INFINEON BFP620FE7764

BFP620F E7764
XYs
NPN Silicon Germanium RF Transistor
Preliminary data
• High gain low noise RF transistor
3
• Small package 1.4 x 0.8 x 0.59 mm
2
4
• Outstanding noise figure F = 0.7 dB at 1.8 GHz
1
Outstanding noise figure F = 1.3 dB at 6 GHz
• Maximum stable gain
TSFP-4
Gms = 21 dB at 1.8 GHz
to p v ie w
Gma = 10 dB at 6 GHz
• Gold metallization for extra high reliability
3
4
A C s
1
2
d ir e c tio n o f u n r e e lin g
ESD: Electrostatic discharge sensitive device, observe handling precaution!
Type
BFP620F E7764
Marking
R2s
1=B
Pin Configuration
2=E
3=C
4=E
-
Package
-
TSFP-4
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
2.3
Collector-emitter voltage
VCES
7.5
Collector-base voltage
VCBO
7.5
Emitter-base voltage
VEBO
1.2
Collector current
IC
80
Base current
IB
3
Total power dissipation1)
Ptot
185
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ... 150
Storage temperature
T stg
-65 ... 150
V
mA
TS ≤ 96°C
Thermal Resistance
Parameter
Symbol
Value
Unit
Junction - soldering point 2)
RthJS
≤ 290
K/W
1T is measured on the collector lead at the soldering point to the pcb
S
2For calculation of R
thJA please refer to Application Note Thermal Resistance
1
Oct-20-2003
BFP620F E7764
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Parameter
Values
Unit
min.
typ.
max.
2.3
2.8
-
V
ICES
-
-
10
µA
ICBO
-
-
100
nA
IEBO
-
-
3
µA
hFE
100
180
320
DC Characteristics
Collector-emitter breakdown voltage
V(BR)CEO
IC = 1 mA, I B = 0
Collector-emitter cutoff current
VCE = 7.5 V, VBE = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 0.5 V, IC = 0
DC current gain
-
IC = 50 mA, VCE = 1.5 V
2
Oct-20-2003
BFP620F E7764
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Parameter
min.
typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
fT
-
65
-
Ccb
-
0.12
0.2
Cce
-
0.2
-
Ceb
-
0.45
-
Unit
GHz
IC = 50 mA, VCE = 1.5 V, f = 1 GHz
Collector-base capacitance
pF
VCB = 2 V, f = 1 MHz
Collector emitter capacitance
VCE = 2 V, f = 1 MHz
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz
Noise figure
dB
F
IC = 5 mA, VCE = 1.5 V, f = 1.8 GHz, ZS = ZSopt
-
0.7
-
IC = 5 mA, VCE = 1.5 V, f = 6 GHz, ZS = ZSopt
-
1.3
-
G ms
-
21
-
dB
G ma
-
10
-
dB
Power gain, maximum stable1)
IC = 50 mA, VCE = 1.5 V, ZS = ZSopt,
ZL = ZLopt , f = 1.8 GHz
Power gain, maximum available1)
IC = 50 mA, VCE = 1.5 V, ZS = ZSopt,
ZL = ZLopt, f = 6 GHz
|S21e|2
Transducer gain
IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 Ω,
f = 1.8 GHz
dB
-
19.5
-
-
9.5
-
IP 3
-
25
-
P-1dB
-
14
-
IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 Ω,
f = 6 GHz
Third order intercept point at output2)
dBm
VCE = 2 V, I C = 50 mA, f = 1.8 GHz,
ZS = ZL = 50 Ω
1dB Compression point at output
IC = 50 mA, VCE = 2 V, ZS = ZL = 50 Ω,
f = 1.8 GHz
1G
1/2
ma = |S21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e|
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
3
Oct-20-2003
BFP620F E7764
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):
Transitor Chip Data:
IS =
VAF =
NE =
VAR =
NC =
RBM =
CJE =
TF =
ITF =
VJC =
TR =
MJS =
XTI =
AF =
TITF1
0.22
1000
2
2
2
2.707
250.7
1.43
2.4
0.6
0.2
0.5
3
fA
V
V
-
2
-0.0065
-
Ω
fF
ps
A
V
ns
-
BF =
IKF =
BR =
IKR =
RB =
RE =
VJE =
XTF =
PTF =
MJC =
CJS =
NK =
FC =
KF =
TITF2
425
0.25
50
10
3.129
0.6
0.75
10
0
0.5
128.1
-1.42
0.8
7.291E-11
1.0E-5
A
mA
Ω
V
deg
fF
-
NF =
ISE =
NR =
ISC =
IRB =
RC =
MJE =
VTF =
CJC =
XCJC =
VJS =
EG =
TNOM
1.025
21
1
18
1.522
2.364
0.3
1.5
124.9
1
0.52
1.078
298
fA
pA
mA
Ω
V
fF
V
eV
K
All parameters are ready to use, no scalling is necessary.
