ITF87056DQT Data Sheet 5A, 20V, 0.045 Ohm, Dual P-Channel, 2.5V Specified Power MOSFET Packaging TSSOP-8 File Number 4813.2 Features • Ultra Low On-Resistance - rDS(ON) = 0.045Ω, VGS = −4.5V - rDS(ON) = 0.048Ω, VGS = −4.0V - rDS(ON) = 0.077Ω, VGS = −2.5V • 2.5V Gate Drive Capability • Gate to Source Protection Diode • Simulation Models - Temperature Compensated PSPICE™ and SABER Electrical Models - Spice and SABER Thermal Impedance Models - www.intersil.com 5 1 23 March 2000 4 • Peak Current vs Pulse Width Curve Symbol • Transient Thermal Impedance Curve vs Board Mounting Area DRAIN1(1) (8) DRAIN2 OURCE1(2) (7) SOURCE2 SOURCE1(3) (6) SOURCE2 GATE1(4) (5) GATE2 • Switching Time vs RGS Curves Ordering Information PART NUMBER ITF87056DQT PACKAGE TSSOP-8 BRAND 87056 NOTE: When ordering, use the entire part number. ITF87056DQT2 is available only in tape and reel. Absolute Maximum Ratings TA = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TA = 25oC, VGS = -4.5V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA = 25oC, VGS = -4.0V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA = 100oC, VGS = -4.0V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA = 100oC, VGS = -2.5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief TB370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg NOTES: ITF87056DQT -20 -20 ±12 UNITS V V V 5.0 5.0 3.0 2.5 Figure 4 2.0 16 -55 to 150 A A A A W mW/oC oC 300 260 oC oC 1. TJ = 25oC to 125oC. 2. 62.5oC/W measured using FR-4 board with 0.50 in2 (322.6 mm2 ) copper pad at 1 second. 3. 230oC/W measured using FR-4 board with 0.0022 in2 (1.44 mm2) copper pad at 1000 seconds. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 1 CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures. SABER© is a Copyright of Analogy Inc. PSPICE® is a registered trademark of MicroSim Corporation. 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000 ITF87056DQT TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS -20 - - V OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V Figure 11 Zero Gate Voltage Drain Current IDSS VDS = -20V, VGS = 0V - - -10 µA Gate to Source Leakage Current IGSS VGS = ±12V - - ±10 µA -0.5 - -1.5 V ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA Figure 10 Drain to Source On Resistance rDS(ON) ID = 5.0A, VGS = -4.5V Figures 8, 9 - 0.037 0.045 Ω ID = 3.0A, VGS = -4.0V Figure 8 - 0.039 0.048 Ω ID = 2.5A, VGS = -2.5V Figure 8 - 0.057 0.077 Ω Pad Area = 0.50 in2 (322.6 mm2) (Note 2) - - 62.5 oC/W Pad Area = 0.017 in2 (11.2 mm2) Figure 20 - - 199 oC/W Pad Area = 0.0022 in2 (1.44 mm2) Figure 20 - - 230 oC/W VDD = -10V, ID = 2.5A VGS = -2.5V, RGS = 15Ω Figures 14, 18, 19 - 470 - ns - 1240 - ns - 700 - ns - 775 - ns - 225 - ns - 470 - ns - 1200 - ns - 800 - ns - 8.6 - nC - 4.1 - nC - 0.5 - nC THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = -2.5V) Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time td(OFF) Fall Time tf SWITCHING SPECIFICATIONS (VGS = -4.5V) Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time td(OFF) Fall Time VDD = -10V, ID = 5.0A VGS = -4.5V, RGS = 16Ω Figures 15, 18, 19 tf GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to -4.5V Gate Charge at -2V Qg(-2) VGS = 0V to -2V Threshold Gate Charge Qg(TH) VGS = 0V to -0.5V VDD = -10V, ID = 5.0A, Ig(REF) = 1.0mA Figures 13, 16, 17 Gate to Source Gate Charge Qgs - 1.2 - nC Gate to Drain “Miller” Charge Qgd - 1.8 - nC - 750 - pF - 215 - pF - 100 - pF MIN TYP MAX UNITS ISD = -5.0A - -0.86 - V trr ISD = -5.0A, dISD/dt = 10A/µs - 40 - ns QRR ISD = -5.0A, dISD/dt = 10A/µs - 5 - nC CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = -10V, VGS = 0V, f = 1MHz Figure 12 Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge 2 TEST CONDITIONS ITF87056DQT Typical Performance Curves -6 ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 VGS = -4.5V, RθJA = 62.5oC/W -4 -2 VGS = -2.5V, RθJA = 230oC/W 0.2 0 0 0 25 50 75 100 125 25 150 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE 2 THERMAL IMPEDANCE ZθJA, NORMALIZED 1 0.1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 RθJA = 230oC/W PDM t1 0.01 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 0.001 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE -300 RθJA = 230oC/W IDM, PEAK CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: -100 VGS = -4.5V I = I25 150 - TA 125 VGS = -2.5V -10 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION -1 10-5 10-4 10-3 10-2 10-1 100 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 3 101 102 103 ITF87056DQT Typical Performance Curves (Continued) 100ms -10 1ms -1 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) RθJA -0.1 -15 SINGLE PULSE TJ = MAX RATED TA = 25oC ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) -100 10ms PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V -12 -9 -6 TJ = 150oC -3 TJ = -55oC -1 -10 0 -0.5 -40 FIGURE 5. FORWARD BIAS SAFE OPERATING AREA PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25oC ID, DRAIN CURRENT (A) VGS = -4.5V VGS = -3V VGS = -2.5V -9 VGS = -2V -6 -3 100 VGS = -1.5V 0 0 -0.5 -1.0 -1.5 -2.5 90 80 ID = -5A 70 ID = -2.5A 60 50 40 30 -1 -2.0 -2 -3 -4 -5 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 7. SATURATION CHARACTERISTICS FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 1.4 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = VDS, ID = -250µA 1.4 1.2 1.0 0.8 VGS = -4.5V, ID = -5A 0.6 0.4 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 4 160 NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE -2.0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDS, DRAIN TO SOURCE VOLTAGE (V) 1.6 -1.5 FIGURE 6. TRANSFER CHARACTERISTICS rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) -15 -1.0 VGS, GATE TO SOURCE VOLTAGE (V) VDS, DRAIN TO SOURCE VOLTAGE (V) -12 TJ = 25oC = 230oC/W 1.2 1.0 0.8 0.6 0.4 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE ITF87056DQT Typical Performance Curves (Continued) 2000 VGS = 0V, f = 1MHz ID = -250µA CISS = CGS + CGD 1000 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.10 1.05 1.00 0.95 COSS ≅ CDS + CGD 100 CRSS = CGD 0.90 -80 -40 0 40 80 120 50 -0.1 160 -1 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 1500 VDD = -10V VGS = -2.5V, VDD = -10V, ID = -2.5A -4 -3 -2 WAVEFORMS IN DESCENDING ORDER: ID = -5A ID = -2.5A -1 0 2 4 6 1000 tf 750 td(OFF) 500 td(ON) 8 0 10 Qg, GATE CHARGE (nC) 20 1500 VGS = -4.5V, VDD = -10V, ID = -5A td(OFF) SWITCHING TIME (ns) 1250 1000 tf 750 tr 500 td(ON) 250 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE 5 40 FIGURE 14. SWITCHING TIME vs GATE RESISTANCE FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 0 30 RGS, GATE TO SOURCE RESISTANCE (Ω) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. 