V23990-P660-F02-PM flow PHASE 3 Maximum Ratings

V23990-P660-F02-PM
final datasheet
flow PHASE 3
1200V/450A
Features
flow SCREW3 housing
● High Power screw contacts
● Low loss Trench Fieldstop Technology IGBT
● High Current Density FRED
Target Applications
Schematic
● Motor Drives
● Power Generation
● Uninterruptable Power Supply
Types
● V23990-P660-F02
● V23990-P669-F02
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
350
455
A
1350
A
748
1134
W
±20
V
10
900
μs
V
Transistor Inverter
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpuls
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Th=80°C
Tc=80°C
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tjmax
150
°C
VRRM
1200
V
294
384
A
900
A
491
744
W
150
°C
Tj=Tjmax
Tj≤125°C
VGE=15V
Diode Inverter
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Tjmax
Copyright by Vincotech
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
V23990-P660-F02-PM
final datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature
Tjop
-40…+125
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
V23990-P660-F02-PM
final datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE(V) or
VGS(V)
Vr(V) or
VCE(V) or
VDS(V)
Value
IC(A) or IF(A)
T(°C)
or ID(A)
Min
Unit
Max
Transistor Inverter
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
30
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
Thermal resistance chip to case per chip
0,018
450
RthJH
RthJC
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5
5,8
6,5
1,3
2,06
2,43
2,3
0,25
650
1,67
tr
td(off)
tf
Fall time
VCE=VGE
Rgoff=2 Ω
Rgon=2 Ω
f=1MHz
600
±15
0
450
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
ns
ns
614,4
ns
146,4
mWs
31,3
mWs
54,2
Thermal grease
thickness≤50um
λ = 0,61 W/mK
nA
ns
48,6
Tj=25°C
±15
V
mA
Ohm
422
Tj=25°C
25
V
32,3
nF
1,689
nF
1,464
nF
3700
nC
0,095
K/W
0,063
K/W
Diode Inverter
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
Thermal resistance chip to case per chip
450
Rgon=2 Ω
±15
600
di(rec)max
/dt
Erec
RthJH
RthJC
450
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
1,96
2,04
2,4
A
598,13
ns
340,9
mC
82,94
A/ms
7944
mWs
36,011
Thermal grease
thickness≤50um
λ = 0,61 W/mK
V
0,146
K/W
0,096
K/W
Thermistor
Rated resistance
Deviation of R100
Power dissipation given Epcos-Typ
R25
DR/R
Copyright by Vincotech
Tc=100°C
R100=435Ω
4,2
4,7
Tj=25°C
Tol. ±3%
3
5,8
2,6
Tj=25°C
P
B(25/100)
B-value
Tj=25°C
Tol. ±5%
%/K
210
3530
kOhm
mW
K
Revision: 1
V23990-P660-F02-PM
final datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
1200
IC (A)
IC (A)
1200
900
900
600
600
300
300
0
0
0
1
2
3
4
VCE (V)
5
0
At
tp =
Tj =
1
2
3
VCE (V)
4
5
At
tp =
Tj =
250
μs
25
°C
VGE from 8 V to 17 V in steps of 1 V
250
μs
125
°C
VGE from 8 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
Ic = f(VGE)
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
500
IF (A)
IC (A)
1000
125 oC
25 oC
400
800
300
600
25 oC
125 oC
200
400
100
200
0
0
0
At
tp =
VCE =
3
250
10
6
9
V GE (V)
12
0
