V I S H AY I N T E R T E C H N O L O G Y, I N C . AVALANCHE RECTIFIERS Rectifiers With Specified Reverse Avalanche Capability 4V 3V 2A 2V 1A 1V fast 100 ns ultra fast J K AU1PD AU1PJ AS1P AU1P AU1P AU1P AU1P M D G J K AU1PM AU1P M VBYGAS1SD1 VBYGAS1S D1 VBYGAS1SJ1 VBYGAS1S J1 VBYGAS1SM1 VBYGAS1S M1 VBYGAS1SY1 VBYGAR1SD1 VBYGAR1SJ1 VBYGAS1S VBYGAR1S Y1 D1 VBYGAR1S J1 VBYGAR1SM1 VBYGAR1S M1 VBYGAU1SD1 VBYGAU1S D1 VBYGAU1SJ1 VBYGAU1S J1 VBYGAU1SM1 VBYGAU1S M1 VBYGAU2SD1 VBYGAU2S D1 VBYGAU2SJ1 VBYGAU2S J1 BYG10 BYG10 D G BYG10J BYG10 BYG10K BYG10 K BYG10 M BYG10M J BYG10Y BYG10 Y BYG20D BYG20 D BYG20G BYG20 G BYG20J BYG20 J BYG21K BYG20 BYG21M BYG20 BYG23M BYG23M BYG23T BYG23T BYG24D K M BYG24 D BYG24G BYG24 G BYG24J BYG24 BYG22A BYG22 BYG22B BYG22 BYG22D BYG22 AS3BD J A B D AS3B D AS3BG AS3B G AS3BJ AS3B J AU2PD AU2P D AU2PG AU2P G AU2PJ AU2P J = Forward surge current I FSM AU2PK AU2P K AU2PM AU2P M AR3PD AR3P D AR3PG AR3P G AR3PJ AR3P J AR3PK AR3P K AR3PM AR3P M = Forward voltage V F AS3PD AS3PG AS3P D AS3P G AS3PJ AS3P J AS3PK AS3P K AS3PM AS3P M AU3PD AU3P D AU3PG AU3P G AU3PJ AU3P AU3PK = V F test current I test J AU3P K AU3PM AU3P M AR4PD AR4P D AR4PG AR4P G AR4PJ AR4P J AR4PK AR4P K AR4PM AR4P M AS4P D AS4P G AS4PJ AS4P J AS4PK AS4P K AS4PM AS4P M 120 A 40 A 0A 5V 4V 3A 3V 2A 2V 1A 1V 0V 10000 ns standard 1000 ns 1000 V fast 100 V ultra fast BY203-12S BY203-16S BY203-20S BYT62 BY268 BY269 BYV26A BYV26B BYV26C BYV26D BYV26E SF1200 SF1600 SF4001 SF4002 SF4003 SF4004 SF4005 SF4006 SF4007 BYT54A BYT54B BYT54D BYT54G BYT54J BYT54K BYT54M BYT52A BYT52B BYT52D BYT52G BYT52J BYT52K BYT52M BYT51A BYT51B BYT51D BYT51G BYT51J BYT51K BYT51M BYV12 BYV13 BYV14 BYV15 BYV16 BYT53A BYT53B BYT53C BYT53D BYT53F BYT53G 1N5059 1N5060 1N5061 1N5062 BY448 BY458 BY527 BYV27-50 BYV27-100 BYV27-150 BYV27-200 BYV27-600 BYV37 BYV38 BYW32 BYW33 BYW34 BYW35 BYW36 BYW52 BYW53 BYW54 BYW55 BYW56 BYX82 BYX83 BYX84 BYX85 BYX86 S330D BYM36D BYM36E 1N5417 1N5418 1N5624 1N5625 1N5626 1N5627 BY228 BY228-13 BY228-15 BYM36A BYM36B BYM36C BYT56A BYT56B BYT56D BYT56G BYT56J BYT56K BYT56M BYT77 BYT78 BYW172D BYW172F BYW172G BYW178 BYW72 BYW73 BYW74 BYW75 BYW76 BYW82 BYW83 BYW84 BYW85 BYW86 SF5400 SF5401 SF5402 SF5403 SF5404 SF5405 SF5406 SF5407 SF5408 BYV28-50 BYV28-100 BYV28-150 BYV28-200 BYV28-600 BYV98-50 BYV98-100 BYV98-150 BYV98-200 10 V 100 ns SELECTOR GUIDE 1/2 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 BYV26 B BYV26 C BYV26D BYV26 D BYV26E BYV26 E SF 1200 SF1600 SF 1600 SF4001 SF400 1 SF4002 SF400 SF4003 SF400 SF4004 SF400 SF4005 SF400 SF4006 SF400 www.vishay.com/doc?48047 2 3 4 5 6 SF4007 SF400 7 BYT54A BYT54 A BYT54B BYT54 B BYT54D BYT54 D BYT54G BYT54 G BYT54J BYT54 J BYT54K BYT54 K BYT54M BYT54 M BYT52A BYT52 BYT52B BYT52 BYT52D BYT52 BYT52G BYT52 BYT52J BYT52 A B D G J BYT52K BYT52 K BYT52M BYT52 M BYT51A BYT51 A BYT51B BYT51 B BYT51D BYT51 D BYT51G BYT51 BYT51J BYT51 BYT51K BYT51 BYT51M BYT51 G J K M BYV12 BYV 12 BYV13 BYV 13 BYV14 BYV 14 BYV15 BYV 15 BYV 16 BYT53A BYT53 BYT53B BYT53 BYT53C BYT53 BYT53D BYT53 BYT53F BYT53 BYT53G BYT53 A B C D F G 1N5059 1N50 59 1N5060 1N50 60 1N5061 1N50 61 1N5062 1N50 62 BY448 BY4 48 BY458 BY527 BYV27-50 BYV27-100 BY4 58 BY527 BYV27 BYV27 50 100 BYV27-150 BYV27 150 BYV27-200 BYV27 200 BYV27-600 BYV27 600 BYV37 BYV§ 7 BYV38 BYV3 8 BYW32 BYW3 2 BYW33 BYW3 3 BYW34 BYW3 4 BYW35 BYW3 5 BYW36 BYW3 6 BYW52 BYW5 2 