Selector Guide

V I S H AY I N T E R T E C H N O L O G Y, I N C .
AVALANCHE RECTIFIERS
Rectifiers With Specified Reverse Avalanche Capability
4V
3V
2A
2V
1A
1V
fast
100 ns
ultra fast
J
K
AU1PD
AU1PJ
AS1P
AU1P
AU1P
AU1P
AU1P
M
D
G
J
K
AU1PM
AU1P
M
VBYGAS1SD1
VBYGAS1S
D1
VBYGAS1SJ1
VBYGAS1S
J1
VBYGAS1SM1
VBYGAS1S
M1
VBYGAS1SY1
VBYGAR1SD1
VBYGAR1SJ1
VBYGAS1S
VBYGAR1S
Y1
D1
VBYGAR1S
J1
VBYGAR1SM1
VBYGAR1S
M1
VBYGAU1SD1
VBYGAU1S
D1
VBYGAU1SJ1
VBYGAU1S
J1
VBYGAU1SM1
VBYGAU1S
M1
VBYGAU2SD1
VBYGAU2S
D1
VBYGAU2SJ1
VBYGAU2S
J1
BYG10
BYG10
D
G
BYG10J
BYG10
BYG10K
BYG10
K
BYG10
M
BYG10M
J
BYG10Y
BYG10
Y
BYG20D
BYG20
D
BYG20G
BYG20
G
BYG20J
BYG20
J
BYG21K
BYG20
BYG21M
BYG20
BYG23M
BYG23M
BYG23T
BYG23T
BYG24D
K
M
BYG24
D
BYG24G
BYG24
G
BYG24J
BYG24
BYG22A
BYG22
BYG22B
BYG22
BYG22D
BYG22
AS3BD
J
A
B
D
AS3B
D
AS3BG
AS3B
G
AS3BJ
AS3B
J
AU2PD
AU2P
D
AU2PG
AU2P
G
AU2PJ
AU2P
J
= Forward surge current I FSM
AU2PK
AU2P
K
AU2PM
AU2P
M
AR3PD
AR3P
D
AR3PG
AR3P
G
AR3PJ
AR3P
J
AR3PK
AR3P
K
AR3PM
AR3P
M
= Forward voltage V F
AS3PD
AS3PG
AS3P
D
AS3P
G
AS3PJ
AS3P
J
AS3PK
AS3P
K
AS3PM
AS3P
M
AU3PD
AU3P
D
AU3PG
AU3P
G
AU3PJ
AU3P
AU3PK
= V F test current I test
J
AU3P
K
AU3PM
AU3P
M
AR4PD
AR4P
D
AR4PG
AR4P
G
AR4PJ
AR4P
J
AR4PK
AR4P
K
AR4PM
AR4P
M
AS4P
D
AS4P
G
AS4PJ
AS4P
J
AS4PK
AS4P
K
AS4PM
AS4P
M
120 A
40 A
0A
5V
4V
3A
3V
2A
2V
1A
1V
0V
10000 ns
standard
1000 ns
1000 V
fast
100 V
ultra fast
BY203-12S
BY203-16S
BY203-20S
BYT62
BY268
BY269
BYV26A
BYV26B
BYV26C
BYV26D
BYV26E
SF1200
SF1600
SF4001
SF4002
SF4003
SF4004
SF4005
SF4006
SF4007
BYT54A
BYT54B
BYT54D
BYT54G
BYT54J
BYT54K
BYT54M
BYT52A
BYT52B
BYT52D
BYT52G
BYT52J
BYT52K
BYT52M
BYT51A
BYT51B
BYT51D
BYT51G
BYT51J
BYT51K
BYT51M
BYV12
BYV13
BYV14
BYV15
BYV16
BYT53A
BYT53B
BYT53C
BYT53D
BYT53F
BYT53G
1N5059
1N5060
1N5061
1N5062
BY448
BY458
BY527
BYV27-50
BYV27-100
BYV27-150
BYV27-200
BYV27-600
BYV37
BYV38
BYW32
BYW33
BYW34
BYW35
BYW36
BYW52
BYW53
BYW54
BYW55
BYW56
BYX82
BYX83
BYX84
BYX85
BYX86
S330D
BYM36D
BYM36E
1N5417
1N5418
1N5624
1N5625
1N5626
1N5627
BY228
BY228-13
BY228-15
BYM36A
BYM36B
BYM36C
BYT56A
BYT56B
BYT56D
BYT56G
BYT56J
BYT56K
BYT56M
BYT77
BYT78
BYW172D
BYW172F
BYW172G
BYW178
BYW72
BYW73
BYW74
BYW75
BYW76
BYW82
BYW83
BYW84
BYW85
BYW86
SF5400
SF5401
SF5402
SF5403
SF5404
SF5405
SF5406
SF5407
SF5408
BYV28-50
BYV28-100
BYV28-150
BYV28-200
BYV28-600
BYV98-50
BYV98-100
BYV98-150
BYV98-200
10 V
100 ns
SELECTOR GUIDE
1/2
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS
DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
BYV26
B
BYV26
C
BYV26D
BYV26
D
BYV26E
BYV26
E
SF
1200
SF1600
SF
1600
SF4001
SF400
1
SF4002
SF400
SF4003
SF400
SF4004
SF400
SF4005
SF400
SF4006
SF400
www.vishay.com/doc?48047
2
3
4
5
6
SF4007
SF400
7
BYT54A
BYT54
A
BYT54B
BYT54
B
BYT54D
BYT54
D
BYT54G
BYT54
G
BYT54J
BYT54
J
BYT54K
BYT54
K
BYT54M
BYT54
M
BYT52A
BYT52
BYT52B
BYT52
BYT52D
BYT52
BYT52G
BYT52
BYT52J
BYT52
A
B
D
G
J
BYT52K
BYT52
K
BYT52M
BYT52
M
BYT51A
BYT51
A
BYT51B
BYT51
B
BYT51D
BYT51
D
BYT51G
BYT51
BYT51J
BYT51
BYT51K
BYT51
BYT51M
BYT51
G
J
K
M
BYV12
BYV
12
BYV13
BYV
13
BYV14
BYV
14
BYV15
BYV
15
BYV
16
BYT53A
BYT53
BYT53B
BYT53
BYT53C
BYT53
BYT53D
BYT53
BYT53F
BYT53
BYT53G
BYT53
A
B
C
D
F
G
1N5059
1N50
59
1N5060
1N50
60
1N5061
1N50
61
1N5062
1N50
62
BY448
BY4
48
BY458
BY527
BYV27-50
BYV27-100
BY4
58
BY527
BYV27
BYV27
50
100
BYV27-150
BYV27
150
BYV27-200
BYV27
200
BYV27-600
BYV27
600
BYV37
BYV§
7
BYV38
BYV3
8
BYW32
BYW3
2
BYW33
BYW3
3
BYW34
BYW3
4
BYW35
BYW3
5
BYW36
BYW3
6
BYW52
BYW5
2
BYW53
BYW5
3
BYW54
BYW5
4
BYW55
BYW5
5
BYW56
BYW5
BYX82
BYX8
BYX83
BYX8
BYX84
BYX8
BYX85
BYX8
BYX86
BYX8
6
2
3
4
5
6
S330D
S330D
BYM36D
BYM36
D
BYM36E
BYM36
E
1N5417
1N54
17
1N5418
1N54
18
1N5624
1N5625
1N5626
1N5627
BY228
1N562
1N562
1N562
1N562
4
5
6
7
BY228
BY228-13
BY228
13
BY228-15
BY228
15
BYM36A
BYM36
BYM36B
BYM36
BYM36C
BYM36
BYT56A
BYT56
BYT56B
BYT56
A
B
C
A
B
BYT56
D
BYT56G
BYT56
G
BYT56J
BYT56
BYT56K
BYT56
K
BYT56M
BYT56
M
BYT77
BYT7
BYT56D
J
7
BYT78
BYT7
8
BYW172D
BYW172
D
BYW172F
BYW172
F
BYW172G
BYW172
G
BYW178
BYW178
BYW72
BYW7
2
BYW73
BYW7
3
BYW74
BYW7
4
BYW75
BYW7
5
BYW76
BYW7
6
BYW82
BYW8
2
BYW83
BYW8
3
BYW84
BYW8
4
BYW85
BYW8
5
BYW86
BYW8
6
SF5400
SF540
0
SF5401
SF540
1
SF5402
SF540
2
SF5403
SF540
SF5404
SF540
SF5405
SF540
SF5406
SF540
SF5407
SF540
SF5408
SF540
3
4
5
6
7
8
BYV28-50
BYV28
50
BYV28-100
BYV28
100
BYV28-150
BYV28
150
BYV28-200
BYV28
200
BYV28-600
BYV28
600
BYV98-50
BYV98-100
BYV98
BYV98
50
100
BYV98-150
BYV98
150
BYV98-200
BYV98
200
10 ns
VMN-SG2195-1511
For technical questions contact [email protected]
Web: http://www.vishay.com/diodes/rectifiers/
8
9
A
BYV26B
BYV26C
SF1200
80 A
4A
BYT62
BY26
BY26
= Max. reverse voltage V RRM
160 A
12S
16S
20S
BYT62
BYV26
BYV16
SOD-64
BY203
BY203
BY203
BY269
BYV26A
= Average forward current I AV
Forward Surge
Current IFSM
60 mJ
Sinterglass Packages
0A
10000 V
Max. Reverse Voltage
VRRM
BYT62