At
tp =
μs
V
Copyright by Vincotech
4
1
250
2
3
VF (V)
4
μs
Revision: 1
V23990-P660-F02-PM
final datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(Ic)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
100
E (mWs)
100
E (mWs)
Eoff
Eon
80
80
60
60
Eoff
Erec
40
40
Eon
Erec
20
20
0
0
0
200
400
600
0
I C (A) 1000
800
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
RG(Ω)
8
10
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
448
A
Output inverter IGBT
Output inverter IGBT
10
10
t ( μs)
Figure 8
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
Figure 7
Typical switching times as a
function of collector current
t = f(IC)
1
1
tdoff
tdoff
tdon
tdon
tf
tf
0,1
0,1
tr
tr
0,01
0,01
0,001
0,001
0
200
400
600
800
IC (A)
0
1000
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
Copyright by Vincotech
2
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
448
A
5
Revision: 1
V23990-P660-F02-PM
final datasheet
Output Inverter
Figure 9
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
Output inverter FRED diode
Figure 10
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
0,7
Output inverter FRED diode
IrrM (A)
t rr( μs)
1000
0,6
800
0,5
600
0,4
0,3
400
0,2
200
0,1
0
0
0
2
At
Tj =
VR =
IF =
VGE =
4
125
600
448
±15
8
R Gon ( Ω )
10
0
2
At
Tj =
VR =
IF =
VGE =
°C
V
A
V
Figure 11
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Output inverter FRED diode
4
125
600
448
±15
6
R Gon ( Ω )
8
10
°C
V
A
V
Figure 12
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
Output inverter FRED diode
15000
100
direc / dt (A/ μs)
Qrr ( μC)
6
95
12500
90
10000
85
7500
80
dI0/dt
75
5000
dIrec/dt
70
2500
65
0
60
0
At
Tj =
VR =
IF =
VGE =
2
125
600
448
±15
4
6
8
R Gon ( Ω)
0
10
At
Tj =
VR =
IF =
VGE =
°C
V
A
V
Copyright by Vincotech
6
2
125
600
448
±15
4
6
8
R Gon ( Ω)
10
°C
V
A
V
Revision: 1
V23990-P660-F02-PM
final datasheet
Output Inverter
Figure 13
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
0
10
ZthJH (K/W)
ZthJH (K/W)
10
Figure 14
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
-1
10-1
10-2
10
-3
10
-4
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-3
10-4
10-5
10-4
With
D=
RthJH =
tp / T
0,095
10-3
10-2
10-1
100
t p (s)
1011
10-5
With
D=
RthJH =
K/W
10-4
10-3
tp / T
0,146
K/W
IGBT thermal model values
FRED thermal model values
R (C/W)
0,02
0,02
0,03
0,02
0,01
R (C/W)
0,01
0,03
0,04
0,05
0,01
0,01
Tau (s)
3,8E+00
5,1E-01
8,5E-02
1,8E-02
8,5E-04
Copyright by Vincotech
7
10-2
10-1
100
t p (s)
1011
Tau (s)
9,6E+00
1,7E+00
2,0E-01
3,9E-02
8,2E-03
5,4E-04
Revision: 1
V23990-P660-F02-PM
final datasheet
Output Inverter
Output inverter IGBT
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 16
Collector current as a
function of heatsink temperature
IC = f(Th)
600
IC (A)
Ptot (W)
1800
1500
500
1200
400
900
300
600
200
300
100
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
200
0
At
Tj =
°C
150
15
VGE =
Output inverter FRED
Figure 17
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