BYW53 BYW5 3 BYW54 BYW5 4 BYW55 BYW5 5 BYW56 BYW5 BYX82 BYX8 BYX83 BYX8 BYX84 BYX8 BYX85 BYX8 BYX86 BYX8 6 2 3 4 5 6 S330D S330D BYM36D BYM36 D BYM36E BYM36 E 1N5417 1N54 17 1N5418 1N54 18 1N5624 1N5625 1N5626 1N5627 BY228 1N562 1N562 1N562 1N562 4 5 6 7 BY228 BY228-13 BY228 13 BY228-15 BY228 15 BYM36A BYM36 BYM36B BYM36 BYM36C BYM36 BYT56A BYT56 BYT56B BYT56 A B C A B BYT56 D BYT56G BYT56 G BYT56J BYT56 BYT56K BYT56 K BYT56M BYT56 M BYT77 BYT7 BYT56D J 7 BYT78 BYT7 8 BYW172D BYW172 D BYW172F BYW172 F BYW172G BYW172 G BYW178 BYW178 BYW72 BYW7 2 BYW73 BYW7 3 BYW74 BYW7 4 BYW75 BYW7 5 BYW76 BYW7 6 BYW82 BYW8 2 BYW83 BYW8 3 BYW84 BYW8 4 BYW85 BYW8 5 BYW86 BYW8 6 SF5400 SF540 0 SF5401 SF540 1 SF5402 SF540 2 SF5403 SF540 SF5404 SF540 SF5405 SF540 SF5406 SF540 SF5407 SF540 SF5408 SF540 3 4 5 6 7 8 BYV28-50 BYV28 50 BYV28-100 BYV28 100 BYV28-150 BYV28 150 BYV28-200 BYV28 200 BYV28-600 BYV28 600 BYV98-50 BYV98-100 BYV98 BYV98 50 100 BYV98-150 BYV98 150 BYV98-200 BYV98 200 10 ns VMN-SG2195-1511 For technical questions contact [email protected] Web: http://www.vishay.com/diodes/rectifiers/ 8 9 A BYV26B BYV26C SF1200 80 A 4A BYT62 BY26 BY26 = Max. reverse voltage V RRM 160 A 12S 16S 20S BYT62 BYV26 BYV16 SOD-64 BY203 BY203 BY203 BY269 BYV26A = Average forward current I AV Forward Surge Current IFSM 60 mJ Sinterglass Packages 0A 10000 V Max. Reverse Voltage VRRM BYT62 BY268 Reverse Recovery Time trr 0 mJ 5A BY203-12S BY203-16S BY203-20S = Reverse recovery time t rr AS4PD AS4PG 20 mJ 10 mJ = Rev. avalanche energy: E AS tested with (e.g.) I R = 1.0 A 10 ns SOD-57 30 mJ AS1P AS1P Forward Voltage VF AR1PD AR1PG AR1PJ AR1PK AR1PM AS1PD AS1PG AS1PJ AS1PK AS1PM AU1PD AU1PG AU1PJ AU1PK AU1PM VBYGAS1SD1 VBYGAS1SJ1 VBYGAS1SM1 VBYGAS1SY1 VBYGAR1SD1 VBYGAR1SJ1 VBYGAR1SM1 VBYGAU1SD1 VBYGAU1SJ1 VBYGAU1SM1 VBYGAU2SD1 VBYGAU2SJ1 BYG10D BYG10G BYG10J BYG10K BYG10M BYG10Y BYG20D BYG20G BYG20J BYG21K BYG21M BYG23M BYG23T BYG24D BYG24G BYG24J BYG22A BYG22B BYG22D AS3BD AS3BG AS3BJ AU2PD AU2PG AU2PJ AU2PK AU2PM AR3PD AR3PG AR3PJ AR3PK AR3PM AS3PD AS3PG AS3PJ AS3PK AS3PM AU3PD AU3PG AU3PJ AU3PK AU3PM AR4PD AR4PG AR4PJ AR4PK AR4PM AS4PD AS4PG AS4PJ AS4PK AS4PM 100 V AS1PJ BYG10D 1000 ns J K M AS1PK BYG10G standard 1000 V D G D AU1PK 0V 10000 ns AR1P G AS1PM Legend AR1P AR1P AS1P AS1P AU1PG 5V AR1P AR1P AS1PD 0.25 A 0.25 A 0.25 A 0.35 A 0.8 A 0.8 A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1.25 A 1.25 A 1.25 A 1.25 A 1.25 A 1.25 A 1.25 A 1.4 A 1.4 A 1.4 A 1.4 A 1.4 A 1.4 A 1.4 A 1.5 A 1.5 A 1.5 A 1.5 A 1.5 A 1.5 A 1.5 A 1.5 A 1.5 A 1.5 A 1.5 A 1.5 A 1.9 A 1.9 A 1.9 A 1.9 A 1.9 A 1.9 A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2.9 A 2.9 A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3.5 A 3.5 A 3.5 A 3.5 A 3.5 A 4A 4A 4A 4A Max. Reverse Voltage VRRM Rev. Avalanche Energy: EAS 40 A 0A 0A 10000 V Forward Current IFAV and IF test 80 A 3A 40 mJ AR1PJ AR1PK AS1PG 1.0A 120 A 4A 10 V AR1PG AR1PM Coming Soon 0 mJ 5A AR1PD 160 A TO-277A (SMPC) Reverse Recovery Time trr 10 mJ DO-214AC (SMA) A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 20 mJ DO-221AC (SlimSMA™) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1 1.5 1.5 1.5 2 2 2 3 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 30 mJ DO-220AA (SMP) Forward Voltage VF Forward Current IFAV and IF test Rev. Avalanche Energy: EAS 40 mJ Avalanche rectifiers are primarily used as “current valves,” which conduct the current in one direction and block it in the other. But for short transient voltage spikes, this type of rectifier can also be driven in reverse Update: avalanche breakdown mode in order to avoid a further 20. August 2015 increase of the applied voltage. In avalanche breakdown mode, the diode becomes conductive again and clamps the transient voltage at a non-critical level. Plastic Packages Forward Surge Current IFSM DO-214AA (SMB) IR DUT switch IR VR IRmax = IL0 switch Applied reverse voltage IF Maximum repetitive peak reverse voltage trr Reverse avalanche breakdown voltage Reverse (leakage) current 0 Forward current iR Forward voltage Qrr Average forward current Forward surge maximum current Reverse recovery time t 1600V 1300V 1000V 800V 600V 400V 200V 50V 100V Depending on the avalanche clamping voltage (VC) of the DUT, the current (IL = IR) decreases accordingly (see Fig. 2). dIL/dt = VC /L The reverse energy capability depends on the reverse current and the junction temperature prior to the avalanche test. switch DUT VR Increase of the clamping voltage is caused by increasing temperature! trr Fast Standard 500 ns time Figure 2. Typical reverse clamping voltage and reverse current during a reverse energy test Reverse Avalanche Breakdown Voltage I SELECTOR GUIDE I F The diode is in the avalanche breakdown mode when a high current can flow. The clamping voltage is now dependent on the temperature and the series resistance of the diode. IR SOD-57 4.3 1.35 3.6 0.82 Forward Voltage Forward mode 4 M T 1300V The avalanche Current wire length min. 26 4 rectifier shows the Increase of the clamping voltage is on both sides typical caused by increasing temperature! VRforward Figure 3. Typical voltage vs. current characteristic characteristics with current - of a diode with reverse avalanche breakdown. IER aY low, VBR dependent forward voltage. DO-220AA (SMP) 1600V K 1000V 400V 200V 50V 100V J 600V IL G 800V Working voltage code AB D Inductance L Reverse Current ground 1.15 IL IR 2.18 trr Ultrafast Fast 0.95 4.0 500 ns 2.8 time time DO-214AA is the time needed to discharge This “trr”1. Figure 2. Typical reverse clamping voltage and Figure Avalanche energy test circuitthe charged depletion zone of the diode before it can block the currentreverse (SMBJ) current during a reverse again. energy test For the trr measurement (e.g.: IF = 0.5 A, IR = 1.0 A,IRReverse = 0.25 Avalanche Breakdown Voltage A), the diode is being “charged” I The diode is in the with a forward current of Iavalanche = 0.5breakdown F IF mode when a high A. Then a reverse voltage iscurrent applied can flow. The trr clamping voltage is now so that the peak reverse current dependent on the temperature and the is IR = 1.0 A. The reverse time series resistance of the recovery time is the time 0 diode. t until the reverse current iR V V has reached IR = 0.25 A. Reverse (see Fig. 4) Qrr Voltage Qrr is the total amount of charge as integral to the discharge current versus time. IR Figure 4. Definition of the reverse recovery time Blocking Range Forward The voltage range Current is below the IFSM physical avalanche breakdown. Only a low, temperaturedependent leakage current can flow. 00V 00V 00V 00V 00V 00V 00V TO-277A (SMPC) 2.3 1.1 5.4 IF BR VRRM 6.5 4.6 VR IR VF Forward Voltage Forward mode The avalanche rectifier shows the typical forward