INFINEON Q68000

GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Preliminary Datasheet
* Power amplifier for GSM or AMPS application
* Fully integrated 2 stage amplifier
* Operating voltage range: 2.7 to 6 V
* 2 W output power at 3.6 V
* Overall power added efficiency 46 %
* Input matched to 50 Ω, simple output match
ESD:
Electrostatic discharge sensitive device,
observe handling precautions!
Type
Marking
Ordering code
(taped)
Package 1)
CGY 94
CGY 94
Q68000-A9124
MW 12
Maximum ratings
Characteristics
Symbol
max. Value
Unit
VD
9
V
Negative supply voltage )
VG
-8
V
Supply current
ID
2
A
Channel temperature
TCh
150
°C
Storage temperature
Tstg
-55...+150
°C
PPulse
9
W
Ptot
5
W
RthChS
≤14
K/W
Positive supply voltage
2
Pulse peak power dissipation
duty cycle 12.5%, ton=0.577ms
Total power dissipation (Ts ≤ 81 °C)
Ts: Temperature at soldering point
Thermal Resistance
Channel-soldering point
1) Plastic body identical to SOT 223, dimensions see chapter Package Outlines
2) VG = -8V only in combination with VTR = 0V; VG = -6V while VTR ≠ 0V
Siemens Aktiengesellschaft
pg. 1/9
17.10.95
HL EH PD 21
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Functional block diagram:
Control circuit:
VG (1)
VTR (2)
VD1 (7)
VD2 (12)
Control
Circuit
Pin (8)
Pout (12)
GND1 (6, 9)
Pin #
The drain current ID of the CGY 94 is
adjusted by the internal control circuit.
Therefore a negative voltage (-4V...-6V)
has to be supplied at VG. For transmit
operation VTR must be set to 0V. During
receive operation VTR should be disconnected (shut off mode).
GND3 (11)
GND2
(3, 4, 5, 10)
Configuration
1
VG
Negative voltage at control circuit (-4V...-6V)
2
VTR
3,4,5,10
GND 2
RF and DC ground of the 2nd stage
6,9
GND 1
RF and DC ground of the 1st stage
7
VD1
Positive drain voltage of the 1st stage
8
RFin
RF input power
11
GND 3
12
VD2, RFout
Control voltage for transmit mode (0V) or receive mode (open)
Ground for internal output matching
Positive drain voltage of the 2nd stage, RF output power
DC characteristics
Characteristics
Drain current
Symbol Conditions
stage 1 IDSS1
VD=3V, VG=0V, VTR n.c.
stage 2 IDSS2
min
typ
max
Unit
0.6
0.9
1.3
A
2.7
4.1
5.9
A
-
1.1
-
A
Drain current with
active current control
ID
VD=3V, VG=-4V, VTR=0V
Transconductance
gfs1
VD=3V, ID=350mA
0.25
0.32
-
S
gfs2
VD=3V, ID=700mA
1.1
1.3
-
S
Vp
VD=3V, ID<500µA
-3.8
-2.8
-1.8
V
(stage 1 and 2)
Pinch off voltage
(all stages)
Siemens Aktiengesellschaft
pg. 2/9
17.10.95
HL EH PD 21
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Electrical characteristics
(TA = 25°C , f=0.9 GHz, ZS=ZL=50 Ohm, VD=3.6V, VG=-4V, VTR pin connected to
ground, unless otherwise specified; pulsed with a duty cycle of 10%, ton=0.33ms)
Characteristics
Supply current
Symbol
IDD
min
-
typ
1.18
max
-
Unit
A
IG
-
2
-
mA
ID
-
400
-
µA
IG
-
10
-
µA
G
27.0
29.0
-
dB
G
22.8
23.6
-
dB
Po
31.5
32.3
-
dBm
Po
32.8
33.6
-
dBm
Po
34.5
35.5
-
dBm
η
43
48
-
%
η
42
47
-
%
η
41
46
-
%
-
-
-49
-45
1.5 : 1
2.0 : 1
dBc
dBc
-
VD=3.0V; Pin=10dBm
Negative supply current
(normal operation)
Shut-off current
VTR n.c.
Negative supply current
(shut off mode, VTR pin n.c.)
