V23990-P660-F02-PM final datasheet flow PHASE 3 1200V/450A Features flow SCREW3 housing ● High Power screw contacts ● Low loss Trench Fieldstop Technology IGBT ● High Current Density FRED Target Applications Schematic ● Motor Drives ● Power Generation ● Uninterruptable Power Supply Types ● V23990-P660-F02 ● V23990-P669-F02 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 350 455 A 1350 A 748 1134 W ±20 V 10 900 μs V Transistor Inverter Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpuls Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Th=80°C Tc=80°C Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tjmax 150 °C VRRM 1200 V 294 384 A 900 A 491 744 W 150 °C Tj=Tjmax Tj≤125°C VGE=15V Diode Inverter Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Tjmax Copyright by Vincotech 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 V23990-P660-F02-PM final datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal properties Storage temperature Tstg -40…+125 °C Operation temperature Tjop -40…+125 °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 V23990-P660-F02-PM final datasheet Characteristic Values Parameter Conditions Symbol VGE(V) or VGS(V) Vr(V) or VCE(V) or VDS(V) Value IC(A) or IF(A) T(°C) or ID(A) Min Unit Max Transistor Inverter Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 30 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip Thermal resistance chip to case per chip 0,018 450 RthJH RthJC Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5 5,8 6,5 1,3 2,06 2,43 2,3 0,25 650 1,67 tr td(off) tf Fall time VCE=VGE Rgoff=2 Ω Rgon=2 Ω f=1MHz 600 ±15 0 450 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C ns ns 614,4 ns 146,4 mWs 31,3 mWs 54,2 Thermal grease thickness≤50um λ = 0,61 W/mK nA ns 48,6 Tj=25°C ±15 V mA Ohm 422 Tj=25°C 25 V 32,3 nF 1,689 nF 1,464 nF 3700 nC 0,095 K/W 0,063 K/W Diode Inverter Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip Thermal resistance chip to case per chip 450 Rgon=2 Ω ±15 600 di(rec)max /dt Erec RthJH RthJC 450 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1,96 2,04 2,4 A 598,13 ns 340,9 mC 82,94 A/ms 7944 mWs 36,011 Thermal grease thickness≤50um λ = 0,61 W/mK V 0,146 K/W 0,096 K/W Thermistor Rated resistance Deviation of R100 Power dissipation given Epcos-Typ R25 DR/R Copyright by Vincotech Tc=100°C R100=435Ω 4,2 4,7 Tj=25°C Tol. ±3% 3 5,8 2,6 Tj=25°C P B(25/100) B-value Tj=25°C Tol. ±5% %/K 210 3530 kOhm mW K Revision: 1 V23990-P660-F02-PM final datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 1200 IC (A) IC (A) 1200 900 900 600 600 300 300 0 0 0 1 2 3 4 VCE (V) 5 0 At tp = Tj = 1 2 3 VCE (V) 4 5 At tp = Tj = 250 μs 25 °C VGE from 8 V to 17 V in steps of 1 V 250 μs 125 °C VGE from 8 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics Ic = f(VGE) Output inverter FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 500 IF (A) IC (A) 1000 125 oC 25 oC 400 800 300 600 25 oC 125 oC 200 400 100 200 0 0 0 At tp = VCE = 3 250 10 6 9 V GE (V) 12 0 At tp = μs V Copyright by Vincotech 4 1 250 2 3 VF (V) 4 μs Revision: 1 V23990-P660-F02-PM final datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(Ic) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 100 E (mWs) 100 E (mWs) Eoff Eon 80 80 60 60 Eoff Erec 40 40 Eon Erec 20 20 0 0 0 200 400 600 0 I C (A) 1000 800 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 RG(Ω) 8 10 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 448 A Output inverter IGBT Output inverter IGBT 10 10 t ( μs) Figure 8 Typical switching times as a function of gate resistor t = f(RG) t ( μs) Figure 7 Typical switching times as a function of collector current t = f(IC) 1 1 tdoff tdoff tdon tdon tf tf 0,1 0,1 tr tr 0,01 0,01 0,001 