (MHz) DC CURRENT GAIN : hFE C Ta= −40° C Ta=25° 5°C 1 VCE=2V Pulsed Ta=125°C 100 10 COLLECTOR CURRENT : IC (mA) 1000 VCE=2V Pulsed Ta=12 COLLECTOR CURRENT : IC (mA) 1000 COLLECTOR SATURATION VOLTAGE : VCE(sat) (mV) !Electrical characteristic curves Tr1 Ta=25°C Single Pulsed 1 10ms 100ms 1ms DC 0.1 0.01 0.001 0.01 0.1 1 10 100 EMITTER CURRENT : VCE (V) Fig.8 Safe operation area 3/5 UMF6N Transistors 0.15 200m 3V 3.5V 0.1 2.5V 0.05 2V 50m 20m 10m 5m 2m 0.5m 0.2m 3 4 0.1m 0 5 1 10 50 VGS=4V Pulsed Ta=125°C 75°C 25°C −25°C 5 2 1 0.5 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 20 5 2 1 0.5 0.001 0.002 0.05 0.1 0.2 0.5 ID=100mA 6 ID=50mA 4 3 2 0.1 0.05 VDS=3V Pulsed 0.01 0 −50 −25 0.001 0.0001 0.0002 0 25 50 75 100 125 150 CHANNEL TEMPERATURE : Tch (°C) Fig.15 Static drain-source on-state resistance vs. channel temperature Ta=−25°C 25°C 75°C 125°C 0.005 0.002 0.0005 0.001 0.002 0.005 0.01 0.02 50 75 100 125 150 10 5 ID=0.1A ID=0.05A 5 10 15 20 GATE-SOURCE VOLTAGE : VGS (V) 0.02 1 25 Ta=25°C Pulsed 0 0 0.5 Fig.13 Static drain-source on-state resistance vs. drain current ( ΙΙ ) FORWARD TRANSFER ADMITTANCE : |Yfs| (S) STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) (Ω) 0.005 0.01 0.02 0 15 0.2 5 0 −50 −25 Fig.11 Gate threshold voltage vs. channel temperature 10 VGS=4V Pulsed 7 0.5 DRAIN CURRENT : ID (A) Fig.12 Static drain-source on-state resistance vs. drain current ( Ι ) 8 1 CHANNEL TEMPERATURE : Tch (°C) VGS=2.5V Pulsed Ta=125°C 75°C 25°C −25°C DRAIN CURRENT : ID (A) 9 VDS=3V ID=0.1mA Pulsed 1.5 Fig.10 Typical transfer characteristics STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) (Ω) STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) (Ω) 20 4 2 GATE-SOURCE VOLTAGE : VGS (V) Fig.9 Typical output characteristics 50 3 2 STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) (Ω) 2 DRAIN-SOURCE VOLTAGE : VDS (V) 0.05 0.1 0.2 Fig.14 Static drain-source on-state resistance vs. gate-source voltage REVERSE DRAIN CURRENT : IDR (A) 1 Ta=125°C 75°C 25°C −25°C 1m VGS=1.5V 0 0 VDS=3V Pulsed 100m Ta=25°C Pulsed DRAIN CURRENT : ID (A) DRAIN CURRENT : ID (A) 4V GATE THRESHOLD VOLTAGE : VGS(th) (V) Tr2 0.5 DRAIN CURRENT : ID (A) Fig.16 Forward transfer admittance vs. drain current 200m VGS=0V Pulsed 100m 50m 20m Ta=125°C 75°C 25°C −25°C 10m 5m 2m 1m 0.5m 0.2m 0.1m 0 0.5 1 1.5 SOURCE-DRAIN VOLTAGE : VSD (V) Fig.17 Reverse drain current vs. source-drain voltage ( Ι ) 4/5 UMF6N 50 Ta=25°C Pulsed 100m 20 50m 20m VGS=4V 10m 0V 5m 2m 1m 0.5m 1000 Ta=25°C f=1MHZ VGS=0V Ciss 10 5 Coss Crss 2 1 Ta=25°C VDD=5V VGS=5V RG=10Ω Pulsed tf 500 SWITHING TIME : t (ns) 200m CAPACITANCE : C (pF) REVERSE DRAIN CURRENT : IDR (A) Transistors td(off) 200 100 50 20 tr td(on) 10 5 0.2m 0.1m 0 0.5 1 1.5 SOURCE-DRAIN VOLTAGE : VSD (V) Fig.18 Reverse drain current vs. source-drain voltage ( ΙΙ ) 0.5 0.1 0.2 0.5 1 2 5 10 20 50 2 0.1 0.2 0.5 1 2 5 10 20 50 100 DRAIN-SOURCE VOLTAGE : VDS (V) DRAIN CURRENT : ID (mA) Fig.19 Typical capacitance vs. drain-source voltage Fig.20 Switching characteristics 5/5 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document use silicon as a basic material. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction. Appendix1-Rev1.0