HUF76132SK8 Data Sheet September 1999 11.5A, 30V, 0.0115 Ohm, N-Channel, Logic Level UltraFET Power MOSFET • Logic Level Gate Drive • 11.5A, 30V • Simulation Models - Temperature Compensated PSPICE® and SABER© Electrical Models - Spice and SABER™ Thermal Impedance Models - www.Intersil.com • Peak Current vs Pulse Width Curve • UIS Rating Curve • Transient Thermal Impedance Curve vs Board Mounting Area • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Formerly developmental type TA76131. Ordering Information HUF76132SK8 PACKAGE MS-012AA 4753.1 Features This N-Channel power MOSFET is manufactured using the innovative UltraFET™ process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and batteryoperated products. PART NUMBER File Number Symbol BRAND 76132SK8 NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76132SK8T. SOURCE(1) DRAIN(8) SOURCE(2) DRAIN(7) SOURCE(3) DRAIN(6) GATE(4) DRAIN(5) Packaging JEDEC MS-012AA BRANDING DASH 5 1 2 3 1 4 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation. SABER is a Copyright of Analogy, Inc. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 HUF76132SK8 Absolute Maximum Ratings TA = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TA= 25oC, VGS = 10V) (Figure 2) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 4.5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg UNITS V V V 30 30 ±16 11.5 3.3 3.2 Figure 4 Figures 6, 17, 18 2.5 20 -55 to 150 A A A W mW/oC oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. TJ = 25oC to 125oC. 2. 50oC/W measured using FR-4 board with 0.76 in2 copper pad at 10 second. 3. 189oC/W measured using FR-4 board with 0.0115 in2 copper pad at 1000 seconds. TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 30 - - V VDS = 25V, VGS = 0V - - 1 µA VDS = 25V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS Gate to Source Leakage Current IGSS ID = 250µA, VGS = 0V (Figure 12) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 11.5A, VGS = 10V (Figures 9, 10) - 0.0105 0.0115 Ω ID = 3.3A, VGS = 5V (Figure 9) - 0.0125 0.015 Ω ID = 3.2A, VGS = 4.5V (Figure 9) - 0.013 0.016 Ω Pad Area = 0.76 in2 (Note 2) - - 50 oC/W Pad Area = 0.054 in2 (Figure 23) - - 152 oC/W Pad Area = 0.0115 in2 (Figure 23) - - 189 oC/W VDD = 15V, ID ≅ 3.2A, RL = 4.7Ω, VGS = 4.5V, RGS = 6.8Ω (Figures 15, 21, 22) - - 80 ns - 18 - ns tr - 36 - ns td(OFF) - 45 - ns tf - 30 - ns tOFF - - 115 ns THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time 2 HUF76132SK8 TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS - - 70 ns - 10 - ns - 36 - ns td(OFF) - 65 - ns tf - 37 - ns tOFF - - 155 ns - 43 52 nC - 24 29 nC - 1.63 1.95 nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 15V, ID ≅ 11.5A, RL = 1.3Ω, VGS = 10V, RGS = 6.8Ω (Figures 16, 21, 22) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge VDD = 15V, ID ≅ 3.3A, RL = 4.5Ω Ig(REF) = 1.0mA (Figures 14, 19, 20) Gate to Source Gate Charge Qgs - 4 - nC Reverse Transfer Capacitance Qgd - 10 - nC - 1560 - pF - 735 - pF - 150 - pF MIN TYP MAX UNITS - - 1.25 V 1.1 V CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD TEST CONDITIONS ISD = 11.5A ISD = 3.3A Reverse Recovery Time Reverse Recovered Charge trr ISD = 3.3A, dISD/dt = 100A/µs - - 58 ns QRR ISD = 3.3A, dISD/dt = 100A/µs - - 87 nC Typical Performance Curves 12 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 VGS = 10V, RθJA = 50oC/W 9 6 3 VGS = 4.5V, RθJA = 189oC/W 0.2 0 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE 3 25 50 75 100 125 150 TA, AMBIENT TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE HUF76132SK8 Typical Performance Curves ZθJA, NORMALIZED THERMAL IMPEDANCE 10 (Continued) DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 1 RθJA = 50oC/W PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA 0.01 SINGLE PULSE 0.001 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 1000 IDM, PEAK CURRENT (A) RθJA = 50oC/W TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 100 VGS = 10V 150 - TA I = I25 125 VGS = 5V 10 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 1 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 500 100 IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) TJ = MAX RATED TA = 25oC 100 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10ms BVDS MAX = 30V 1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC 10 STARTING TJ = 150oC 1 100 0.1 1 10 100 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 4 FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY HUF76132SK8 Typical Performance Curves (Continued) 50 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 40 VGS = 10V ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 50 30 20 150oC 10 25oC VGS = 5V 40 VGS = 3.5V 30 VGS = 3V 20 10 TA = 25oC -55oC 0 0 1 2 3 0 4 0.5 VGS, GATE TO SOURCE VOLTAGE (V) 1.5 2.0 FIGURE 8. SATURATION CHARACTERISTICS 1.6 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX ID = 11.5A 30 20 ID = 3.3A NORMALIZED DRAIN TO SOURCE ON RESISTANCE 40 rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 1.0 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 11.5A 1.4 1.2 1.0 0.8 0.6 10 2 4 6 8 -80 10 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 1.0 0.8 0.6 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 5 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE VGS = 3.5V= 80µs PULSE DURATION DUTY CYCLE = 0.5% MAX 0 ID = 250µA 1.1 1.0 0.9 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE HUF76132SK8 Typical Performance Curves (Continued) VGS , GATE TO SOURCE VOLTAGE (V) C, CAPACITANCE (pF) 2500 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≅ CDS + CGD 2000 CISS 1500 1000 COSS 500 CRSS 10 VDD = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 11.5A ID = 3.3A 2 0 0 0 5 10 20 15 0 30 25 10 20 30 40 50 Qg, GATE CHARGE (nC) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 250 400 VGS = 10V, VDD = 15V, ID = 11.5A, RL= 1.3Ω td(OFF) 200 td(OFF) tr 150 tf 100 td(ON) 50 SWITCHING TIME (ns) SWITCHING TIME (ns) VGS = 4.5V, VDD = 15V, ID = 3.2A, RL= 4.7Ω 300 200 tf 100 tr td(ON) 0 0 0 10 20 30 40 0 50 RGS, GATE TO SOURCE RESISTANCE (Ω) 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT 6 FIGURE 18. UNCLAMPED ENERGY WAVEFORMS HUF76132SK8 Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS VDD 10% 0 - 10% DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM Thermal Resistance vs. Mounting Pad Area The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. ( T JM – T A ) P DM = ------------------------------Z θJA 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. (EQ. 1) 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. In using surface mount devices such as the SOP-8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: Intersil provides thermal information to assist the designer’s preliminary application evaluation. Figure 23 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady 7 HUF76132SK8 Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. Thermal resistances corresponding to other copper areas can be obtained from Figure 23 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. R θJA = 83.2 – 23.6 × ln ( Area ) Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. 240 RθJA = 83.2 - 23.6*ln(AREA) 200 RθJA (oC/W) state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. 152oC/W - 0.054in2 160 120 (EQ. 2) The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 24 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. 189oC/W - 0.0115in2 80 0.01 0.1 1.0 AREA, TOP COPPER AREA (in2) FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA 150 ZθJA, THERMAL IMPEDANCE (oC/W) 120 90 COPPER BOARD AREA - DESCENDING ORDER 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.00 in2 60 30 0 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 24. THERMAL IMPEDANCE vs MOUNTING PAD AREA 8 102 103 HUF76132SK8 PSPICE Electrical Model .SUBCKT HUF76132 2 1 3 ; REV May 1999 CA 12 8 2.22-9 CB 15 14 2.3e-9 CIN 6 8 1.42e-9 LDRAIN DPLCAP DRAIN 2 5 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD DBREAK + RSLC2 5 51 ESLC 11 - EBREAK 11 7 17 18 37.4 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LDRAIN 2 5 1e-9 LGATE 1 9 1.04e-9 LSOURCE 3 7 1.29e-10 + 17 EBREAK 18 50 - IT 8 17 1 LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1.94e-3 RGATE 9 20 2.2 RLDRAIN 2 5 10 RLGATE 1 9 10.4 RLSOURCE 3 7 1.29 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 7.8e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B RLDRAIN RSLC1 51 S2A 14 13 13 8 S1B 17 18 RVTEMP S2B 13 CA RBREAK 15 CB 6 8 - - IT 14 + + EGS 19 VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*275),3))} .MODEL DBODYMOD D (IS = 2.25e-12 RS = 6.05e-3 IKF=16 TRS1 = 1.14e-4 TRS2 = 1.23e-6 CJO = 2.5e-9 TT = 2.71e-8 M = 0.44) .MODEL DBREAKMOD D (RS = 1.05e-1 TRS1 = 1.01e-4 TRS2 = 1.11e-7) .MODEL DPLCAPMOD D (CJO = 1.4e-9 IS = 1e-30 N = 10 M = 0.69) .MODEL MMEDMOD NMOS (VTO = 1.89 KP = 5.