BFP620F E7764 XYs NPN Silicon Germanium RF Transistor Preliminary data • High gain low noise RF transistor 3 • Small package 1.4 x 0.8 x 0.59 mm 2 4 • Outstanding noise figure F = 0.7 dB at 1.8 GHz 1 Outstanding noise figure F = 1.3 dB at 6 GHz • Maximum stable gain TSFP-4 Gms = 21 dB at 1.8 GHz to p v ie w Gma = 10 dB at 6 GHz • Gold metallization for extra high reliability 3 4 A C s 1 2 d ir e c tio n o f u n r e e lin g ESD: Electrostatic discharge sensitive device, observe handling precaution! Type BFP620F E7764 Marking R2s 1=B Pin Configuration 2=E 3=C 4=E - Package - TSFP-4 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCEO 2.3 Collector-emitter voltage VCES 7.5 Collector-base voltage VCBO 7.5 Emitter-base voltage VEBO 1.2 Collector current IC 80 Base current IB 3 Total power dissipation1) Ptot 185 mW Junction temperature Tj 150 °C Ambient temperature TA -65 ... 150 Storage temperature T stg -65 ... 150 V mA TS ≤ 96°C Thermal Resistance Parameter Symbol Value Unit Junction - soldering point 2) RthJS ≤ 290 K/W 1T is measured on the collector lead at the soldering point to the pcb S 2For calculation of R thJA please refer to Application Note Thermal Resistance 1 Oct-20-2003 BFP620F E7764 Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Parameter Values Unit min. typ. max. 2.3 2.8 - V ICES - - 10 µA ICBO - - 100 nA IEBO - - 3 µA hFE 100 180 320 DC Characteristics Collector-emitter breakdown voltage V(BR)CEO IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 7.5 V, VBE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain - IC = 50 mA, VCE = 1.5 V 2 Oct-20-2003 BFP620F E7764 Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT - 65 - Ccb - 0.12 0.2 Cce - 0.2 - Ceb - 0.45 - Unit GHz IC = 50 mA, VCE = 1.5 V, f = 1 GHz Collector-base capacitance pF VCB = 2 V, f = 1 MHz Collector emitter capacitance VCE = 2 V, f = 1 MHz Emitter-base capacitance VEB = 0.5 V, f = 1 MHz Noise figure dB F IC = 5 mA, VCE = 1.5 V, f = 1.8 GHz, ZS = ZSopt - 0.7 - IC = 5 mA, VCE = 1.5 V, f = 6 GHz, ZS = ZSopt - 1.3 - G ms - 21 - dB G ma - 10 - dB Power gain, maximum stable1) IC = 50 mA, VCE = 1.5 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Power gain, maximum available1) IC = 50 mA, VCE = 1.5 V, ZS = ZSopt, ZL = ZLopt, f = 6 GHz |S21e|2 Transducer gain IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 Ω, f = 1.8 GHz dB - 19.5 - - 9.5 - IP 3 - 25 - P-1dB - 14 - IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 Ω, f = 6 GHz Third order intercept point at output2) dBm VCE = 2 V, I C = 50 mA, f = 1.8 GHz, ZS = ZL = 50 Ω 1dB Compression point at output IC = 50 mA, VCE = 2 V, ZS = ZL = 50 Ω, f = 1.8 GHz 1G 1/2 ma = |S21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e| 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz 3 Oct-20-2003 BFP620F E7764 SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax): Transitor Chip Data: IS = VAF = NE = VAR = NC = RBM = CJE = TF = ITF = VJC = TR = MJS = XTI = AF = TITF1 0.22 1000 2 2 2 2.707 250.7 1.43 2.4 0.6 0.2 0.5 3 fA V V - 2 -0.0065 - Ω fF ps A V ns - BF = IKF = BR = IKR = RB = RE = VJE = XTF = PTF = MJC = CJS = NK = FC = KF = TITF2 425 0.25 50 10 3.129 0.6 0.75 10 0 0.5 128.1 -1.42 0.8 7.291E-11 1.0E-5 A mA Ω V deg fF - NF = ISE = NR = ISC = IRB = RC = MJE = VTF = CJC = XCJC = VJS = EG = TNOM 1.025 21 1 18 1.522 2.364 0.3 1.5 124.9 1 0.52 1.078 298 fA pA mA Ω V fF V eV K All parameters are ready to use, no scalling is necessary. Package Equivalent Circuit: To avoid high complexity of the package equivalent circuit, both emitter leads of TSFP-4 are combined in one electrical connection.RLxI are series resistors for the inductances LxI and Kxa-yb are the coupling coefficients between the inductances Lxa and Lyb . LB0 = LE0 = LC0 = KB0-E0 = KB0-C0 = KE0-C0 = CBE = CBC = CCE = LBI = RLBI = LEI = RLEI = LCI = RLI = KBI-EI = KBI-CI = KEI-CI = 0.22 0.28 0.22 0.1 0.01 0.11 34 2 33 0.42 0.15 0.26 0.11 0.35 0.13 -0.05 -0.08 0.2 nH nH nH fF fF fF nH Ω nH Ω nH Ω - Valid up to 6GHz 4 Oct-20-2003 BFP620F E7764 Total power dissipation Ptot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(t p) 10 3 200 mW 160 K/W RthJS Ptot 140 120 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 2 100 80 60 40 20 0 0 15 30 45 60 75 90 105 120 °C 10 1 -7 10 150 10 -6 10 -5 10 -4 10 -3 10 -2 TS s 10 0 tp Permissible Pulse Load Collector-base capacitance Ccb= ƒ(VCB) Ptotmax/P totDC = ƒ(tp) f = 1MHz 10 1 0.4 Ptotmax / PtotDC pF CCB 0.3 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 0.25 0.2 0.15 0.1 0.05 10 0 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 0 0 tp 1 2 3 4 5 6 V 8 VCB 5 Oct-20-2003 BFP620F E7764 Transition frequency fT = ƒ(IC) Power gain Gma, Gms = ƒ(IC) f = 1GHz VCE = 1.5V VCE = Parameter in V f = Parameter in GHz 30 70 GHz dB 0.9 60 26 1 to 2.3 55 24 22 45 G fT 50 0.8 40 1.8 20 35 18 2.4 30 16 3 14 4 12 5 10 6 25 20 15 10 0.3 0.5 5 0 0 10 20 30 40 50 60 70 80 mA 8 6 0 100 10 20 30 40 50 70 mA 60 IC 90 IC Power Gain Gma, Gms = ƒ(f), Power gain Gma, Gms = ƒ (VCE) |S21|² = f (f) IC = 50mA VCE = 1.5V, IC = 50mA f = Parameter in GHz 50 30 dB dB 0.9 24 40 1.8 20 30 G G 35 Gms 5 12 6 8 |S21|² Gma 15 4 0 10 5 0 3 16 4 25 20 2.4 1 2 3 4 GHz -4 0.2 6 0.6 1 1.4 1.8 V 2.6 VCE f 6 Oct-20-2003