100
150
Th ( o C)
200
°C
V
Output inverter FRED
Figure 18
Forward current as a
function of heatsink temperature
IF = f(Th)
600
IF (A)
Ptot (W)
1200
500
900
400
300
600
200
300
100
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
8
50
150
100
150
Th ( o C)
200
°C
Revision: 1
V23990-P660-F02-PM
final datasheet
Thermistor
Thermistor
Figure 19
Typical NTC characteristic
as a function of temperature
RT = f (T)
NTC-typical temperature characteristic
R/Ω
5000
4000
3000
2000
1000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
9
Revision: 1
V23990-P660-F02-PM
final datasheet
Switching Definitions Output Inverter
General conditions
= 125 °C
Tj
= 2Ω
Rgon
Rgoff
= 2Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
140
Ic
tdoff
120
200
100
Uce 90%
Uge 90%
80
150
Ic
60
%
%
Uce
100
tEoff
40
Uge
tdon
Ic 1%
20
50
0
Uge10%
Uge
Uce
Uce3%
Ic10%
0
-20
tEon
-40
-0,4
-50
-0,2
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
0,2
-15
15
600
448
0,61
0,89
0,4
time (us)
0,6
0,8
1
1,2
2,3
2,5
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
2,7
2,9
time(us)
-15
15
600
448
0,42
0,81
3,1
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,3
Turn-on Switching Waveforms & definition of tr
260
140
Ic
fitted
120
220
Uce
Ic
100
180
Ic 90%
80
140
Ic 60%
% 60
%
Uce
100
40
Ic90%
Ic 40%
tr
60
20
Ic10%
tf
0
20
Ic10%
-20
-20
0,4
VC (100%) =
IC (100%) =
tf =
0,5
0,6
0,7
time (us)
600
448
0,146
V
A
μs
Copyright by Vincotech
0,8
0,9
1
2,7
VC (100%) =
IC (100%) =
tr =
10
2,8
2,9
600
448
0,049
time(us)
3
3,1
3,2
V
A
μs
Revision: 1
V23990-P660-F02-PM
final datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
140
Eoff
Poff
120
100
Eon
100
80
80
Pon
60
60
%
%
40
40
20
20
0
Uge10%
Uce3%
0
Uge90%
-20
-0,4
tEoff
tEon
Ic 1%
-20
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
0,4
time (us)
269,06
54,21
0,89
0,6
0,8
1
2,3
1,2
2,5
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter IGBT
Figure 7
2,7
2,9
time(us)
269,0604
31,27
0,81
kW
mJ
μs
3,1
Output inverter FRED
Figure 8
Gate voltage vs Gate charge
3,3
Turn-off Switching Waveforms & definition of trr
20
120
15
Id
80
trr
10
40
fitted
Uge (V)
5
0
0
Ud
%
IRRM10%
-40
-5
-80
-10
IRRM90%
-120
-15
IRRM100%
-20
-1000
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-160
0
1000
2000
Qg (nC)
-15
15
600
448
4698,4335
Copyright by Vincotech
3000
4000
5000
2,5
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
11
2,7
2,9
600
448
-598
0,341
time(us)
3,1
3,3
3,5
V
A
A
μs
Revision: 1
V23990-P660-F02-PM
final datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
140
Id
Prec
Qrr
120
100
Erec
100
tQint
50
80
tErec
% 0
% 60
40
-50
20
-100
0
-150
-20
2,6
Id (100%) =
Qrr (100%) =
tQint =
2,8
3
448
82,939
0,82
Copyright by Vincotech
3,2
time(us)
3,4
3,6
3,8
2,6
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
12
2,8
3
269,0604
36,011
0,82
3,2
time(us)
3,4
3,6
3,8
kW
mJ
μs
Revision: 1
V23990-P660-F02-PM
final datasheet
Package Outline and Pinout
Outline
Pinout