0,001 0 200 400 600 800 IC (A) 0 1000 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω Copyright by Vincotech 2 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 448 A 5 Revision: 1 V23990-P660-F02-PM final datasheet Output Inverter Figure 9 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) Output inverter FRED diode Figure 10 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 0,7 Output inverter FRED diode IrrM (A) t rr( μs) 1000 0,6 800 0,5 600 0,4 0,3 400 0,2 200 0,1 0 0 0 2 At Tj = VR = IF = VGE = 4 125 600 448 ±15 8 R Gon ( Ω ) 10 0 2 At Tj = VR = IF = VGE = °C V A V Figure 11 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Output inverter FRED diode 4 125 600 448 ±15 6 R Gon ( Ω ) 8 10 °C V A V Figure 12 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) Output inverter FRED diode 15000 100 direc / dt (A/ μs) Qrr ( μC) 6 95 12500 90 10000 85 7500 80 dI0/dt 75 5000 dIrec/dt 70 2500 65 0 60 0 At Tj = VR = IF = VGE = 2 125 600 448 ±15 4 6 8 R Gon ( Ω) 0 10 At Tj = VR = IF = VGE = °C V A V Copyright by Vincotech 6 2 125 600 448 ±15 4 6 8 R Gon ( Ω) 10 °C V A V Revision: 1 V23990-P660-F02-PM final datasheet Output Inverter Figure 13 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 0 10 ZthJH (K/W) ZthJH (K/W) 10 Figure 14 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) -1 10-1 10-2 10 -3 10 -4 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-3 10-4 10-5 10-4 With D= RthJH = tp / T 0,095 10-3 10-2 10-1 100 t p (s) 1011 10-5 With D= RthJH = K/W 10-4 10-3 tp / T 0,146 K/W IGBT thermal model values FRED thermal model values R (C/W) 0,02 0,02 0,03 0,02 0,01 R (C/W) 0,01 0,03 0,04 0,05 0,01 0,01 Tau (s) 3,8E+00 5,1E-01 8,5E-02 1,8E-02 8,5E-04 Copyright by Vincotech 7 10-2 10-1 100 t p (s) 1011 Tau (s) 9,6E+00 1,7E+00 2,0E-01 3,9E-02 8,2E-03 5,4E-04 Revision: 1 V23990-P660-F02-PM final datasheet Output Inverter Output inverter IGBT Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 16 Collector current as a function of heatsink temperature IC = f(Th) 600 IC (A) Ptot (W) 1800 1500 500 1200 400 900 300 600 200 300 100 0 0 0 At Tj = 50 150 100 150 Th ( o C) 200 0 At Tj = °C 150 15 VGE = Output inverter FRED Figure 17 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 100 150 Th ( o C) 200 °C V Output inverter FRED Figure 18 Forward current as a function of heatsink temperature IF = f(Th) 600 IF (A) Ptot (W) 1200 500 900 400 300 600 200 300 100 0 0 0 At Tj = 50 150 100 150 Th ( o C) 200 0 At Tj = °C Copyright by Vincotech 8 50 150 100 150 Th ( o C) 200 °C Revision: 1 V23990-P660-F02-PM final datasheet Thermistor Thermistor Figure 19 Typical NTC characteristic as a function of temperature RT = f (T) NTC-typical temperature characteristic R/Ω 5000 4000 3000 2000 1000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 9 Revision: 1 V23990-P660-F02-PM final datasheet Switching Definitions Output Inverter General conditions = 125 °C Tj = 2Ω Rgon Rgoff = 2Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 140 Ic tdoff 120 200 100 Uce 90% Uge 90% 80 150 Ic 60 % % Uce 100 tEoff 40 Uge tdon Ic 1% 20 50 0 Uge10% Uge Uce Uce3% Ic10% 0 -20 tEon -40 -0,4 -50 -0,2 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 0,2 -15 15 600 448 0,61 0,89 0,4 time (us) 0,6 0,8 1 1,2 2,3 2,5 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 2,7 2,9 time(us) -15 15 600 448 0,42 0,81 3,1 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,3 Turn-on Switching Waveforms & definition of tr 260 140 Ic fitted 120 220 Uce Ic 100 180 Ic 90% 80 140 Ic 60% % 60 % Uce 100 40 Ic90% Ic 40% tr 60 20 Ic10% tf 0 20 Ic10% -20 -20 0,4 VC (100%) = IC (100%) = tf = 0,5 0,6 0,7 time (us) 600 448 0,146 V A μs Copyright by Vincotech 0,8 0,9 1 2,7 VC (100%) = IC (100%) = tr = 10 2,8 2,9 600 448 0,049 time(us) 3 3,1 3,2 V A μs Revision: 1 V23990-P660-F02-PM final datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 140 Eoff Poff 120 100 Eon 100 80 80 Pon 60 60 % % 40 40 20 20 0 Uge10% Uce3% 0 Uge90% -20 -0,4 tEoff tEon Ic 1% -20 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 0,4 time (us) 269,06 54,21 0,89 0,6 0,8 1 2,3 1,2 2,5 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter IGBT Figure 7 2,7 2,9 time(us) 269,0604 31,27 0,81 kW mJ μs 3,1 Output inverter FRED Figure 8 Gate voltage vs Gate charge 3,3 Turn-off Switching Waveforms & definition of trr 20 120 15 Id 80 trr 10 40 fitted Uge (V) 5 0 0 Ud % IRRM10% -40 -5 -80 -10 IRRM90% -120 -15 IRRM100% -20 -1000 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -160 0 1000 2000 Qg (nC) -15 15 600 448 4698,4335 Copyright by Vincotech 3000 4000 5000 2,5 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 11 2,7 2,9 600 448 -598 0,341 time(us) 3,1 3,3 3,5 V A A μs Revision: 1 V23990-P660-F02-PM final datasheet Switching Definitions Output Inverter Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 140 Id Prec Qrr 120 100 Erec 100 tQint 50 80 tErec % 0 % 60 40 -50 20 -100 0 -150 -20 2,6 Id (100%) = Qrr (100%) = tQint = 2,8 3 448 82,939 0,82 Copyright by Vincotech 3,2 time(us) 3,4 3,6 3,8 2,6 Prec (100%) = Erec (100%) = tErec = A μC μs 12 2,8 3 269,0604 36,011 0,82 3,2 time(us) 3,4 3,6 3,8 kW mJ μs Revision: 1 V23990-P660-F02-PM final datasheet Package Outline and Pinout Outline Pinout Copyright by Vincotech 13 Revision: 1 V23990-P660-F02-PM final datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 14 Revision: 1 V23990-P660-F02-PM final datasheet Output Inverter Application flow PHASE 3 1200V/450A General conditions 3phase SPWM VGEon = 15 V VGEoff = -15 V Rgon = 2 Ω Rgoff = 2 Ω IGBT Figure 1 Typical average static loss as a function of output current Ploss = f(Iout) 800 600 Ploss (W) Ploss (W) FRED Figure 2 Typical average static loss as a function of output current Ploss = f(Iout) 700 500 Mi*cosfi=1 Mi*cosfi=-1 600 400 500 300 400 300 200 200 100 100 Mi*cosfi=1 Mi*cosfi=-1 0 0 0 100 200 300 400 500 0 600 100 200 300 400 500 Iout (A) At Tj=125°C Mi*cosfi from -1 to 1 in steps of 0,2 At Tj=125°C Mi*cosfi from -1 to 1 in steps of -0,2 IGBT Figure 3 Typical average switching loss as a function of output current Ploss = f(Iout) 800,0 fsw=16kHz 700,0 FRED Figure 4 Typical average switching loss as a function of output current Ploss (W) Ploss (W) 600 Iout (A) Ploss = f(Iout) 350,0 300,0 fsw=16kHz 600,0 250,0 500,0 200,0 400,0 150,0 300,0 100,0 200,0 50,0 100,0 fsw=2kHz fsw=2kHz 0,0 0,0 0 At Tj = 100 125 200 300 400 500 0 Iout (A) 600 At Tj = °C DC link = 600 V fsw from 2 kHz to 16 kHz in 2 steps Copyright by Vincotech 100 125 200 300 400 500 Iout (A) 600 °C DC link = 600 V fsw from 2 kHz to 16 kHz in 2 steps 15 Revision: 1 V23990-P660-F02-PM final datasheet Output Inverter Application flow PHASE 3 Phase Figure 5 Typical available 50Hz output current as a function Mi*cosfi 1200V/450A Phase Figure 6 Typical available 50Hz output current as a function of switching frequency Iout = f(Mi*cosfi) Iout (A) Iout (A) 700 600 Iout = f(fsw) 600 500 Th=60°C 500 Th=60°C 400 400 300 300 200 Th=100°C 200 Th=100°C 100 100 0 0 -1,0 -0,8 At Tj = 125 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 Mi*cosfi 1 At Tj = °C DC link = 600 V fsw = 4 kHz Th from 60 °C to 100 °C in steps of 5 °C 10 125 fsw (kHz) 100 °C DC link = 600 V Mi*cosfi = 0,8 Th from 60 °C to 100 °C in steps of 5 °C Phase Figure 7 Typical available 0Hz output current as a function Ioutpeak = f(fsw) of switching frequency Iout (Apeak) -1,00 -0,80 Iout (A) Phase Figure 8 Typical available 50Hz