PHILIPS BFG541

DISCRETE SEMICONDUCTORS
DATA SHEET
BFG541
NPN 9 GHz wideband transistor
Product specification
File under Discrete Semiconductors, SC14
September 1995
Philips Semiconductors
Product specification
NPN 9 GHz wideband transistor
FEATURES
BFG541
PINNING
• High power gain
PIN
• Low noise figure
1
emitter
• High transition frequency
2
base
• Gold metallization ensures
excellent reliability.
3
emitter
4
collector
DESCRIPTION
4
page
DESCRIPTION
NPN silicon planar epitaxial
transistor, intended for wideband
applications in the GHz range, such
as analog and digital cellular
telephones, cordless telephones
(CT1, CT2, DECT, etc.), radar
detectors, satellite TV tuners (SATV),
MATV/CATV amplifiers and repeater
amplifiers in fibre-optic systems.
1
Fig.1 SOT223.
The transistors are mounted in a
plastic SOT223 envelope.
September 1995
2
Top view
2
3
MSB002 - 1
Philips Semiconductors
Product specification
NPN 9 GHz wideband transistor
BFG541
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VCBO
collector-base voltage
open emitter
−
−
20
V
VCES
collector-emitter voltage
RBE = 0
−
−
15
V
IC
DC collector current
−
−
120
mA
mW
Ptot
total power dissipation
up to Ts = 140 °C; note 1
−
−
650
hFE
DC current gain
IC = 40 mA; VCE = 8 V; Tj = 25 °C
60
120
250
Cre
feedback capacitance
IC = 0; VCB = 8 V; f = 1 MHz
−
0.7
−
pF
fT
transition frequency
IC = 40 mA; VCE = 8 V; f = 1 GHz;
Tamb = 25 °C
−
9
−
GHz
GUM
maximum unilateral power gain
IC = 40 mA; VCE = 8 V; f = 900 MHz;
Tamb = 25 °C
−
15
−
dB
IC = 40 mA; VCE = 8 V; f = 2 GHz;
Tamb = 25 °C
−
9
−
dB
S212
insertion power gain
IC = 40 mA; VCE = 8 V; f = 900 MHz;
Tamb = 25 °C
13
14
−
dB
F
noise figure
Γs = Γopt; IC = 10 mA; VCE = 8 V;
f = 900 MHz; Tamb = 25 °C
−
1.3
1.8
dB
PL1
output power at 1 dB gain
compression
IC = 40 mA; VCE = 8 V; RL = 50 Ω;
f = 900 MHz; Tamb = 25 °C
−
21
−
dBm
ITO
third order intercept point
IC = 40 mA; VCE = 8 V; RL = 50 Ω;
f = 900 MHz; Tamb = 25 °C
−
34
−
dBm
LIMITING VALUES
In accordance with the Absolute Maximum System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCBO
collector-base voltage
open emitter
−
20
V
VCES
collector-emitter voltage
RBE = 0
−
15
V
VEBO
emitter-base voltage
open collector
−
2.5
V
IC
DC collector current
−
120
mA
Ptot
total power dissipation
−
650
mW
Tstg
storage temperature
−65
150
°C
Tj
junction temperature
−
175
°C
up to Ts = 140 °C; note 1
THERMAL RESISTANCE
SYMBOL
Rth j-s
PARAMETER
thermal resistance from junction to
soldering point
CONDITIONS
up to Ts = 140 °C; note 1
Note
1. Ts is the temperature at the soldering point of the collector tab.
September 1995
3
THERMAL RESISTANCE
55 K/W
Philips Semiconductors
Product specification
NPN 9 GHz wideband transistor
BFG541
CHARACTERISTICS
Tj = 25 °C unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
IE = 0; VCB = 8 V
MIN.
TYP.
MAX.
−
−
50
UNIT
ICBO
collector cut-off current
nA
hFE
DC current gain
IC = 40 mA; VCE = 8 V
60
120
250
Ce
emitter capacitance
IC = ic = 0; VEB = 0.5 V; f = 1 MHz
−
2
−
pF
Cc
collector capacitance
IE = ie = 0; VCB = 8 V; f = 1 MHz
−
1
−
pF
Cre
feedback capacitance
IC = 0; VCB = 8 V; f = 1 MHz
−
0.7
−
pF
fT
transition frequency
IC = 40 mA; VCE = 8 V; f = 1 GHz;
Tamb = 25 °C
−
9
−
GHz
GUM
maximum unilateral power gain
(note 1)
IC = 40 mA; VCE = 8 V; f = 900 MHz;
Tamb = 25 °C
−
15
−
dB
IC = 40 mA; VCE = 8 V; f = 2 GHz;
Tamb = 25 °C
−
9
−
dB
S212
insertion power gain
Ic = 40 mA; VCE = 8 V; f = 900 MHz;
Tamb = 25 °C
13
14
−
dB
F
noise figure
Γs = Γopt; IC = 10 mA; VCE = 8 V;
f = 900 MHz; Tamb = 25 °C
−
1.3
1.8
dB
Γs = Γopt; IC = 40 mA; VCE = 8 V;
f = 900 MHz; Tamb = 25 °C
−
1.9
2.4
dB
Γs = Γopt; IC = 10 mA; VCE = 8 V;
f = 2 GHz; Tamb = 25 °C
−
2.1
−
dB
PL1
output power at 1 dB gain
compression
Ic = 40 mA; VCE = 8 V; RL = 50 Ω;
f = 900 MHz; Tamb = 25 °C
−
21
−
dBm
ITO
third order intercept point
note 2
−
34
−
dBm
Vo
output voltage
note 3
−
500
−
mV
d2
second order intermodulation
distortion
note 4
−
−50
−
dB
Notes
1. GUM is the maximum unilateral power gain, assuming S12 is zero and
2
S 21
- dB.
