HUF76132SK8 Data Sheet January 2003 11.5A, 30V, 0.0115 Ohm, N-Channel, Logic Level UltraFET Power MOSFET Features • Logic Level Gate Drive This N-Channel power MOSFET is manufactured using the innovative UltraFET™ process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and batteryoperated products. • 11.5A, 30V • Simulation Models - Temperature Compensated PSPICE® and SABER³™ Electrical Models - SPICE and SABER Thermal Impedance Models - www.fairchildsemi.com • Peak Current vs Pulse Width Curve • UIS Rating Curve • Transient Thermal Impedance Curve vs Board Mounting Area • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Formerly developmental type TA76131. Ordering Information PART NUMBER HUF76132SK8 PACKAGE MS-012AA Symbol BRAND 76132SK8 NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76132SK8T. SOURCE(1) DRAIN(8) SOURCE(2) DRAIN(7) SOURCE(3) DRAIN(6) GATE(4) DRAIN(5) Packaging JEDEC MS-012AA BRANDING DASH 5 1 2 3 ©2003 Fairchild Semiconductor Corporation 4 HUF76132SK8 Rev. B1 HUF76132SK8 Absolute Maximum Ratings TA = 25oC, Unless Otherwise Specified UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (R GS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 30 30 V V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V Drain Current Continuous (TA= 25oC, VGS = 10V) (Figure 2) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 4.5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM 11.5 3.3 3.2 Figure 4 A A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figures 6, 17, 18 2.5 20 W mW/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 150 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. TJ = 25oC to 125oC. 2. 50oC/W measured using FR-4 board with 0.76 in2 copper pad at 10 second. 3. 189oC/W measured using FR-4 board with 0.0115 in2 copper pad at 1000 seconds. Electrical Specifications TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 30 - - V VDS = 25V, VGS = 0V - - 1 µA VDS = 25V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±20V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ID = 250µA, V GS = 0V (Figure 12) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance r DS(ON) ID = 11.5A, V GS = 10V (Figures 9, 10) - 0.0105 0.0115 Ω ID = 3.3A, VGS = 5V (Figure 9) - 0.0125 0.015 Ω ID = 3.2A, VGS = 4.5V (Figure 9) - 0.013 0.016 Ω Pad Area = 0.76 in2 (Note 2) - - 50 oC/W Pad Area = 0.054 in2 (Figure 23) - - 152 oC/W Pad Area = 0.0115 in2 (Figure 23) - - 189 oC/W VDD = 15V, ID ≅ 3.2A, RL = 4.7Ω, VGS = 4.5V, RGS = 6.8Ω (Figures 15, 21, 22) - - 80 ns - 18 - ns tr - 36 - ns td(OFF) - 45 - ns tf - 30 - ns tOFF - - 115 ns THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time ©2003 Fairchild Semiconductor Corporation tON td(ON) HUF76132SK8 Rev. B1 HUF76132SK8 Electrical Specifications TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS - - 70 ns - 10 - ns - 36 - ns td(OFF) - 65 - ns tf - 37 - ns tOFF - - 155 ns - 43 52 nC - 24 29 nC - 1.63 1.95 nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 15V, ID ≅ 11.5A, RL = 1.3Ω, VGS = 10V, RGS = 6.8Ω (Figures 16, 21, 22) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V VDD = 15V, ID ≅ 3.3A, RL = 4.5Ω Ig(REF) = 1.0mA VGS = 0V to 1V (Figures 14, 19, 20) Threshold Gate Charge Qg(TH) Gate to Source Gate Charge Qgs - 4 - nC Gate to Drain “Miller” Charge Qgd - 10 - nC - 1560 - pF - 735 - pF - 150 - pF MIN TYP MAX UNITS - - 1.25 V 1.1 V CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance C RSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD TEST CONDITIONS ISD = 11.5A ISD = 3.3A Reverse Recovery Time Reverse Recovered Charge trr