GaAs MMIC CGY 94 _______________________________________________________________________________________________________ Preliminary Datasheet * Power amplifier for GSM or AMPS application * Fully integrated 2 stage amplifier * Operating voltage range: 2.7 to 6 V * 2 W output power at 3.6 V * Overall power added efficiency 46 % * Input matched to 50 Ω, simple output match ESD: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (taped) Package 1) CGY 94 CGY 94 Q68000-A9124 MW 12 Maximum ratings Characteristics Symbol max. Value Unit VD 9 V Negative supply voltage ) VG -8 V Supply current ID 2 A Channel temperature TCh 150 °C Storage temperature Tstg -55...+150 °C PPulse 9 W Ptot 5 W RthChS ≤14 K/W Positive supply voltage 2 Pulse peak power dissipation duty cycle 12.5%, ton=0.577ms Total power dissipation (Ts ≤ 81 °C) Ts: Temperature at soldering point Thermal Resistance Channel-soldering point 1) Plastic body identical to SOT 223, dimensions see chapter Package Outlines 2) VG = -8V only in combination with VTR = 0V; VG = -6V while VTR ≠ 0V Siemens Aktiengesellschaft pg. 1/9 17.10.95 HL EH PD 21 GaAs MMIC CGY 94 _______________________________________________________________________________________________________ Functional block diagram: Control circuit: VG (1) VTR (2) VD1 (7) VD2 (12) Control Circuit Pin (8) Pout (12) GND1 (6, 9) Pin # The drain current ID of the CGY 94 is adjusted by the internal control circuit. Therefore a negative voltage (-4V...-6V) has to be supplied at VG. For transmit operation VTR must be set to 0V. During receive operation VTR should be disconnected (shut off mode). GND3 (11) GND2 (3, 4, 5, 10) Configuration 1 VG Negative voltage at control circuit (-4V...-6V) 2 VTR 3,4,5,10 GND 2 RF and DC ground of the 2nd stage 6,9 GND 1 RF and DC ground of the 1st stage 7 VD1 Positive drain voltage of the 1st stage 8 RFin RF input power 11 GND 3 12 VD2, RFout Control voltage for transmit mode (0V) or receive mode (open) Ground for internal output matching Positive drain voltage of the 2nd stage, RF output power DC characteristics Characteristics Drain current Symbol Conditions stage 1 IDSS1 VD=3V, VG=0V, VTR n.c. stage 2 IDSS2 min typ max Unit 0.6 0.9 1.3 A 2.7 4.1 5.9 A - 1.1 - A Drain current with active current control ID VD=3V, VG=-4V, VTR=0V Transconductance gfs1 VD=3V, ID=350mA 0.25 0.32 - S gfs2 VD=3V, ID=700mA 1.1 1.3 - S Vp VD=3V, ID<500µA -3.8 -2.8 -1.8 V (stage 1 and 2) Pinch off voltage (all stages) Siemens Aktiengesellschaft pg. 2/9 17.10.95 HL EH PD 21 GaAs MMIC CGY 94 _______________________________________________________________________________________________________ Electrical characteristics (TA = 25°C , f=0.9 GHz, ZS=ZL=50 Ohm, VD=3.6V, VG=-4V, VTR pin connected to ground, unless otherwise specified; pulsed with a duty cycle of 10%, ton=0.33ms) Characteristics Supply current Symbol IDD min - typ 1.18 max - Unit A IG - 2 - mA ID - 400 - µA IG - 10 - µA G 27.0 29.0 - dB G 22.8 23.6 - dB Po 31.5 32.3 - dBm Po 32.8 33.6 - dBm Po 34.5 35.5 - dBm η 43 48 - % η 42 47 - % η 41 46 - % - - -49 -45 1.5 : 1 2.0 : 1 dBc dBc - VD=3.0V; Pin=10dBm Negative supply current (normal operation) Shut-off current VTR n.c. Negative supply current (shut off mode, VTR pin n.c.) Gain Pin=-5dBm Power gain VD=3.6V; Pin=10dBm Output Power VD=3.0V; Pin=10dBm Output Power VD=3.6V; Pin=10dBm Output Power VD=5V; Pin=10dBm Overall Power added Efficiency VD=3.0V; Pin=10dBm Overall Power added Efficiency VD=3.6V; Pin=10dBm Overall Power added Efficiency VD=5V; Pin=10dBm Harmonics (Pin=10dBm, CW) VD=3.6V; (Pout=33.1dBm) Input VSWR VD=3.6V; Siemens Aktiengesellschaft 2f0 3f0 pg. 3/9 17.10.95 HL EH PD 21 GaAs MMIC CGY 94 _______________________________________________________________________________________________________ Pout and PAE vs. Pin (VD=3.6V, VG=-4V, VTR=0V, f=900GHz, pulsed with a duty cycle of 10%, ton=0.33ms) 45 60 AAAA AAAAAAAAAAAAAAAAAAAAAAAAA AAAA AAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAA AAAA AAAA AAAAAAA AAAAAAAA AAAA AAA AAAA AAAA AAA AAA AAAAAAA AAAAAAA AAAAAA AAAAAAA AAA AAAA AAAA AAAA AAAA AAAA AAAA AAA AAAAAAA AAAAAAA AAAAAAA AAAA AAA AAAAAAA AAAAAAA AAA AAAAAAA AAAAAAA AAAA AAAA AAA AAAA AAA AAAA AAAA AAA AAA A AAA Pout [dBm] AAA AAA AAA AAA AAAA AAA AAAAAAAAAPAE [%] AAAA AAA AAA A AAA AAA AAA AAAA A AAA AAAAAAA A AAA AAAA AAA AAAAA AAA AAA AAAA