G UM = 10 log ------------------------------------------------------------2 
2
 1 – S 11   1 – S 22 
2.
IC = 40 mA; VCE = 8 V; RL = 50 Ω; f = 900 MHz; Tamb = 25 °C;
fp = 900 MHz; fq = 902 MHz;
measured at f(2p−q) = 898 MHz and at f(2p−q) = 904 MHz.
3. dim = −60 dB (DIN 45004B); IC = 40 mA; VCE = 8 V; ZL = Zs = 75 Ω; Tamb = 25 °C;
Vp = Vo; Vq = Vo −6 dB; Vr = Vo −6 dB;
fp = 795.25 MHz; fq = 803.25 MHz; fr = 805.25 MHz;
measured at f(p+q−r) = 793.25 MHz
4. IC = 40 mA; VCE = 8 V; Vo = 325 mV; Tamb = 25 °C;
fp = 250 MHz; fq = 560 MHz;
measured at f(p+q) = 810 MHz
September 1995
4
Philips Semiconductors
Product specification
NPN 9 GHz wideband transistor
BFG541
MRA654 - 1
1000
Ptot
MRA655
250
handbook, halfpage
handbook, halfpage
hFE
(mW)
800
200
600
150
400
100
200
50
0
10−2
0
0
50
100
150
200
10−1
1
102
10
IC (mA)
T ( o C)
s
VCE ≤ 10 V.
VCE = 8 V; Tj = 25 °C.
Fig.2 Power derating curve.
Fig.3
MRA656
1.0
DC current gain as a function of collector
current.
MRA657
12
handbook, halfpage
handbook, halfpage
Cre
(pF)
fT
(GHz)
0.8
VCE = 8 V
8
4V
0.6
0.4
4
0.2
0
10−1
0
0
4
8
VCB (V)
12
IC = 0; f = 1 MHz.
f = 1 GHz; Tamb = 25 °C.
Fig.4
Fig.5
Feedback capacitance as a function of
collector-base voltage.
September 1995
5
1
10
IC (mA)
102
Transition frequency as a function of
collector current.
Philips Semiconductors
Product specification
NPN 9 GHz wideband transistor
BFG541
In Figs 6 to 9, GUM = maximum power gain; MSG =
maximum stable gain; Gmax = maximum available gain.
MRA658
25
MRA659
25
handbook, halfpage
handbook, halfpage
gain
(dB)
gain
(dB)
20
20
Gmax
MSG
15
15
GUM
Gmax
10
10
GUM
5
5
0
0
0
20
40
0
80
60
20
40
60
80
IC (mA)
IC (mA)
VCE = 8 V; f = 900 MHz.
VCE = 8 V; f = 2 GHz.
Fig.7 Gain as a function of collector current.
Fig.6 Gain as a function of collector current.
MRA660
50
MRA661
50
handbook, halfpage
handbook, halfpage
gain
(dB)
gain
(dB)
40
40
GUM
MSG
GUM
30
30
MSG
20
20
Gmax
Gmax
10
10
0
10
102
103
f (MHz)
0
10
104
IC = 10 mA; VCE = 8 V.
103
f (MHz)
104
IC = 40 mA; VCE = 8 V.
Fig.8 Gain as a function of frequency.
September 1995
102
Fig.9 Gain as a function of frequency.
6
Philips Semiconductors
Product specification
NPN 9 GHz wideband transistor
BFG541
MEA977
MEA976
–20
–20
handbook, halfpage
handbook, halfpage
d im
(dB)
–30
d2
(dB)
–30
–40
–40
–50
–50
–60
–60
–70
20
10
30
40
–70
50
60
I C (mA)
Fig.10 Intermodulation distortion as a function of
collector current.
