INFINEON BFP650

BFP650
NPN Silicon Germanium RF Transistor
3
Preliminary data
4
• For high power amplifiers
• Ideal for low phase noise oscilators
• Maxim. available Gain Gma = 21 dB at 1.8 GHz
2
Noise figure F = 0.9 dB at 1.8 GHz
• Gold metallization for high reliability
1
VPS05605
• 70 GHz fT- Silicon Germanium technology
ESD: Electrostatic discharge sensitive device, observe handling precaution!
Type
BFP650
Marking
R5s
1=B
Pin Configuration
2=E
3=C
4=E
-
Package
-
SOT343
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
4
Collector-emitter voltage
VCES
13
Collector-base voltage
VCBO
13
Emitter-base voltage
VEBO
1.2
Collector current
IC
150
Base current
IB
10
Total power dissipation1)
Ptot
500
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ... 150
Storage temperature
T stg
-65 ... 150
V
mA
TS ≤ 75°C
Thermal Resistance
Parameter
Symbol
Value
Unit
Junction - soldering point2)
RthJS
≤ 140
K/W
1T is measured on the collector lead at the soldering point to the pcb
S
2For calculation of R
thJA please refer to Application Note Thermal Resistance
1
Jan-08-2004
BFP650
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Parameter
Values
Unit
min.
typ.
max.
V(BR)CEO
4
4.5
-
V
ICES
-
-
100
µA
ICBO
-
-
100
nA
IEBO
-
-
10
µA
hFE
100
180
320
-
DC Characteristics
Collector-emitter breakdown voltage
IC = 3 mA, I B = 0
Collector-emitter cutoff current
VCE = 13 V, VBE = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 0.5 V, IC = 0
DC current gain
IC = 80 mA, VCE = 3 V
2
Jan-08-2004
BFP650
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Parameter
min.
typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
fT
Unit
-
37
-
GHz
Ccb
-
0.26
-
pF
Cce
-
0.45
-
Ceb
-
1.1
-
IC = 80 mA, VCE = 3 V, f = 1 GHz
Collector-base capacitance
VCB = 3 V, f = 1 MHz
Collector emitter capacitance
VCE = 3 V, f = 1 MHz
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz
Noise figure
dB
F
IC = 10 mA, VCE = 3 V, f = 1.8 GHz, ZS = ZSopt
IC = 10 mA, VCE = 3 V, f = 6 GHz, ZS = ZSopt
-
0.8
-
-
1.9
-
IC = 80 mA, VCE = 3 V, ZS = ZSopt,
ZL = ZLopt, f = 1.8 GHz
-
21
-
IC = 80 mA, VCE = 3 V, ZS = ZSopt,
ZL = ZLopt, f = 6 GHz
-
10.5
-
Power gain, maximum available1)
G ma
|S21e|2
Transducer gain
IC = 80 mA, VCE = 3 V, ZS = ZL = 50 Ω,
f = 1.8 GHz
dB
-
17
-
-
6
-
IP 3
-
29.5
-
P-1dB
-
18
-
IC = 80 mA, VCE = 3 V, ZS = ZL = 50 Ω,
f = 6 GHz
Third order intercept point at output2)
dBm
VCE = 3 V, I C = 80 mA, f = 1.8 GHz,
ZS = ZL = 50 Ω
1dB Compression point at output
IC = 80 mA, VCE = 3 V, ZS = ZL = 50 Ω,
f = 1.8 GHz
1G
1/2
ma = |S21e / S12e| (k-(k²-1) )
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
3
Jan-08-2004
BFP650
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):
Transitor Chip Data:
IS =
VAF =
NE =
VAR =
NC =
RBM =