0 tr 1250 250 0 -20 FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE SWITCHING TIME (ns) VGS , GATE TO SOURCE VOLTAGE (V) -5 -10 VDS , DRAIN TO SOURCE VOLTAGE (V) 50 50 ITF87056DQT Test Circuits and Waveforms Qgs VDS RL Qgd VDS Qg(TH) 0 VGS = -0.5V VGS VGS = -2V -VGS VDD Qg(-2) + VGS = -4.5V VDD DUT Ig(REF) Qg(TOT) 0 Ig(REF) FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS tON tOFF td(OFF) td(ON) RL VDS - VDS 0V DUT 0 90% 90% 10% -VGS 50% VGS FIGURE 18. SWITCHING TIME TEST CIRCUIT 6 10% 10% + VGS RGS tf tr 0 50% PULSE WIDTH 90% FIGURE 19. SWITCHING TIME WAVEFORM ITF87056DQT Thermal Resistance vs Mounting Pad Area The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. ( T JM – T A ) P DM = ------------------------------R θJA 300 Rθβ, RθJA (oC/W) 250 (EQ. 1) 230 oC/W - 0.0022in2 RθJA = 138.68- 14.95 * ln(AREA) 199 oC/W - 0.017in2 200 150 100 50 Rθβ = 63.46 - 15.08 * ln(AREA) 0 0.001 In using surface mount devices such as the TSSOP-8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. Rθβ Intersil provides thermal information to assist the designer’s preliminary application evaluation. Figure 20 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM . 1 While Equation 2 describes the thermal resistance of a single die, several devices are offered with two die in the TSSOP-8 package. The dual die TSSOP-8 package introduces an additional thermal component, thermal coupling resistance, Rθβ. Equation 3 describes Rθβ as a function of the top copper mounting pad area. 4. The use of thermal vias. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. 0.1 FIGURE 20. THERMAL RESISTANCE vs MOUNTING PAD AREA 3. The use of external heat sinks. 5. Air flow and board orientation. 0.01 AREA, TOP COPPER AREA (in2) PER DIE = 63.46 – 15.08 × ln ( Area ) (EQ. 3) The thermal coupling resistance vs copper area is also graphically depicted in Figure 20. It is important to note the thermal resistance (RθJA) and thermal coupling resistance (Rθβ) are equivalent for both die. For example at 0.1 square inches of copper: RθJA1 = RθJA2 = 173oC/W Rθβ1 = Rθβ2 = 98oC/W TJ1 and TJ2 define the junction temperature of the respective die. Similarly, P1 and P2 define the power dissipated in each die. The steady state junction temperature can be calculated using Equation 4 for die 1 and Equation 5 for die 2. Example: To calculate the junction temperature of each die when die 2 is dissipating 0.5W and die 1 is dissipating 0W. The ambient temperature is 70oC and the package is mounted to a top copper area of 0.1 square inches per die. Use Equation 4 to calculate TJ1 and Equation 5 to calculate TJ2 . . Thermal resistances corresponding to other copper areas can be obtained from Figure 20 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. R θJA = 138.68 – 14.95 × ln ( Area ) 7 (EQ. 2) T J1 = P 1 R θJA + P 2 R θβ + T A (EQ. 4) o o TJ1 = (0 Watts)(173 C/W) + (0.5 Watts)(98 C/W) + 70oC TJ1 = 119oC T J2 = P 2 R θJA + P 1 R θβ + T A (EQ. 5) o o TJ2 = (0.5 Watts)(173 C/W) + (0 Watts)(98 C/W) + 70oC ITF87056DQT TJ2 = 156.5oC The transient thermal impedance (ZθJA) is also affected by varied top copper board area. Figure 21 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. ZθJA, THERMAL IMPEDANCE (oC/W) 200 150 COPPER BOARD AREA - DESCENDING ORDER 0.02 in2 0.14 in2 0.26 in2 0.38 in2 100 0.50 in2 50 0 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 21. THERMAL IMPEDANCE vs MOUNTING PAD AREA 8 102 103 ITF87056DQT PSPICE Electrical Model .SUBCKT ITF87056DQT 2 1 3 ; REV January 2000 CA 12 8 9.3e-10 CB 15 14 10.5e-10 CIN 6 8 6.3e-10 LDRAIN ESG DBODY 5 7 DBODYMOD DBREAK 7 11 DBREAKMOD DESD1 91 9 DESD1MOD DESD2 91 7 DESD2MOD DPLCAP 10 6 DPLCAPMOD DRAIN 2 5 + 8 6 RLDRAIN