MRA666
5
handbook, halfpage
Gass
(dB)
(dB)
f = 900 MHz 15
30
Gass
2000 MHz
2
C =10 mA
Fmin
4
10
3
5
2
20
Gass
(dB)
15
(dB)
Gass
10
0
IC (mA)
Fmin
1 10 mA
0
10
5
40 mA
1000 MHz
900 MHz
500 MHz
1
40 mA
2000 MHz
Fmin
1
50
60
I C (mA)
MRA667
5
handbook, halfpageI
1000 MHz
3
40
Fig.11 Second order intermodulation distortion as
a function of collector current.
20
Fmin
4
20
10
−5
100
0
102
0
103
f (MHz)
−5
104
VCE = 8 V.
VCE = 8 V.
Fig.12 Minimum noise figure and associated
available gain as functions of collector
current.
Fig.13 Minimum noise figure and associated
available gain as functions of frequency.
September 1995
7
Philips Semiconductors
Product specification
NPN 9 GHz wideband transistor
BFG541
90°
handbook, full pagewidth
1.0
1
135°
0.8
45°
2
0.5
0.6
G = 13 dB
0.2 G = 14 dB
G = 15 dB
Γ0.2
MS
180°
0
Gmax = 15.3 dB
Fmin =
1.3 dB
ΓOPT
0.5
1
0.4
5
0.2
2
5
0°
0
F = 1.5 dB
0.2
5
F = 2 dB
F = 3 dB
0.5
−135°
2
−45°
1
MRA668
1.0
−90°
IC = 10 mA; VCE = 8 V;
Zo = 50 Ω; f = 900 MHz.
Fig.14 Noise circle figure.
90°
handbook, full pagewidth
1.0
1
135°
0.8
45°
2
0.5
G = 7 dB
G = 6 dB
ΓMS G = 8 dB
Gmax = 8.5 dB
0.6
0.2
0.4
5
0.2
180°
0.2
0
0.5
1
2
5
0°
0
ΓOPT
0.2
Fmin = 2.1 dB
5
F = 2.5 dB
F = 3 dB
−135°
0.5
F = 4 dB
2
−45°
1
MRA669
−90°
IC = 10 mA; VCE = 8 V;
Zo = 50 Ω; f = 2 GHz.
Fig.15 Noise circle figure.
September 1995
8
1.0
Philips Semiconductors
Product specification
NPN 9 GHz wideband transistor
BFG541
90°
handbook, full pagewidth
1.0
1
135°
0.8
45°
2
0.5
0.6
3 GHz
0.2
0.4
5
0.2
180°
0.2
0
0.5
1
2
5
0°
40 MHz
0.2
0.5
−135°
0
5
2
−45°
1
MRA662
−90°
IC = 40 mA; VCE = 8 V.
Zo = 50 Ω.
Fig.16 Common emitter input reflection coefficient (S11).
90°
handbook, full pagewidth
45°
135°
40 MHz
180°
3 GHz
50
40
30
20
0°
10
−135°
−45°
−90°
MRA663
IC = 40 mA; VCE = 8 V.
Fig.17 Common emitter forward transmission coefficient (S21).
September 1995
9
1.0
Philips Semiconductors
Product specification
NPN 9 GHz wideband transistor
BFG541
90°
handbook, full pagewidth
135°
45°
3 GHz
0.5
0.4
0.3
0.2
0.1
40 MHz
180°
0°
−135°
−45°
−90°
MRA664
IC = 40 mA; VCE = 8 V.
Fig.18 Common emitter reverse transmission coefficient (S12).
90°
handbook, full pagewidth
1.0
1
135°
0.8
45°
2
0.5
0.6
0.2
0.4
5
0.2
3 GHz
180°
0.2
0
0.5
1
2
5
0°
0
5
0.2
40 MHz
−135°
0.5
2
−45°
1
MRA665
−90°
IC = 40 mA; VCE = 8 V.
Zo = 50 Ω.
Fig.19 Common emitter output reflection coefficient (S22).
September 1995
10
1.0
Philips Semiconductors
Product specification
NPN 9 GHz wideband transistor
BFG541
PACKAGE OUTLINE
Plastic surface mounted package; collector pad for good heat transfer; 4 leads
D
SOT223
E
B
A
X
c
y
HE
v M A
b1
4
Q
A
A1
1
2
3
Lp
bp
e1
w M B
detail X
e
0
2
4 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
A1
bp
b1
c
D
E
e
e1
HE
Lp
Q
v
w
y
mm
1.8
1.5
0.10
0.01
0.80
0.60
3.1
2.9
0.32
0.22
6.7
6.3
3.7
3.3
4.6
2.3
7.3
6.7
1.1
0.7
0.95
0.85
0.2
0.1
0.1
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
EIAJ
ISSUE DATE
96-11-11
97-02-28
SOT223
September 1995
EUROPEAN
PROJECTION
11
Philips Semiconductors
Product specification
NPN 9 GHz wideband transistor
BFG541
DEFINITIONS
Data Sheet Status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
September 1995
12