Copyright by Vincotech
13
Revision: 1
V23990-P660-F02-PM
final datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
14
Revision: 1
V23990-P660-F02-PM
final datasheet
Output Inverter Application
flow PHASE 3
1200V/450A
General conditions
3phase SPWM
VGEon = 15 V
VGEoff = -15 V
Rgon = 2 Ω
Rgoff = 2 Ω
IGBT
Figure 1
Typical average static loss as a function of output current
Ploss = f(Iout)
800
600
Ploss (W)
Ploss (W)
FRED
Figure 2
Typical average static loss as a function of output current
Ploss = f(Iout)
700
500
Mi*cosfi=1
Mi*cosfi=-1
600
400
500
300
400
300
200
200
100
100
Mi*cosfi=1
Mi*cosfi=-1
0
0
0
100
200
300
400
500
0
600
100
200
300
400
500
Iout (A)
At
Tj=125°C
Mi*cosfi from -1 to 1 in steps of 0,2
At
Tj=125°C
Mi*cosfi from -1 to 1 in steps of -0,2
IGBT
Figure 3
Typical average switching loss
as a function of output current
Ploss = f(Iout)
800,0
fsw=16kHz
700,0
FRED
Figure 4
Typical average switching loss
as a function of output current
Ploss (W)
Ploss (W)
600
Iout (A)
Ploss = f(Iout)
350,0
300,0
fsw=16kHz
600,0
250,0
500,0
200,0
400,0
150,0
300,0
100,0
200,0
50,0
100,0
fsw=2kHz
fsw=2kHz
0,0
0,0
0
At
Tj =
100
125
200
300
400
500
0
Iout (A) 600
At
Tj =
°C
DC link = 600
V
fsw from 2 kHz to 16 kHz in 2 steps
Copyright by Vincotech
100
125
200
300
400
500
Iout (A)
600
°C
DC link = 600
V
fsw from 2 kHz to 16 kHz in 2 steps
15
Revision: 1
V23990-P660-F02-PM
final datasheet
Output Inverter Application
flow PHASE 3
Phase
Figure 5
Typical available 50Hz output current
as a function Mi*cosfi
1200V/450A
Phase
Figure 6
Typical available 50Hz output current
as a function of switching frequency
Iout = f(Mi*cosfi)
Iout (A)
Iout (A)
700
600
Iout = f(fsw)
600
500
Th=60°C
500
Th=60°C
400
400
300
300
200
Th=100°C
200
Th=100°C
100
100
0
0
-1,0
-0,8
At
Tj =
125
-0,6
-0,4
-0,2
0,0
0,2
0,4
0,6
0,8
1,0
Mi*cosfi
1
At
Tj =
°C
DC link = 600
V
fsw =
4
kHz
Th from 60 °C to 100 °C in steps of 5 °C
10
125
fsw (kHz)
100
°C
DC link = 600
V
Mi*cosfi = 0,8
Th from 60 °C to 100 °C in steps of 5 °C
Phase
Figure 7
Typical available 0Hz output current as a function
Ioutpeak = f(fsw)
of switching frequency
Iout (Apeak)
-1,00
-0,80
Iout (A)
Phase
Figure 8
Typical available 50Hz output current as a function of
Iout = f(fsw, Mi*cosfi)
Mi*cosfi and switching frequency
-0,60
450
400
Th=60°C
350
550,0-600,0
-0,40
500,0-550,0
300
450,0-500,0
-0,20
350,0-400,0
0,00
300,0-350,0
250,0-300,0
200,0-250,0
250
Mi*cosfi
400,0-450,0
200
0,20
150,0-200,0
150
100,0-150,0
Th=100°C
0,40
100
0,60
50
0,80
1
2
4
8
16
0
1,00
32
1
fsw
10
At
Tj =
125
°C
At
Tj =
DC link =
Th =
600
80
V
°C
DC link = 600
V
Th from 60 °C to 100 °C in steps of 5 °C
Copyright by Vincotech
16
125
fsw (kHz)
100
°C
Revision: 1
V23990-P660-F02-PM
final datasheet
Output Inverter Application
flow PHASE 3
Inverter
Figure 9
Inverter
Figure 10
Typical efficiency as a function of output power
efficiency=f(Pout)
efficiency (%)
Typical available peak output power as a function of
Pout=f(Th)