Package Equivalent Circuit:
To avoid high complexity of the package equivalent circuit,
both emitter leads of TSFP-4 are combined in one electrical
connection.RLxI are series resistors for the inductances LxI
and Kxa-yb are the coupling coefficients between the
inductances Lxa and Lyb .
LB0 =
LE0 =
LC0 =
KB0-E0 =
KB0-C0 =
KE0-C0 =
CBE =
CBC =
CCE =
LBI =
RLBI =
LEI =
RLEI =
LCI =
RLI =
KBI-EI =
KBI-CI =
KEI-CI =
0.22
0.28
0.22
0.1
0.01
0.11
34
2
33
0.42
0.15
0.26
0.11
0.35
0.13
-0.05
-0.08
0.2
nH
nH
nH
fF
fF
fF
nH
Ω
nH
Ω
nH
Ω
-
Valid up to 6GHz
4
Oct-20-2003
BFP620F E7764
Total power dissipation Ptot = ƒ(TS)
Permissible Pulse Load RthJS = ƒ(t p)
10 3
200
mW
160
K/W
RthJS
Ptot
140
120
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10 2
100
80
60
40
20
0
0
15
30
45
60
75
90 105 120 °C
10 1 -7
10
150
10
-6
10
-5
10
-4
10
-3
10
-2
TS
s
10
0
tp
Permissible Pulse Load
Collector-base capacitance Ccb= ƒ(VCB)
Ptotmax/P totDC = ƒ(tp)
f = 1MHz
10 1
0.4
Ptotmax / PtotDC
pF
CCB
0.3
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
0.25
0.2
0.15
0.1
0.05
10 0 -7
10
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
0
0
tp
1
2
3
4
5
6
V
8
VCB
5
Oct-20-2003
BFP620F E7764
Transition frequency fT = ƒ(IC)
Power gain Gma, Gms = ƒ(IC)
f = 1GHz
VCE = 1.5V
VCE = Parameter in V
f = Parameter in GHz
30
70
GHz
dB
0.9
60
26
1 to 2.3
55
24
22
45
G
fT
50
0.8
40
1.8
20
35
18
2.4
30
16
3
14
4
12
5
10
6
25
20
15
10
0.3
0.5
5
0
0
10
20
30
40
50
60
70
80 mA
8
6
0
100
10
20
30
40
50
70 mA
60
IC
90
IC
Power Gain Gma, Gms = ƒ(f),
Power gain Gma, Gms = ƒ (VCE)
|S21|² = f (f)
IC = 50mA
VCE = 1.5V, IC = 50mA
f = Parameter in GHz
50
30
dB
dB
0.9
24
40
1.8
20
30
G
G
35
Gms
5
12
6
8
|S21|²
Gma
15
4
0
10
5
0
3
16
4
25
20
2.4
1
2
3
4
GHz
-4
0.2
6
0.6
1
1.4
1.8
V
2.6
VCE
f
6
Oct-20-2003