ISD = 3.3A, dISD/dt = 100A/µs - - 58 ns QRR ISD = 3.3A, dISD/dt = 100A/µs - - 87 nC Typical Performance Curves 12 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 VGS = 10V, RθJA = 50 oC/W 9 6 3 VGS = 4.5V, RθJA = 189 oC/W 0.2 0 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE ©2003 Fairchild Semiconductor Corporation 25 50 75 100 125 150 TA, AMBIENT TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE HUF76132SK8 Rev. B1 HUF76132SK8 Typical Performance Curves ZθJA, NORMALIZED THERMAL IMPEDANCE 10 (Continued) DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 1 RθJA = 50oC/W PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA 0.01 SINGLE PULSE 0.001 10 -5 10 -4 10-3 10-2 10 -1 10 0 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 1000 IDM, PEAK CURRENT (A) RθJA = 50oC/W TC = 25 oC FOR TEMPERATURES ABOVE 25 oC DERATE PEAK CURRENT AS FOLLOWS: 100 VGS = 10V 150 - TA I = I25 125 VGS = 5V 10 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 1 10-5 10 -4 10 -3 10 -2 10 -1 100 101 102 103 t , PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 500 100 I AS, AVALANCHE CURRENT (A) I D, DRAIN CURRENT (A) TJ = MAX RATED TA = 25oC 100 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10ms BVDS MAX = 30V 1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC 10 STARTING TJ = 150oC 1 100 0.1 1 10 100 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA ©2003 Fairchild Semiconductor Corporation FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY HUF76132SK8 Rev. B1 HUF76132SK8 Typical Performance Curves (Continued) 50 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 40 VGS = 10V I D, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 50 30 20 150 oC 10 25 oC VGS = 5V 40 VGS = 3.5V 30 VGS = 3V 20 10 TA = 25oC -55oC 0 0 1 2 3 0 4 0.5 VGS, GATE TO SOURCE VOLTAGE (V) 1.5 2.0 FIGURE 8. SATURATION CHARACTERISTICS 40 30 20 ID = 3.3A NORMALIZED DRAIN TO SOURCE ON RESISTANCE 1.6 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX ID = 11.5A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 1.0 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, I D = 11.5A 1.4 1.2 1.0 0.8 0.6 10 2 4 6 8 -80 10 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 VGS = VDS, ID = 250µA 1.0 0.8 0.6 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE ©2003 Fairchild Semiconductor Corporation NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 NORMALIZED GATE THRESHOLD VOLTAGE VGS = 3.5V= 80µs PULSE DURATION DUTY CYCLE = 0.5% MAX 0 ID = 250µA 1.1 1.0 0.9 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE HUF76132SK8 Rev. B1 HUF76132SK8 Typical Performance Curves C, CAPACITANCE (pF) 2500 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≅ CDS + CGD 2000 CISS 1500 1000 COSS 500 CRSS VGS , GATE TO SOURCE VOLTAGE (V) (Continued) 10 VDD = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: I D = 11.5A I D = 3.3A 2 0 0 5 0 15 10 25 20 0 30 10 20 30 40 50 Qg, GATE CHARGE (nC) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 400 250 VGS = 10V, VDD = 15V, ID = 11.5A, RL= 1.3Ω td(OFF) 200 td(OFF) tr 150 tf 100 td(ON) 50 SWITCHING TIME (ns) SWITCHING TIME (ns) VGS = 4.5V, VDD = 15V, ID = 3.2A, RL= 4.7Ω 300 200 tf 100 tr td(ON) 0 0 0 10 20 30 40 0 50 RGS, GATE TO SOURCE RESISTANCE (Ω) 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT ©2003 Fairchild Semiconductor Corporation FIGURE 18. UNCLAMPED ENERGY WAVEFORMS HUF76132SK8 Rev. B1 HUF76132SK8 Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + - VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS VDD 10% 0 - 10% DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM Thermal Resistance vs. Mounting Pad Area The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. (T –T ) JM A = ------------------------------P DM Z θJA (EQ. 1) In using surface mount devices such as the SOP-8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: ©2003 Fairchild Semiconductor Corporation 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 23 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds HUF76132SK8 Rev. B1 HUF76132SK8 Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. Thermal resistances corresponding to other copper areas can be obtained from Figure 23 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. R = 83.2 – 23.6 × θ JA ln ( Area ) Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. 240 RθJA = 83.2 - 23.6*ln (AREA) 200 RθJA (oC/W) of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. 152 oC/W - 0.054in2 160 120 (EQ. 2) The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 24 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. 189oC/W - 0.0115in2 80 0.01 0.1 1.0 AREA, TOP COPPER AREA (in2) FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA 150 ZθJA, THERMAL IMPEDANCE (oC/W) 120 90 COPPER BOARD AREA - DESCENDING ORDER 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.00 in2 60 30 0 10 -1 100 101 10 2 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 24. THERMAL IMPEDANCE vs MOUNTING PAD AREA ©2003 Fairchild Semiconductor Corporation HUF76132SK8 Rev. B1 HUF76132SK8 PSPICE Electrical Model .SUBCKT HUF76132 2 1 3 ; REV May 1999 CA 12 8 2.22-9 CB 15 14 2.3e-9 CIN 6 8 1.42e-9 LDRAIN DPLCAP DRAIN 2 5 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD ESLC 11 - EBREAK 11 7 17 18 37.4 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 + 50 - LDRAIN 2 5 1e-9 LGATE 1 9 1.04e-9 LSOURCE 3 7 1.29e-10 EVTEMP RGATE + 18 22 9 20 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1.94e-3 RGATE 9 20 2.2 RLDRAIN 2 5 10 RLGATE 1 9 10.4 RLSOURCE 3 7 1.29 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 7.8e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 5 51 IT 8 17 1 RLDRAIN RSLC1 51 S2A 13 8 14 13 S1B 17 18 RVTEMP S2B 13 CA RBREAK 15 CB 6 8 EGS 19 - - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*275),3))} .MODEL DBODYMOD D (IS = 2.25e-12 RS = 6.05e-3 IKF=16 TRS1 = 1.14e-4 TRS2 = 1.23e-6 CJO = 2.5e-9 TT = 2.71e-8 M = 0.44) .MODEL DBREAKMOD D (RS = 1.05e-1 TRS1 = 1.01e-4 TRS2 = 1.11e-7) .MODEL DPLCAPMOD D (CJO = 1.4e-9 IS = 1e-30 N = 10 M = 0.69) .MODEL MMEDMOD NMOS (VTO = 1.89 KP = 5.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.20) .MODEL MSTROMOD NMOS (VTO = 2.22 KP = 125 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.62 KP = 0.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 22.0 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.54e-4 TC2 = 1.07e-7) .MODEL RDRAINMOD RES (TC1 = 1.61e-2 TC2 = 5.17e-5) .MODEL RSLCMOD RES (TC1 = 1.03e-5 TC2 = 7.67e-7) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -2.81e-3 TC2 = -8.75e-6) .MODEL RVTEMPMOD RES (TC1 = -6.68e-4 TC2 = 8.8e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -5.8 VOFF= -1.5) VON = -1.5 VOFF= -5.8) VON = -0.5 VOFF= 0.2) VON = 0.2 VOFF= -0.5) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2003 Fairchild Semiconductor Corporation HUF76132SK8 Rev. B1 HUF76132SK8 SABER Electrical Model REV May 1999 template huf76132 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 2.25e-12, cjo = 2.5e-9, tt = 2.71e-8, m = 0.44) d..model dbreakmod = () d..model dplcapmod = (cjo = 1.4-9, is = 1e-30, n = 10, m = 0.69) m..model mmedmod = (type=_n, vto = 1.89, kp = 