AAAA AAAAAAA AAA AAAAAAA 35 30 25 20 50 40 30 PAE [%] Pout [dBm] 40 20 10 15 0 -5 0 5 10 15 Pin [dBm] Pout and PAE vs. Pin (VD=5V, VG=-4V, VTR=0V, f=900GHz, pulsed with a duty cycle of 10%, ton=0.33ms) 45 60 AAAAAAAAAAAAAAAAAAAAA AAAA AAAAAAA AAAA AAAAAAA AAAAAAAAAAAAAAAAAAAAAAAA AAAA AAAA AAA AAAA AAAA AAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAA AAAA AAA AAAA AAA AAA AAA AAA AAAA A AA AAAA AAAA AAAA AAAA AAA AAAA AAA AAAA AAAA AAA AAAA AAA AAA AAAA AAA AAAA AAAA A AA AAA AAAAAAA AAAA AAAAAAA AAAAAA AAAA AAA Pout [dBm] AAAA A AAA AAA AAAA AAA AAA AAAA AAAA AAAA AA AAAA AAA AAA AAAA AAAA PAE [%] AAAA AAAA AAA AAA AAAA AAAA AAAA A AAAAAAA AAA AAAA AAAA A AAA AAAA AAAAA AA A AAA AAAAAAA AAAA AAAA AAA 35 30 25 20 50 40 30 PAE [%] Pout [dBm] 40 20 10 15 0 -5 0 5 10 15 Pin [dBm] Siemens Aktiengesellschaft pg. 4/9 17.10.95 HL EH PD 21 GaAs MMIC CGY 94 _______________________________________________________________________________________________________ S-Parameter at VD=3.6V and Pin=9dBm (VG=-4V, VTR=0V, pulsed with a duty cycle of 10%) 30 25 20 15 Mag [dB] 10 5 MAG(s11) 0 MAG(s21) -5 -10 -15 -20 -25 950 930 910 890 870 850 830 810 790 770 750 -30 f [M Hz] S-Parameter at VD=5V and Pin=9dBm (VG=-4V, VTR=0V, pulsed with a duty cycle of 10%) 30 25 20 15 Mag [dB] 10 5 0 MAG(s11) -5 MAG(s21) -10 -15 -20 -25 950 930 910 890 870 850 830 810 790 770 750 -30 f [M Hz] Siemens Aktiengesellschaft pg. 5/9 17.10.95 HL EH PD 21 GaAs MMIC CGY 94 _______________________________________________________________________________________________________ Performance of internal bias control circuit (VTR=0V) 3,0 2,8 2,6 2,4 2,2 ID / A 2,0 1,8 1,6 1,4 ID (VD=3.0V) 1,2 ID (VD=6.0V) 1,0 0,8 0,6 0,4 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 -Vg / V Siemens Aktiengesellschaft pg. 6/9 17.10.95 HL EH PD 21 GaAs MMIC CGY 94 _______________________________________________________________________________________________________ Total Power Dissipation Ptot=f(TS) Permissible pulse load Ptot_max/Ptot_DC = f(t_p) Siemens Aktiengesellschaft pg. 7/9 17.10.95 HL EH PD 21 GaAs MMIC CGY 94 _______________________________________________________________________________________________________ Test circuit board: Note: By changing the position of the 6.8 pF capacitor at pin # 12 it is possible to tune the board for max. Pout or max. PAE. To achieve the maximum output power place the capacitor close to the CGY94. For a better PAE increase the distance between the capacitor and the CGY94 device (2-5mm). 43nH Principal circuit: VG +VD 1nF 4.7uF 1nF 43nH VG (1) VTR (2) VTR VD1 (7) VD2 (12) Control Circuit 1nF IN Pout (12) Pin (8) OUT 6.8pF GND1 (6, 9) GND2 (3, 4, 5, 10) GND3 (11) 2) Coilcraft SMD Spring Inductor distribution by Ginsbury Electronic GmbH, Am Moosfeld 85 D-81829 München, Tel. 089/45170-223 Siemens Aktiengesellschaft pg. 8/9 17.10.95 HL EH PD 21 GaAs MMIC CGY 94 _______________________________________________________________________________________________________ APPLICATION - HINTS 1. CW - capability of the CGY94 Proving the possibility of CW - operation there must be known the total power dissipation of the device. This value can be found as a function of the temperature in the datasheet (page 7). The CGY94 has a maximum total power dissipation of Ptot = 5 W. As an example we take the operating point with a drain voltage VD = 3 V and a typical drain current of ID=1.0 A. So the maximum DC - power can be calculated to: PDC = VD ⋅ I D = 3W This value is smaller than 5 W and CW - operation is possible. By decoupling RF power out of the CGY94 the power dissipation of the device can be further reduced. Assuming a power added efficiency (PAE) of 40 % the total power dissipation Ptot can be calculated using the following formula: Ptot = PDC (1− PAE ) = 3W (1− 0.40) = 1.8W 2. Operation without using the internal current control If you don' t want to use the internal current control, it is recommended to connect the negative supply voltage at pin 1 (VTR) instead of pin 2 (VG). In that case VG is not connected. 3. Biasing and use considerations Biasing should be timed in such a way, that the gate voltage (VG) is always applied before the drain voltage (VD), and when returning to the standby mode, the drain voltage has to be removed before the gate voltage. Siemens Aktiengesellschaft pg. 9/9 17.10.95 HL EH PD 21