BY268
Reverse Recovery
Time trr
0 mJ
5A
BY203-12S
BY203-16S
BY203-20S
= Reverse recovery time t rr
AS4PD
AS4PG
20 mJ
10 mJ
= Rev. avalanche energy: E AS
tested with (e.g.) I R = 1.0 A
10 ns
SOD-57
30 mJ
AS1P
AS1P
Forward Voltage
VF
AR1PD
AR1PG
AR1PJ
AR1PK
AR1PM
AS1PD
AS1PG
AS1PJ
AS1PK
AS1PM
AU1PD
AU1PG
AU1PJ
AU1PK
AU1PM
VBYGAS1SD1
VBYGAS1SJ1
VBYGAS1SM1
VBYGAS1SY1
VBYGAR1SD1
VBYGAR1SJ1
VBYGAR1SM1
VBYGAU1SD1
VBYGAU1SJ1
VBYGAU1SM1
VBYGAU2SD1
VBYGAU2SJ1
BYG10D
BYG10G
BYG10J
BYG10K
BYG10M
BYG10Y
BYG20D
BYG20G
BYG20J
BYG21K
BYG21M
BYG23M
BYG23T
BYG24D
BYG24G
BYG24J
BYG22A
BYG22B
BYG22D
AS3BD
AS3BG
AS3BJ
AU2PD
AU2PG
AU2PJ
AU2PK
AU2PM
AR3PD
AR3PG
AR3PJ
AR3PK
AR3PM
AS3PD
AS3PG
AS3PJ
AS3PK
AS3PM
AU3PD
AU3PG
AU3PJ
AU3PK
AU3PM
AR4PD
AR4PG
AR4PJ
AR4PK
AR4PM
AS4PD
AS4PG
AS4PJ
AS4PK
AS4PM
100 V
AS1PJ
BYG10D
1000 ns
J
K
M
AS1PK
BYG10G
standard
1000 V
D
G
D
AU1PK
0V
10000 ns
AR1P
G
AS1PM
Legend
AR1P
AR1P
AS1P
AS1P
AU1PG
5V
AR1P
AR1P
AS1PD
0.25 A
0.25 A
0.25 A
0.35 A
0.8 A
0.8 A
1A
1A
1A
1A
1A
1A
1A
1A
1A
1A
1A
1A
1A
1A
1.25 A
1.25 A
1.25 A
1.25 A
1.25 A
1.25 A
1.25 A
1.4 A
1.4 A
1.4 A
1.4 A
1.4 A
1.4 A
1.4 A
1.5 A
1.5 A
1.5 A
1.5 A
1.5 A
1.5 A
1.5 A
1.5 A
1.5 A
1.5 A
1.5 A
1.5 A
1.9 A
1.9 A
1.9 A
1.9 A
1.9 A
1.9 A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2.9 A
2.9 A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3A
3.5 A
3.5 A
3.5 A
3.5 A
3.5 A
4A
4A
4A
4A
Max. Reverse Voltage
VRRM
Rev. Avalanche
Energy: EAS
40 A
0A
0A
10000 V
Forward Current
IFAV and IF test
80 A
3A
40 mJ
AR1PJ
AR1PK
AS1PG
1.0A
120 A
4A
10 V
AR1PG
AR1PM
Coming Soon
0 mJ
5A
AR1PD
160 A
TO-277A
(SMPC)
Reverse Recovery
Time trr
10 mJ
DO-214AC
(SMA)
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
20 mJ
DO-221AC
(SlimSMA™)
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1
1.5
1.5
1.5
2
2
2
3
3
3
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
30 mJ
DO-220AA
(SMP)
Forward Voltage
VF
Forward Current
IFAV and IF test
Rev. Avalanche
Energy: EAS
40 mJ
Avalanche rectifiers are primarily used as “current
valves,” which conduct the current in one direction
and block it in the other. But for short transient voltage
spikes, this type of rectifier can also be driven in reverse
Update:
avalanche breakdown mode in order to avoid a further
20. August 2015
increase of the applied voltage. In avalanche breakdown
mode, the diode becomes conductive again and clamps
the transient voltage at a non-critical level.
