BFP650 NPN Silicon Germanium RF Transistor 3 Preliminary data 4 • For high power amplifiers • Ideal for low phase noise oscilators • Maxim. available Gain Gma = 21 dB at 1.8 GHz 2 Noise figure F = 0.9 dB at 1.8 GHz • Gold metallization for high reliability 1 VPS05605 • 70 GHz fT- Silicon Germanium technology ESD: Electrostatic discharge sensitive device, observe handling precaution! Type BFP650 Marking R5s 1=B Pin Configuration 2=E 3=C 4=E - Package - SOT343 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCEO 4 Collector-emitter voltage VCES 13 Collector-base voltage VCBO 13 Emitter-base voltage VEBO 1.2 Collector current IC 150 Base current IB 10 Total power dissipation1) Ptot 500 mW Junction temperature Tj 150 °C Ambient temperature TA -65 ... 150 Storage temperature T stg -65 ... 150 V mA TS ≤ 75°C Thermal Resistance Parameter Symbol Value Unit Junction - soldering point2) RthJS ≤ 140 K/W 1T is measured on the collector lead at the soldering point to the pcb S 2For calculation of R thJA please refer to Application Note Thermal Resistance 1 Jan-08-2004 BFP650 Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Parameter Values Unit min. typ. max. V(BR)CEO 4 4.5 - V ICES - - 100 µA ICBO - - 100 nA IEBO - - 10 µA hFE 100 180 320 - DC Characteristics Collector-emitter breakdown voltage IC = 3 mA, I B = 0 Collector-emitter cutoff current VCE = 13 V, VBE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain IC = 80 mA, VCE = 3 V 2 Jan-08-2004 BFP650 Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT Unit - 37 - GHz Ccb - 0.26 - pF Cce - 0.45 - Ceb - 1.1 - IC = 80 mA, VCE = 3 V, f = 1 GHz Collector-base capacitance VCB = 3 V, f = 1 MHz Collector emitter capacitance VCE = 3 V, f = 1 MHz Emitter-base capacitance VEB = 0.5 V, f = 1 MHz Noise figure dB F IC = 10 mA, VCE = 3 V, f = 1.8 GHz, ZS = ZSopt IC = 10 mA, VCE = 3 V, f = 6 GHz, ZS = ZSopt - 0.8 - - 1.9 - IC = 80 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt, f = 1.8 GHz - 21 - IC = 80 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt, f = 6 GHz - 10.5 - Power gain, maximum available1) G ma |S21e|2 Transducer gain IC = 80 mA, VCE = 3 V, ZS = ZL = 50 Ω, f = 1.8 GHz dB - 17 - - 6 - IP 3 - 29.5 - P-1dB - 18 - IC = 80 mA, VCE = 3 V, ZS = ZL = 50 Ω, f = 6 GHz Third order intercept point at output2) dBm VCE = 3 V, I C = 80 mA, f = 1.8 GHz, ZS = ZL = 50 Ω 1dB Compression point at output IC = 80 mA, VCE = 3 V, ZS = ZL = 50 Ω, f = 1.8 GHz 1G 1/2 ma = |S21e / S12e| (k-(k²-1) ) 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz 3 Jan-08-2004 BFP650 SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax): Transitor Chip Data: IS = VAF = NE = VAR = NC = RBM = CJE = TF = ITF = VJC = TR = MJS = XTI = AF = TITF1 0.61 1000 2 2 1.8 0.895 682.5 1.9 1.25 0.6 0.2 0.27 3 fA V V Ω fF ps A V ns - 2 -0.0065 - BF = IKF = BR = IKR = RB = RE = VJE = XTF = PTF = MJC = CJS = XTB = FC = KF = TITF2 450 0.47 42 18 1.036 0.2 0.8 10 0 0.5 294.9 -1.42 0.8 2.441E-11 1.0E-5 A mA Ω V deg fF - NF = ISE = NR = ISC = IRB = RC = MJE = VTF = CJC = XCJC = VJS = EG = TNOM 1.025 62 1 700 4.548 1.006 0.3 1.5 204.6 1 0.6 1.078 298 fA fA mA Ω V fF V eV K All parameters are ready to use, no scalling is necessary. Extracted on behalf of Infineon Technologies AG by: Institut für Mobil- und Satellitentechnik (IMST) Package Equivalent Circuit: C B C O R C B S L C C C B C C C B F P 6 5 0 _ C h ip B L B B S B L B C R C C S E C B E C L C B R C E S L E C C B E I C C E I L E B C B E O T = C C E O 2 5 ° C Itf = 1 2 5 0 * ( 1 - 6 .5 e -3 * (T -2 5 ) + 1 .0 e -5 * (T -2 5 )^ 2 ) E For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http//www.infineon.com/silicondiscretes C LBC = LCC = LEC = LBB = LCB = LEB = CBEC = CBCC = CES = CBS = CCS = CBCO = CCEO = CBEO = CCEI = CBEI = RBS = RCS = RES = 50 50 4 554.6 606.9 138.7 327.6 171.4 490 120 135 7.5 112.6 121.5 5.7 6.9 710 710 140 pH pH pH pH pH pH fF fF fF fF fF fF fF fF fF Ω Ω Ω Ω Valid up to 6GHz 4 Jan-08-2004 BFP650 Total power dissipation Ptot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(t p) 10 3 550 mW K/W 450 RthJS Ptot 400 350 10 2 300 D = 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0 250 200 10 1 150 100 50 0 0 15 30 45 60 75 90 105 120 °C 10 0 -7 10 150 10 -6 10 -5 10 -4 10 -3 10 -2 °C TS 10 0 tp Permissible Pulse Load Collector-base capacitance Ccb= ƒ(VCB) Ptotmax/P totDC = ƒ(tp) f = 1MHz 10 2 0.8 - 0.6 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 1 CCB Ptotmax/ PtotDC pF 0.5 0.4 0.3 0.2 0.1 10 0 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 0 0 tp 2 4 6 8 10 V 14 VCB 5 Jan-08-2004 BFP650 Third order Intercept Point IP3=ƒ(IC) Transition frequency fT= ƒ(IC) (Output, ZS=ZL=50Ω) f = 1GHz VCE = parameter, f = 1.8 GHz VCE = parameter 40 33 dBm 4V 27 GHz 3V 30 21 fT IP3 24 18 1V 2V 3V 25 20 15 2V 15 12 9 10 6 3 0 0 1V 5 0.5V 15 30 45 60 75 90 105 120 mA 0 0 150 20 40 60 100 120 140 mA 80 IC 180 IC Power gain Gma, Gms = ƒ(IC) Power Gain Gma, Gms = ƒ(f), VCE = 3V |S21|² = f (f) f = parameter VCE = 3V, IC = 80mA 30 dB 55 dB 0.9GHz 26 45 24 40 35 G G 22 1.8GHz 20 30 18 2.4GHz 16 3GHz 25 20 14 15 5GHz 10 10 6GHz 8 20 40 60 80 100 120 140 160 mA Gma S21² 4GHz 12 6 0 Gms 5 0 0 200 IC 1 2 3 4 GHz 6 f 6 Jan-08-2004 BFP650 Power gain Gma, Gms = ƒ (VCE) IC = 80mA f = parameter 30 0.9GHz dB 1.8GHz 20 G 2.4GHz 3GHz 15 4GHz 5GHz 10 6GHz 5 0 0 1 2 3 4 V 5.5 VCE 7 Jan-08-2004