RSLC1 51 + RSLC2 5 51 EBREAK 5 11 17 18 -28.75 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 5 10 8 6 1 EVTHRES 6 21 19 8 1 EVTEMP 6 20 18 22 1 EBREAK - ESLC 9 - 20 DBODY RDRAIN EVTHRES + 19 8 EVTEMP RGATE GATE 1 21 16 MWEAK 6 18 + 22 DBREAK MSTRO DESD1 91 DESD2 11 MMED RLGATE LDRAIN 2 5 1.0e-9 LGATE 1 9 1.04e-9 LSOURCE 3 7 1.29e-10 LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 17e-3 RGATE 9 20 685 RLDRAIN 2 5 10 RLGATE 1 9 10.4 RLSOURCE 3 7 1.29 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 17e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A 12 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD - IT 14 + + S1A S1B S2A S2B + 17 18 50 DPLCAP LGATE IT 8 17 1 - 10 VBAT 5 8 EDS - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*120),2.1))} .MODEL DBODYMOD D (IS = 2.4e-11 IKF = 0.08 RS = 1.55e-2 TRS1 = 1.7e-3 TRS2 = 2e-6 CJO = 3.2e-10 TT = 3e-9 M = 0.4) .MODEL DBREAKMOD D (RS = 2e-1 TRS1 = 5e-3 TRS2 = 2e-6) .MODEL DESD1MOD D (BV = 14.1 TBV1 = -1.21e-3 N = 9 RS = 160) .MODEL DESD2MOD D (BV = 14 TBV1 = -1.21e-3 N = 9 RS = 180) .MODEL DPLCAPMOD D (CJO = 3.7e-10 IS = 1e-30 N = 10 M = 0.5 VJ = 0.45) .MODEL MMEDMOD PMOS (VTO = -0.95 KP = 1.7 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 685 RS = 0.1) .MODEL MSTROMOD PMOS (VTO = -1.21 KP = 43.7 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD PMOS (VTO = -0.76 KP = 0.06 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 6850 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 8.5e-4 TC2 = -1.1e-6) .MODEL RDRAINMOD RES (TC1 = 9e-3 TC2 = -1.5e-5) .MODEL RSLCMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RSOURCEMOD RES (TC1 = 5e-4 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = 1.2e-3 TC2 = 2e-6) .MODEL RVTEMPMOD RES (TC1 = -3.5e-4 TC2 = -1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = 2.5 VON = 1.5 VON = 0.8 VON = 0.1 VOFF= 1.5) VOFF= 2.5) VOFF= 0.1) VOFF= 0.8) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 9 ITF87056DQT SABER Electrical Model REV January 2000 template ITF87056DQT n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 2.4e-11, ikf = 0.08, cjo = 3.2e-10, tt = 3e-9, m = 0.4, rs = 1.55e-2, trs1 = 1.7e-3, trs2 = 2e-6) dp..model dbreakmod = (rs = 2e-1, trs1 = 5e-3, trs2 = 2e-6) dp..model desd1mod = (bv = 14.1, tbv1 = -1.21e-3, nl = 9, rs = 160) dp..model desd2mod = (bv = 14, tbv1 = -1.21e-3, nl = 9, rs = 180) dp..model dplcapmod = (cjo = 3.7e-10, isl = 10e-30, nl = 10, m = 0.5, vj = 0.45) m..model mmedmod = (type=_p, vto = -0.95, kp = 1.7, is = 1e-30, tox = 1, rs = 0.1) m..model mstrongmod = (type=_p, vto = -1.21, kp = 43.7, is = 1e-30, tox = 1) m..model mweakmod = (type=_p, vto = -0.76, kp = 0.06, is = 1e-30, tox = 1, rs = 0.1) ESG sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = 2.5, voff = 1.5) 5 - 8 + sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = 1.5, voff = 2.5) 6 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0.8, voff = 0.1) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.1, voff = 0.8) 10 DRAIN 2 RLDRAIN + EBREAK 17 18 RSLC1 51 c.ca n12 n8 = 9.3e-10 c.cb n15 n14 = 10.5e-10 c.cin n6 n8 = 6.3e-10 LDRAIN RSLC2 - ISCL 11 dp.dbody n5 n7 = model=dbodymod dp.dbreak n7 n11 = model=dbreakmod dp.desd1 n91 n9 = model=desd1mod dp.desd2 n91 n7 = model=desd2mod dp.dplcap n10 n6 = model=dplcapmod DBREAK RDRAIN LGATE l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 1.04e-9 l.lsource n3 n7 = 1.29e-10 RLGATE EVTHRES + 19 8 EVTEMP RGATE GATE 1 i.it n8 n17 = 1 50 