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.20) .MODEL MSTROMOD NMOS (VTO = 2.22 KP = 125 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.62 KP = 0.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 22.0 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.54e-4 TC2 = 1.07e-7) .MODEL RDRAINMOD RES (TC1 = 1.61e-2 TC2 = 5.17e-5) .MODEL RSLCMOD RES (TC1 = 1.03e-5 TC2 = 7.67e-7) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -2.81e-3 TC2 = -8.75e-6) .MODEL RVTEMPMOD RES (TC1 = -6.68e-4 TC2 = 8.8e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -5.8 VOFF= -1.5) VON = -1.5 VOFF= -5.8) VON = -0.5 VOFF= 0.2) VON = 0.2 VOFF= -0.5) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 9 HUF76132SK8 SABER Electrical Model REV May 1999 template huf76132 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 2.25e-12, cjo = 2.5e-9, tt = 2.71e-8, m = 0.44) d..model dbreakmod = () d..model dplcapmod = (cjo = 1.4-9, is = 1e-30, n = 10, m = 0.69) m..model mmedmod = (type=_n, vto = 1.89, kp = 5.5, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.22, kp = 125, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.62, kp = 0.1, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.8, voff = -1.5) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.5, voff = -5.8) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.2) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.5) LDRAIN DPLCAP DRAIN 2 5 10 RSLC1 51 c.ca n12 n8 = 2.22e-9 c.cb n15 n14 = 2.3e-9 c.cin n6 n8 = 1.42e-9 RLDRAIN RDBREAK RSLC2 72 ISCL EVTHRES + 19 8 + i.it n8 n17 = 1 LGATE GATE 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 1.04e-9 l.lsource n3 n7 = 1.29e-10 RDRAIN 6 8 ESG EVTEMP RGATE + 18 22 9 20 16 MWEAK DBODY EBREAK + 17 18 MSTRO CIN 71 11 MMED m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u - 8 LSOURCE 7 RSOURCE RLSOURCE S1A 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/275))** 3)) } } - IT 14 + + spe.ebreak n11 n7 n17 n18 = 37.4 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 10 21 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 9.54e-4, tc2 = 1.07e-7 res.rdbody n71 n5 = 6.05e-3, tc1 = 1.14e-4, tc2 = 1.23e-6 res.rdbreak n72 n5 = 1.05e-1, tc1 = 1.01e-4, tc2 = 1.11e-7 res.rdrain n50 n16 = 1.94e-3, tc1 = 1.61e-2, tc2 = 5.17e-5 res.rgate n9 n20 = 2.2 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 10.4 res.rlsource n3 n7 = 1.29 res.rslc1 n5 n51 = 1e-6, tc1 = 1.03e-5, tc2 = 7.67e-7 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 7.8e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -6.68e-4, tc2 = 8.8e-7 res.rvthres n22 n8 = 1, tc1 = -2.81e-3, tc2 = -8.75e-6 DBREAK 50 - d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod RDBODY VBAT 5 8 EDS - + 8 22 RVTHRES SOURCE 3 HUF76132SK8 SPICE Thermal Model REV April 1999 HUF76132SK8 Copper Area = 0.04 in2 CTHERM1 th 8 2.0e-3 CTHERM2 8 7 5.0e-3 CTHERM3 7 6 1.0e-2 CTHERM4 6 5 4.0e-2 CTHERM5 5 4 9.0e-2 CTHERM6 4 3 1.2e-1 CTHERM7 3 2 0.5 CTHERM8 2 tl 1.3 th JUNCTION CTHERM1 RTHERM1 8 CTHERM2 RTHERM2 7 RTHERM1 th 8 0.1 RTHERM2 8 7 0.5 RTHERM3 7 6 1.0 RTHERM4 6 5 5.0 RTHERM5 5 4 8.0 RTHERM6 4 3 26 RTHERM7 3 2 39 RTHERM8 2 tl 55 CTHERM3 RTHERM3 6 RTHERM4 CTHERM4 5 SABER Thermal Model Copper Area = 0.04 in2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 2.0e-3 ctherm.ctherm2 8 7 = 5.0e-3 ctherm.ctherm3 7 6 = 1.0e-2 ctherm.ctherm4 6 5 = 4.0e-2 ctherm.ctherm5 5 4 = 9.0e-2 ctherm.ctherm6 4 3 = 1.2e-1 ctherm.ctherm7 3 2 = 0.5 ctherm.ctherm8 2 tl = 1.3 CTHERM5 RTHERM5 4 RTHERM6 CTHERM6 3 CTHERM7 RTHERM7 2 rtherm.rtherm1 th 8 = 0.1 rtherm.rtherm2 8 7 = 0.5 rtherm.rtherm3 7 6 = 1.0 rtherm.rtherm4 6 5 = 5.0 rtherm.rtherm5 5 4 = 8.0 rtherm.rtherm6 4 3 = 26 rtherm.rtherm7 3 2 = 39 rtherm.rtherm8 2 tl = 55 } CTHERM8 RTHERM8 tl CASE TABLE 1. Thermal Models 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.0 in2 CTHERM6 1.2e-1 1.5e-1 2.0e-1 2.0e-1 2.0e-1 CTHERM7 0.5 1.0 1.0 1.0 1.0 CTHERM8 1.3 2.8 3.0 3.0 3.0 RTHERM6 26 20 15 13 12 RTHERM7 39 24 21 19 18 RTHERM8 55 38.7 31.3 29.7 25 COMPONENT All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 11