CJE =
TF =
ITF =
VJC =
TR =
MJS =
XTI =
AF =
TITF1
0.61
1000
2
2
1.8
0.895
682.5
1.9
1.25
0.6
0.2
0.27
3
fA
V
V
Ω
fF
ps
A
V
ns
-
2
-0.0065
-
BF =
IKF =
BR =
IKR =
RB =
RE =
VJE =
XTF =
PTF =
MJC =
CJS =
XTB =
FC =
KF =
TITF2
450
0.47
42
18
1.036
0.2
0.8
10
0
0.5
294.9
-1.42
0.8
2.441E-11
1.0E-5
A
mA
Ω
V
deg
fF
-
NF =
ISE =
NR =
ISC =
IRB =
RC =
MJE =
VTF =
CJC =
XCJC =
VJS =
EG =
TNOM
1.025
62
1
700
4.548
1.006
0.3
1.5
204.6
1
0.6
1.078
298
fA
fA
mA
Ω
V
fF
V
eV
K
All parameters are ready to use, no scalling is necessary. Extracted on behalf of Infineon Technologies AG by:
Institut für Mobil- und Satellitentechnik (IMST)
Package Equivalent Circuit:
C B C O
R C B S
L C C
C B C C
C
B F P 6 5 0 _ C h ip
B
L B B
S
B
L B C
R C C S
E
C B E C
L C B
R C E S
L E C
C B E I
C C E I
L E B
C B E O
T =
C C E O
2 5 ° C
Itf = 1 2 5 0 * ( 1 - 6 .5 e -3 * (T -2 5 ) + 1 .0 e -5 * (T -2 5 )^ 2 )
E
For examples and ready to use parameters
please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon
Technologies CD-ROM or see Internet:
http//www.infineon.com/silicondiscretes
C
LBC =
LCC =
LEC =
LBB =
LCB =
LEB =
CBEC =
CBCC =
CES =
CBS =
CCS =
CBCO =
CCEO =
CBEO =
CCEI =
CBEI =
RBS =
RCS =
RES =
50
50
4
554.6
606.9
138.7
327.6
171.4
490
120
135
7.5
112.6
121.5
5.7
6.9
710
710
140
pH
pH
pH
pH
pH
pH
fF
fF
fF
fF
fF
fF
fF
fF
fF
Ω
Ω
Ω
Ω
Valid up to 6GHz
4
Jan-08-2004
BFP650
Total power dissipation Ptot = ƒ(TS)
Permissible Pulse Load RthJS = ƒ(t p)
10 3
550
mW
K/W
450
RthJS
Ptot
400
350
10 2
300
D = 0.5
0.2
0.1
0.05
0.02
0.01
0.005
0
250
200
10 1
150
100
50
0
0
15
30
45
60
75
90 105 120 °C
10 0 -7
10
150
10
-6
10
-5
10
-4
10
-3
10
-2
°C
TS
10
0
tp
Permissible Pulse Load
Collector-base capacitance Ccb= ƒ(VCB)
Ptotmax/P totDC = ƒ(tp)
f = 1MHz
10 2
0.8
-
0.6
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
10 1
CCB
Ptotmax/ PtotDC
pF
0.5
0.4
0.3
0.2
0.1
10 0 -7
10
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
0
0
tp
2
4
6
8
10
V
14
VCB
5
Jan-08-2004
BFP650
Third order Intercept Point IP3=ƒ(IC)
Transition frequency fT= ƒ(IC)
(Output, ZS=ZL=50Ω)
f = 1GHz
VCE = parameter, f = 1.8 GHz
VCE = parameter
40
33
dBm
4V
27
GHz
3V
30
21
fT
IP3
24
18
1V
2V
3V
25
20
15
2V
15
12
9
10
6
3
0
0
1V
5
0.5V
15
30
45
60
75
90 105 120 mA
0
0
150
20
40
60
100 120 140 mA
80
IC
180
IC
Power gain Gma, Gms = ƒ(IC)
Power Gain Gma, Gms = ƒ(f),
VCE = 3V
|S21|² = f (f)
f = parameter
VCE = 3V, IC = 80mA
30
dB
55
dB
0.9GHz
26
45
24
40
35
G
G
22
1.8GHz
20
30
18
2.4GHz
16
3GHz
25
20
14
15
5GHz
10
10
6GHz
8
20
40
60
80 100 120 140 160 mA
Gma
S21²
4GHz
12
6
0
Gms
5
0
0
200
IC
1
2
3
4
GHz
6
f
6
Jan-08-2004
BFP650
Power gain Gma, Gms = ƒ (VCE)
IC = 80mA
f = parameter
30
0.9GHz
dB
1.8GHz
20
G
2.4GHz
3GHz
15
4GHz
5GHz
10
6GHz
5
0
0
1
2
3
4
V
5.5
VCE
7
Jan-08-2004