DPLCAP - 20 9 16 21 MWEAK 6 18 + 22 MSTRO DESD1 LSOURCE CIN 91 8 DESD2 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 8.5e-4, tc2 = -1.1e-6 res.rdrain n50 n16 = 17e-3, tc1 = 9e-3, tc2 = -1.5e-5 res.rgate n9 n20 = 685 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 10.4 res.rlsource n3 n7 = 1.29 res.rslc1 n5 n51 = 1e-6, tc1 = 1e-3, tc2 = 1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 17e-3, tc1 = 5e-4, tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -3.5e-4, tc2 = -1e-6 res.rvthres n22 n8 = 1, tc1 = 1.2e-3, tc2 = 2e-6 DBODY MMED 7 RSOURCE RLSOURCE S1A 12 CA S2A RBREAK 13 8 15 14 13 S1B 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n5 n11 n17 n18 = -28.75 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n5 n10 n8 n6 = 1 spe.evtemp n6 n20 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/120))** 2.1)) } } 10 SOURCE 3 ITF87056DQT SPICE Thermal Model REV 26 January 2000 ITF87056DQT Copper Area = 0.50 in2 CTHERM1 th 8 6.7e-4 CTHERM2 8 7 2.2e-3 CTHERM3 7 6 5.0e-3 CTHERM4 6 5 8.6e-3 CTHERM5 5 4 2.2e-2 CTHERM6 4 3 0.08 CTHERM7 3 2 0.32 CTHERM8 2 tl 1.9 th JUNCTION CTHERM1 RTHERM1 8 CTHERM2 RTHERM2 RTHERM1 th 8 0.267 RTHERM2 8 7 0.893 RTHERM3 7 6 2.23 RTHERM4 6 5 14.28 RTHERM5 5 4 21.42 RTHERM6 4 3 23.0 RTHERM7 3 2 27.0 RTHERM8 2 tl 29.0 7 CTHERM3 RTHERM3 6 RTHERM4 SABER Thermal Model CTHERM4 5 Copper Area = 0.50 in2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 6.7e-4 ctherm.ctherm2 8 7 = 2.2e-3 ctherm.ctherm3 7 6 = 5.0e-3 ctherm.ctherm4 6 5 = 8.6e-3 ctherm.ctherm5 5 4 = 2.2e-2 ctherm.ctherm6 4 3 = 0.08 ctherm.ctherm7 3 2 = 0.32 ctherm.ctherm8 2 tl = 1.9 CTHERM5 RTHERM5 4 RTHERM6 CTHERM6 3 CTHERM7 RTHERM7 rtherm.rtherm1 th 8 = 0.267 rtherm.rtherm2 8 7 = 0.893 rtherm.rtherm3 7 6 = 2.23 rtherm.rtherm4 6 5 = 14.28 rtherm.rtherm5 5 4 = 21.42 rtherm.rtherm6 4 3 = 23.0 rtherm.rtherm7 3 2 = 27.0 rtherm.rtherm8 2 tl = 29.0 } 2 CTHERM8 RTHERM8 tl AMBIENT TABLE 1. THERMAL MODELS 0.02 in2 0.14 in2 0.26 in2 0.38 in2 0.50 in2 CTHERM6 0.07 0.05 0.06 0.07 0.08 CTHERM7 0.15 0.24 0.25 0.28 0.32 CTHERM8 0.68 1.3 1.6 2.0 1.9 RTHERM6 22.8 21 21 25 23 RTHERM7 39.5 30 32 30 27 RTHERM8 56 45 38 34 29 COMPONENT 11 ITF87056DQT MO-153AA (TSSOP-8) 8 LEAD JEDEC MO-153AA TSSOP PLASTIC PACKAGE E INCHES A E1 MILLIMETERS SYMBOL MIN MAX MIN MAX NOTES A 0.041 0.047 1.05 1.20 - A1 0.002 0.006 0.05 0.15 - b 0.010 0.012 0.25 0.30 - 8 A1 e D c 0.127 - 4 5 0.005 b c D 0.114 0.122 2.90 3.10 2 E 0.244 0.260 6.20 6.60 - E1 0.170 0.177 4.30 4.50 3 e 0.004 IN 0.10mm L 0o-8o 0.015 0.4 0.035 0.9 0.025 0.65 0.232 5.9 0.077 1.95 L 0.025 BSC 0.020 0.028 0.65 BSC 0.50 0.70 4 NOTES: 1. These dimensions are within allowable dimensions of Rev. E of JEDEC MO-153AA outline dated 10-97. 2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.006 inches (0.15mm) per side. 3. Dimension “E1” does not include inter-lead flash or protrusions. Interlead flash and protrusions shall not exceed 0.010 inches (0.25mm) per side. 4. “L” is the length of terminal for soldering. 5. Controlling dimension: Millimeter 6. Revision 2 dated: 1-00. MO-153AA (TSSOP-8) 12mm TAPE AND REEL 20.4mm 1.5mm DIA. HOLE 4.0mm 2.0mm 13mm 1.75mm CL 12mm 330mm 53.5mm 8.0mm 13.4mm USER DIRECTION OF FEED COVER TAPE GENERAL INFORMATION 1. 3000 PIECES PER REEL. 2. ORDER IN MULTIPLES OF FULL REELS ONLY. 3. MEETS EIA-481 REVISION "A" SPECIFICATIONS. 12 ITF87056DQT All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240 13 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029