Plastic Packages
Forward Surge
Current IFSM
DO-214AA
(SMB)
IR
DUT
switch
IR
VR
IRmax = IL0
switch
Applied reverse voltage
IF
Maximum repetitive peak
reverse voltage
trr
Reverse avalanche breakdown voltage
Reverse (leakage) current
0
Forward current
iR
Forward voltage
Qrr
Average forward current
Forward surge maximum current
Reverse recovery time
t
1600V
1300V
1000V
800V
600V
400V
200V
50V
100V
Depending on the avalanche clamping voltage (VC) of the DUT, the current (IL = IR)
decreases accordingly (see Fig. 2).
dIL/dt = VC /L
The reverse energy capability depends on the reverse current and the junction
temperature prior to the avalanche test.
switch
DUT
VR
Increase of the clamping voltage is
caused by increasing temperature!
trr
Fast
Standard
500 ns
time
Figure 2. Typical reverse clamping voltage and
reverse current during a reverse
energy test
Reverse Avalanche
Breakdown Voltage
I
SELECTOR
GUIDE
I
F
The diode is in the
avalanche breakdown
mode when a high
current can flow. The
clamping voltage is now
dependent on the
temperature and the
series resistance of the
diode.
IR
SOD-57
4.3
1.35
3.6
0.82
Forward
Voltage
Forward mode
4
M
T
1300V
The avalanche
Current
wire length min. 26
4
rectifier shows the
Increase of the clamping
voltage
is
on both
sides
typical
caused
by
increasing
temperature!
VRforward Figure
3. Typical voltage vs. current characteristic
characteristics with
current - of a diode with reverse avalanche breakdown.
IER aY low,
VBR
dependent forward
voltage.
DO-220AA
(SMP)
1600V
K
1000V
400V
200V
50V
100V
J
600V
IL
G
800V
Working voltage code
AB D
Inductance L
Reverse
Current
ground
1.15
IL
IR
2.18
trr
Ultrafast
Fast
0.95
4.0
500 ns
2.8
time
time
DO-214AA
is the
time needed
to discharge
This
“trr”1.
Figure 2. Typical reverse clamping voltage and
Figure
Avalanche
energy
test circuitthe charged
depletion zone of the diode before it can block the currentreverse
(SMBJ)
current during a reverse
again.
energy test
For the trr measurement (e.g.: IF = 0.5 A, IR = 1.0 A,IRReverse
= 0.25
Avalanche
Breakdown Voltage
A), the diode is being “charged”
I
The diode is in the
with a forward current of Iavalanche
= 0.5breakdown
F
IF
mode when a high
A. Then a reverse voltage iscurrent
applied
can flow. The
trr
clamping voltage is now
so that the peak reverse current
dependent on the
temperature and the
is IR = 1.0 A. The reverse
time
series resistance of the
recovery time is the time
0
diode.
t
until the reverse current
iR
V V
has reached IR = 0.25 A.
Reverse
(see Fig. 4)
Qrr
Voltage
Qrr is the total amount of
charge as integral to the
discharge current versus
time.
IR
Figure 4. Definition of the reverse recovery time
Blocking Range
Forward
The voltage range
Current
is below the
IFSM
physical avalanche
breakdown.