heatsink temperature
Pout (kW)
1200V/450A
300,0
250,0
100,0
200,0
2kHz
99,0
98,0
2kHz
150,0
97,0
100,0
96,0
16kHz
16kHz
50,0
95,0
0,0
94,0
60
65
At
Tj =
125
70
75
80
85
90
95
100
Th ( o C)
0,0
At
Tj =
°C
DC link = 600
V
Mi =
1
cosfi =
0,80
fsw from 2 kHz to 16 kHz in 2 steps
50,0
125
100,0
150,0
200,0
250,0
Pout (kW)
300,0
°C
DC link = 600
V
Mi =
1
cosfi =
0,80
fsw from 2 kHz to 16 kHz in 2 steps
Inverter
Figure 11
Overload (%)
Typical available overload factor as a function of
Ppeak / Pnom=f(Pnom,fsw)
motor power and switching frequency
400
350
300
250
200
Switching frequency (kHz)
150
Motor nominal power (HP/kW)
100
50,00 / 36,78
60,00 / 44,13
75,00 / 55,16
1
479
399
319
240
192
160
2
456
380
304
228
182
152
4
412
343
275
206
165
137
8
339
283
226
170
136
113
16
237
198
158
119
0
0
At
Tj =
125
°C
DC link =
Mi =
600
1
V
100,00 / 73,55 125,00 / 91,94 150,00 / 110,33
cosfi =
0,8
fsw from 1 kHz to 16 kHz in 2 steps
Th =
80
°C
Motor eff = 0,85
Copyright by Vincotech
17
Revision: 1
V23990-P660-F02-PM
final datasheet
ZVS Application
flow PHASE 3
1200V/450A
General conditions
Phase shifted ZVS
VGEon = 15 V
VGEoff = -15 V
Rgon = 2 Ω
Rgoff = 2 Ω
IGBT
Figure 1
FRED
Figure 2
Typical static loss of shifted switch
as a function of output current
Ploss = f(Iout)
35
Ploss = f(Iout)
40
Ploss(W)
Ploss(W)
Typical static loss of shifted switch
as a function of output current
35
30
Phaseshift=1
Phaseshift=0
30
25
25
20
20
15
15
10
10
5
5
Phaseshift=0,1
Phaseshift=0,9
0
0
0
10
20
30
40
50
60
0
Iout(A) 70
At
Tj=125°C
Phaseshift from 0,1 to 1 in steps of 0,1
20
30
40
50
60
Iout(A) 70
At
Tj=125°C
Phaseshift from 0,1 to 1 in steps of 0,1
IGBT
Figure 3
Phase
Figure 4
Typical switching loss as a function of output current
Ploss = f(Iout)
Typical available output current
as a function of switching frequency
800,0
Iout (A)
Ploss (W)
10
Iout = f(fsw)
300
Th=60°C
700,0
250
600,0
200
500,0
150
400,0
80kHz
300,0
100
200,0
50
100,0
Th=100°C
10kHz
0,0
0
0
10
20
At
Tj =
125
°C
DC link =
Ioutpk/Iout =
600
1,3
V
30
40
50
60
Iout (A)
70
10
1
fsw from 10 kHz to 80 kHz in 2 steps
At
Tj =
125
°C
DC link =
Ioutpk/Iout =
600
1,3
V
fsw (kHz)
1000
1
Th from 60 °C to 100 °C in steps of 5 °C
Phaseshift =
Copyright by Vincotech
100
Phaseshift =
18
Revision: 1
V23990-P660-F02-PM
final datasheet
ZVS Application
flow PHASE 3
Inverter
Figure 5
Inverter
Figure 6
Typical efficiency as a function of output power
efficiency=f(Pout)
Pout = f(Th)
efficiency (%)
Pout (kW)
Typical available electric peak output power
as a function of heatsink temperature
1200V/450A
180,0
150,0
10kHz
100,0
120,0
98,0
96,0
90,0
94,0
10kHz
60,0
92,0
30,0
90,0
80kHz
80kHz
0,0
88,0
60
65
70
75
At
Tj =
125
°C
DC link =
Ioutpk/Iout =
600
1,3
V
80
85
90
95
100
Th ( o C)
0
1
fsw from 10 kHz to 80 kHz in 2 steps
10
At
Tj =
125
°C
DC link =
Ioutpk/Iout =
600
1,3
V
15
20
25
30
35
Pout (kW)
1
fsw from 10 kHz to 80 kHz in 2 steps
Phaseshift =
Copyright by Vincotech
5
Phaseshift =
19
Revision: 1