Gain
Pin=-5dBm
Power gain
VD=3.6V; Pin=10dBm
Output Power
VD=3.0V; Pin=10dBm
Output Power
VD=3.6V; Pin=10dBm
Output Power
VD=5V; Pin=10dBm
Overall Power added Efficiency
VD=3.0V; Pin=10dBm
Overall Power added Efficiency
VD=3.6V; Pin=10dBm
Overall Power added Efficiency
VD=5V; Pin=10dBm
Harmonics (Pin=10dBm, CW)
VD=3.6V;
(Pout=33.1dBm)
Input VSWR VD=3.6V;
Siemens Aktiengesellschaft
2f0
3f0
pg. 3/9
17.10.95
HL EH PD 21
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Pout and PAE vs. Pin
(VD=3.6V, VG=-4V, VTR=0V, f=900GHz, pulsed with a duty cycle of 10%, ton=0.33ms)
45
60
AAAA
AAAAAAAAAAAAAAAAAAAAAAAAA
AAAA
AAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAA
AAAA
AAAA
AAAAAAA
AAAAAAAA
AAAA
AAA
AAAA
AAAA
AAA
AAA
AAAAAAA
AAAAAAA
AAAAAA
AAAAAAA
AAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAA
AAA
AAAAAAA
AAAAAAA
AAA
AAAAAAA
AAAAAAA
AAAA
AAAA
AAA
AAAA
AAA
AAAA
AAAA
AAA
AAA
A
AAA
Pout [dBm]
AAA
AAA
AAA
AAA
AAAA
AAA
AAAAAAAAAPAE [%]
AAAA
AAA
AAA
A
AAA
AAA
AAA
AAAA
A
AAA
AAAAAAA
A
AAA
AAAA
AAA
AAAAA
AAA
AAA
AAAA
AAAA
AAAAAAA
AAA
AAAAAAA
35
30
25
20
50
40
30
PAE [%]
Pout [dBm]
40
20
10
15
0
-5
0
5
10
15
Pin [dBm]
Pout and PAE vs. Pin
(VD=5V, VG=-4V, VTR=0V, f=900GHz, pulsed with a duty cycle of 10%, ton=0.33ms)
45
60
AAAAAAAAAAAAAAAAAAAAA
AAAA
AAAAAAA
AAAA
AAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAA
AAAA
AAAA
AAA
AAAA
AAAA
AAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAA
AAAA
AAA
AAAA
AAA
AAA
AAA
AAA
AAAA
A
AA
AAAA
AAAA
AAAA
AAAA
AAA
AAAA
AAA
AAAA
AAAA
AAA
AAAA
AAA
AAA
AAAA
AAA
AAAA
AAAA
A
AA
AAA
AAAAAAA
AAAA
AAAAAAA
AAAAAA
AAAA
AAA
Pout [dBm]
AAAA
A
AAA
AAA
AAAA
AAA
AAA
AAAA
AAAA
AAAA
AA
AAAA
AAA
AAA
AAAA
AAAA
PAE [%]
AAAA
AAAA
AAA
AAA
AAAA
AAAA
AAAA
A
AAAAAAA
AAA
AAAA
AAAA
A
AAA
AAAA
AAAAA
AA A
AAA
AAAAAAA
AAAA
AAAA
AAA
35
30
25
20
50
40
30
PAE [%]
Pout [dBm]
40
20
10
15
0
-5
0
5
10
15
Pin [dBm]
Siemens Aktiengesellschaft
pg. 4/9
17.10.95
HL EH PD 21
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
S-Parameter at VD=3.6V and Pin=9dBm
(VG=-4V, VTR=0V, pulsed with a duty cycle of 10%)
30
25
20
15
Mag [dB]
10
5
MAG(s11)
0
MAG(s21)
-5
-10
-15
-20
-25
950
930
910
890
870
850
830
810
790
770
750
-30
f [M Hz]
S-Parameter at VD=5V and Pin=9dBm
(VG=-4V, VTR=0V, pulsed with a duty cycle of 10%)
30
25
20
15
Mag [dB]
10
5
0
MAG(s11)
-5
MAG(s21)
-10
-15
-20
-25
950
930
910
890
870
850
830
810
790
770
750
-30
f [M Hz]
Siemens Aktiengesellschaft
pg. 5/9
17.10.95
HL EH PD 21
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Performance of internal bias control circuit
(VTR=0V)
3,0
2,8
2,6
2,4
2,2
ID / A
2,0
1,8
1,6
1,4
ID (VD=3.0V)
1,2
ID (VD=6.0V)
1,0
0,8
0,6
0,4
2,0
2,5
3,0
3,5
4,0
4,5
5,0
5,5
6,0
-Vg / V
Siemens Aktiengesellschaft
pg. 6/9
17.10.95
HL EH PD 21
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Total Power Dissipation Ptot=f(TS)
Permissible pulse load Ptot_max/Ptot_DC = f(t_p)
Siemens Aktiengesellschaft
pg. 7/9
17.10.95
HL EH PD 21
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Test circuit board:
Note:
By changing the position of the
6.8 pF capacitor at pin # 12 it is
possible to tune the board for
max. Pout or max. PAE. To
achieve the maximum output
power place the capacitor close
to the CGY94. For a better PAE
increase the distance between
the capacitor and the CGY94
device (2-5mm).
43nH
Principal circuit:
VG
+VD
1nF
4.7uF
1nF
43nH
VG (1)
VTR (2)
VTR
VD1 (7)
VD2 (12)
Control
Circuit
1nF
IN
Pout (12)
Pin (8)
OUT
6.8pF
GND1 (6, 9)
GND2
(3, 4, 5, 10)
GND3 (11)
2) Coilcraft SMD Spring Inductor
distribution by Ginsbury Electronic GmbH, Am Moosfeld 85 D-81829 München, Tel. 089/45170-223
Siemens Aktiengesellschaft
pg. 8/9
17.10.95
HL EH PD 21
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
APPLICATION - HINTS
1. CW - capability of the CGY94
Proving the possibility of CW - operation there must be known the total power dissipation of the
device. This value can be found as a function of the temperature in the datasheet (page 7). The
CGY94 has a maximum total power dissipation of Ptot = 5 W.
As an example we take the operating point with a drain voltage VD = 3 V and a typical drain current
of ID=1.0 A. So the maximum DC - power can be calculated to:
PDC = VD ⋅ I D = 3W
This value is smaller than 5 W and CW - operation is possible.
By decoupling RF power out of the CGY94 the power dissipation of the device can be further
reduced. Assuming a power added efficiency (PAE) of 40 % the total power dissipation Ptot can be
calculated using the following formula:
Ptot = PDC (1− PAE ) = 3W (1− 0.40) = 1.8W
2. Operation without using the internal current control
If you don' t want to use the internal current control, it is recommended to connect the negative
supply voltage at pin 1 (VTR) instead of pin 2 (VG). In that case VG is not connected.
3. Biasing and use considerations
Biasing should be timed in such a way, that the gate voltage (VG) is always applied before the drain
voltage (VD), and when returning to the standby mode, the drain voltage has to be removed before
the gate voltage.
Siemens Aktiengesellschaft
pg. 9/9
17.10.95
HL EH PD 21