Only a low,
temperaturedependent leakage
current can flow.
00V
00V
00V
00V
00V
00V
00V
TO-277A (SMPC)
2.3
1.1
5.4
IF
BR
VRRM
6.5
4.6
VR
IR
VF
Forward
Voltage
Forward mode
The avalanche
rectifier shows the
typical forward
characteristics with
IER a low, current dependent forward
voltage.
Current
www.vishay.com/doc?48047
IF
5.5
Blocking Range
Forward
The voltage range
Current
is below the
IFSM
physical avalanche
breakdown.
Only a low,
temperaturedependent leakage
current can3.6
flow.
Reverse
2/2
2.3
5.2
2.6
Standard
100 ns
DO-214AC
(SMA)
DO-221AC
(SlimSMA™)
time
3. Typical
voltageI vs. current
trr Figure
= Reverse
Recovery
TimeIR characteristic
R
of
a
diode
with
reverse
avalanche
breakdown.
Avalanche rectifiers are also classified in groups depending
DUT
VR IRmax = IL0
on their
reverse recovery
time trr:
switch
50V
00V
t
VF
Forward
Voltage
VF
The avalanche
rectifier shows the
typical forward
characteristics with
IER a low, current dependent forward
voltage.
VR
Working voltage code
trr
THIS DOCUMENT
IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED
HEREIN AND THIS
AB D
G
J
K
M
T
Y
DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
0
wire length min. 26
on both sides
ER
ground
Figure 1. Avalanche energy test circuit
time
IL
IR
IRmax = IL0
IR
Reverse
Voltage
IF
IF
VR
Reverse
is dissipated within the rectifier A(DUT).
current
B D The
G reverse
J
K
M (IR) at the
T beginning
Y
will be the same as the current that was flowing through the inductance (IL) just
before the switch was opened (see Fig. 2).
IR
VER VBRVRRM
Forward mode
VS
100 ns
SOD-64
Figure 4. Definition of the reverse recovery time
EAS = 0.5 xWorking
L x I2 voltage code
Ultrafast
Blocking Range
Forward
The voltage range
Current
is below the
IFSM
physical avalanche
breakdown.
Only a low,
temperaturedependent leakage
current can flow.
Package Dimensions (in millimeters)
Forward
The voltage range
Current
is below the
IFSM
physical avalanche
breakdown.
t
Only a low,
temperaturedependent leakage
rr flow.
current Q
can
Reverse
Voltage
Figure
4. when
Definition
of the
reverse
recovery
Fig. 1 shows the reverse avalanche
energy
using the
rectifier
(device
under time
test = DUT) in the reverse direction as a freewheeling diode at an inductive load.
When the inductance (L) is switched off, the current (IL) through the inductance
(L) will keep on flowing through the DUT until the stored energy
VBR
trr
VER VBRVRRM
IR
The diode is in the
avalanche breakdown
mode when a high
current can flow. The
clamping voltage is now
dependent on the
temperature and the
series resistance of the
diode.
Blocking Range
The diode is in the
avalanche breakdown
mode when a high
0
current can flow. The
clamping voltage is now
i
R
dependent on the
temperature and the
series resistance of the
diode.
IR
EAS (ER) Avalanche surge or reverse
energy
IR
time
reverse current during a reverse Reverse Avalanche
Breakdown Voltage
energy test
ReverseI Avalanche
F
Breakdown Voltage
I
Inductance L
AVALANCHE RECTIFIERS
Figure 2. Typical
reverseSpecified
clamping
Rectifiers
With
Reverse Avalanche Capability
Datasheet Parameters
IL
IL
I
V I S HR AY I N T E R T E C H N O L O G Y, I N C .
Figure
time2. Typical reverse clamping voltage and
reverse current during a reverse
voltage and
energy test
I
VS
VR
Figure 1. Avalanche energy test circuit
Figure 1. Avalanche energy test circuit
VR
IR
IRmax = IL0
ground
ground
VR VRRM V(BR)R IR IF VF IFAV IFSM trr
IR
IL
DUT
IR
VMN-SG2195-1511
Figure
3. Typical questions
voltage vs. current
characteristic
For technical
contact
[email protected]
of a diode with reverse avalanche breakdown.
Web: http://www.vishay.com/diodes/rectifiers/