5.5, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.22, kp = 125, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.62, kp = 0.1, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.8, voff = -1.5) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.5, voff = -5.8) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.2) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.5) LDRAIN DPLCAP 10 RSLC1 51 c.ca n12 n8 = 2.22e-9 c.cb n15 n14 = 2.3e-9 c.cin n6 n8 = 1.42e-9 RLDRAIN RDBREAK RSLC2 72 ISCL d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 MWEAK MSTRO CIN DBODY EBREAK + 17 18 MMED m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u 71 11 16 6 RLGATE RDBODY DBREAK 50 - i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 1.04e-9 l.lsource n3 n7 = 1.29e-10 DRAIN 2 5 - 8 LSOURCE SOURCE 3 7 RSOURCE RLSOURCE res.rbreak n17 n18 = 1, tc1 = 9.54e-4, tc2 = 1.07e-7 res.rdbody n71 n5 = 6.05e-3, tc1 = 1.14e-4, tc2 = 1.23e-6 res.rdbreak n72 n5 = 1.05e-1, tc1 = 1.01e-4, tc2 = 1.11e-7 res.rdrain n50 n16 = 1.94e-3, tc1 = 1.61e-2, tc2 = 5.17e-5 res.rgate n9 n20 = 2.2 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 10.4 res.rlsource n3 n7 = 1.29 res.rslc1 n5 n51 = 1e-6, tc1 = 1.03e-5, tc2 = 7.67e-7 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 7.8e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -6.68e-4, tc2 = 8.8e-7 res.rvthres n22 n8 = 1, tc1 = -2.81e-3, tc2 = -8.75e-6 S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB + + 6 8 EGS - 19 IT 14 VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 37.4 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/275))** 3)) } } ©2003 Fairchild Semiconductor Corporation HUF76132SK8 Rev. B1 HUF76132SK8 SPICE Thermal Model REV April 1999 HUF76132SK8 th JUNCTION Copper Area = 0.04 in2 CTHERM1 th 8 2.0e-3 CTHERM2 8 7 5.0e-3 CTHERM3 7 6 1.0e-2 CTHERM4 6 5 4.0e-2 CTHERM5 5 4 9.0e-2 CTHERM6 4 3 1.2e-1 CTHERM7 3 2 0.5 CTHERM8 2 tl 1.3 CTHERM1 RTHERM1 8 CTHERM2 RTHERM2 7 RTHERM1 th 8 0.1 RTHERM2 8 7 0.5 RTHERM3 7 6 1.0 RTHERM4 6 5 5.0 RTHERM5 5 4 8.0 RTHERM6 4 3 26 RTHERM7 3 2 39 RTHERM8 2 tl 55 RTHERM3 CTHERM3 6 RTHERM4 CTHERM4 5 SABER Thermal Model Copper Area = 0.04 in2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 2.0e-3 ctherm.ctherm2 8 7 = 5.0e-3 ctherm.ctherm3 7 6 = 1.0e-2 ctherm.ctherm4 6 5 = 4.0e-2 ctherm.ctherm5 5 4 = 9.0e-2 ctherm.ctherm6 4 3 = 1.2e-1 ctherm.ctherm7 3 2 = 0.5 ctherm.ctherm8 2 tl = 1.3 RTHERM5 CTHERM5 4 RTHERM6 CTHERM6 3 RTHERM7 CTHERM7 2 rtherm.rtherm1 th 8 = 0.1 rtherm.rtherm2 8 7 = 0.5 rtherm.rtherm3 7 6 = 1.0 rtherm.rtherm4 6 5 = 5.0 rtherm.rtherm5 5 4 = 8.0 rtherm.rtherm6 4 3 = 26 rtherm.rtherm7 3 2 = 39 rtherm.rtherm8 2 tl = 55 } RTHERM8 CTHERM8 tl CASE TABLE 1. Thermal Models 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.0 in2 CTHERM6 1.2e-1 1.5e-1 2.0e-1 2.0e-1 2.0e-1 CTHERM7 0.5 1.0 1.0 1.0 1.0 CTHERM8 1.3 2.8 3.0 3.0 3.0 RTHERM6 26 20 15 13 12 RTHERM7 39 24 21 19 18 RTHERM8 55 38.7 31.3 29.7 25 COMPONENT ©2003 Fairchild Semiconductor Corporation HUF76132SK8 Rev. B1 TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ FACT™ ActiveArray™ FACT Quiet Series™ Bottomless™ FAST® CoolFET™ FASTr™ CROSSVOLT™ FRFET™ DOME™ GlobalOptoisolator™ EcoSPARK™ GTO™ E2CMOS™ HiSeC™ I2C™ EnSigna™ Across the board. Around the world.™ The Power Franchise™ Programmable Active Droop™ ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC® OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench® QFET™ QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic® TruTranslation™ UHC™ UltraFET® VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I2