characteristics with IER a low, current dependent forward voltage. Current www.vishay.com/doc?48047 IF 5.5 Blocking Range Forward The voltage range Current is below the IFSM physical avalanche breakdown. Only a low, temperaturedependent leakage current can3.6 flow. Reverse 2/2 2.3 5.2 2.6 Standard 100 ns DO-214AC (SMA) DO-221AC (SlimSMA™) time 3. Typical voltageI vs. current trr Figure = Reverse Recovery TimeIR characteristic R of a diode with reverse avalanche breakdown. Avalanche rectifiers are also classified in groups depending DUT VR IRmax = IL0 on their reverse recovery time trr: switch 50V 00V t VF Forward Voltage VF The avalanche rectifier shows the typical forward characteristics with IER a low, current dependent forward voltage. VR Working voltage code trr THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS AB D G J K M T Y DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 0 wire length min. 26 on both sides ER ground Figure 1. Avalanche energy test circuit time IL IR IRmax = IL0 IR Reverse Voltage IF IF VR Reverse is dissipated within the rectifier A(DUT). current B D The G reverse J K M (IR) at the T beginning Y will be the same as the current that was flowing through the inductance (IL) just before the switch was opened (see Fig. 2). IR VER VBRVRRM Forward mode VS 100 ns SOD-64 Figure 4. Definition of the reverse recovery time EAS = 0.5 xWorking L x I2 voltage code Ultrafast Blocking Range Forward The voltage range Current is below the IFSM physical avalanche breakdown. Only a low, temperaturedependent leakage current can flow. Package Dimensions (in millimeters) Forward The voltage range Current is below the IFSM physical avalanche breakdown. t Only a low, temperaturedependent leakage rr flow. current Q can Reverse Voltage Figure 4. when Definition of the reverse recovery Fig. 1 shows the reverse avalanche energy using the rectifier (device under time test = DUT) in the reverse direction as a freewheeling diode at an inductive load. When the inductance (L) is switched off, the current (IL) through the inductance (L) will keep on flowing through the DUT until the stored energy VBR trr VER VBRVRRM IR The diode is in the avalanche breakdown mode when a high current can flow. The clamping voltage is now dependent on the temperature and the series resistance of the diode. Blocking Range The diode is in the avalanche breakdown mode when a high 0 current can flow. The clamping voltage is now i R dependent on the temperature and the series resistance of the diode. IR EAS (ER) Avalanche surge or reverse energy IR time reverse current during a reverse Reverse Avalanche Breakdown Voltage energy test ReverseI Avalanche F Breakdown Voltage I Inductance L AVALANCHE RECTIFIERS Figure 2. Typical reverseSpecified clamping Rectifiers With Reverse Avalanche Capability Datasheet Parameters IL IL I V I S HR AY I N T E R T E C H N O L O G Y, I N C . Figure time2. Typical reverse clamping voltage and reverse current during a reverse voltage and energy test I VS VR Figure 1. Avalanche energy test circuit Figure 1. Avalanche energy test circuit VR IR IRmax = IL0 ground ground VR VRRM V(BR)R IR IF VF IFAV IFSM trr IR IL DUT IR VMN-SG2195-1511 Figure 3. Typical questions voltage vs. current characteristic For technical contact [email protected] of a diode with reverse avalanche breakdown. Web: http://www.vishay.com/diodes/rectifiers/