output current as a function of Iout = f(fsw, Mi*cosfi) Mi*cosfi and switching frequency -0,60 450 400 Th=60°C 350 550,0-600,0 -0,40 500,0-550,0 300 450,0-500,0 -0,20 350,0-400,0 0,00 300,0-350,0 250,0-300,0 200,0-250,0 250 Mi*cosfi 400,0-450,0 200 0,20 150,0-200,0 150 100,0-150,0 Th=100°C 0,40 100 0,60 50 0,80 1 2 4 8 16 0 1,00 32 1 fsw 10 At Tj = 125 °C At Tj = DC link = Th = 600 80 V °C DC link = 600 V Th from 60 °C to 100 °C in steps of 5 °C Copyright by Vincotech 16 125 fsw (kHz) 100 °C Revision: 1 V23990-P660-F02-PM final datasheet Output Inverter Application flow PHASE 3 Inverter Figure 9 Inverter Figure 10 Typical efficiency as a function of output power efficiency=f(Pout) efficiency (%) Typical available peak output power as a function of Pout=f(Th) heatsink temperature Pout (kW) 1200V/450A 300,0 250,0 100,0 200,0 2kHz 99,0 98,0 2kHz 150,0 97,0 100,0 96,0 16kHz 16kHz 50,0 95,0 0,0 94,0 60 65 At Tj = 125 70 75 80 85 90 95 100 Th ( o C) 0,0 At Tj = °C DC link = 600 V Mi = 1 cosfi = 0,80 fsw from 2 kHz to 16 kHz in 2 steps 50,0 125 100,0 150,0 200,0 250,0 Pout (kW) 300,0 °C DC link = 600 V Mi = 1 cosfi = 0,80 fsw from 2 kHz to 16 kHz in 2 steps Inverter Figure 11 Overload (%) Typical available overload factor as a function of Ppeak / Pnom=f(Pnom,fsw) motor power and switching frequency 400 350 300 250 200 Switching frequency (kHz) 150 Motor nominal power (HP/kW) 100 50,00 / 36,78 60,00 / 44,13 75,00 / 55,16 1 479 399 319 240 192 160 2 456 380 304 228 182 152 4 412 343 275 206 165 137 8 339 283 226 170 136 113 16 237 198 158 119 0 0 At Tj = 125 °C DC link = Mi = 600 1 V 100,00 / 73,55 125,00 / 91,94 150,00 / 110,33 cosfi = 0,8 fsw from 1 kHz to 16 kHz in 2 steps Th = 80 °C Motor eff = 0,85 Copyright by Vincotech 17 Revision: 1 V23990-P660-F02-PM final datasheet ZVS Application flow PHASE 3 1200V/450A General conditions Phase shifted ZVS VGEon = 15 V VGEoff = -15 V Rgon = 2 Ω Rgoff = 2 Ω IGBT Figure 1 FRED Figure 2 Typical static loss of shifted switch as a function of output current Ploss = f(Iout) 35 Ploss = f(Iout) 40 Ploss(W) Ploss(W) Typical static loss of shifted switch as a function of output current 35 30 Phaseshift=1 Phaseshift=0 30 25 25 20 20 15 15 10 10 5 5 Phaseshift=0,1 Phaseshift=0,9 0 0 0 10 20 30 40 50 60 0 Iout(A) 70 At Tj=125°C Phaseshift from 0,1 to 1 in steps of 0,1 20 30 40 50 60 Iout(A) 70 At Tj=125°C Phaseshift from 0,1 to 1 in steps of 0,1 IGBT Figure 3 Phase Figure 4 Typical switching loss as a function of output current Ploss = f(Iout) Typical available output current as a function of switching frequency 800,0 Iout (A) Ploss (W) 10 Iout = f(fsw) 300 Th=60°C 700,0 250 600,0 200 500,0 150 400,0 80kHz 300,0 100 200,0 50 100,0 Th=100°C 10kHz 0,0 0 0 10 20 At Tj = 125 °C DC link = Ioutpk/Iout = 600 1,3 V 30 40 50 60 Iout (A) 70 10 1 fsw from 10 kHz to 80 kHz in 2 steps At Tj = 125 °C DC link = Ioutpk/Iout = 600 1,3 V fsw (kHz) 1000 1 Th from 60 °C to 100 °C in steps of 5 °C Phaseshift = Copyright by Vincotech 100 Phaseshift = 18 Revision: 1 V23990-P660-F02-PM final datasheet ZVS Application flow PHASE 3 Inverter Figure 5 Inverter Figure 6 Typical efficiency as a function of output power efficiency=f(Pout) Pout = f(Th) efficiency (%) Pout (kW) Typical available electric peak output power as a function of heatsink temperature 1200V/450A 180,0 150,0 10kHz 100,0 120,0 98,0 96,0 90,0 94,0 10kHz 60,0 92,0 30,0 90,0 80kHz 80kHz 0,0 88,0 60 65 70 75 At Tj = 125 °C DC link = Ioutpk/Iout = 600 1,3 V 80 85 90 95 100 Th ( o C) 0 1 fsw from 10 kHz to 80 kHz in 2 steps 10 At Tj = 125 °C DC link = Ioutpk/Iout = 600 1,3 V 15 20 25 30 35 Pout (kW) 1 fsw from 10 kHz to 80 kHz in 2 steps Phaseshift = Copyright by Vincotech 5 Phaseshift = 19 Revision: 1