HUF75831SK8 TM Data Sheet March 2000 File Number 4796.1 3A, 150V, 0.095 Ohm, N-Channel, UltraFET Power MOSFET Packaging JEDEC MS-012AA Features BRANDING DASH • Ultra Low On-Resistance - rDS(ON) = 0.095Ω, VGS = 10V 5 1 2 3 4 • Simulation Models - Temperature Compensated PSPICE™ and SABER© Electrical Models - Spice and SABER© Thermal Impedance Models - www.intersil.com • Peak Current vs Pulse Width Curve • UIS Rating Curve Symbol Ordering Information SOURCE (1) DRAIN (8) SOURCE (2) DRAIN (7) SOURCE (3) DRAIN (6) HUF75831SK8 GATE (4) DRAIN (5) NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF75831SK8T. Absolute Maximum Ratings PART NUMBER PACKAGE MS-012AA BRAND 75831SK8 TA = 25oC, Unless Otherwise Specified HUF75831SK8 UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 150 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR 150 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V Drain Current Continuous (TA= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 3 2 Figure 4 A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figures 6, 14, 15 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 20 W mW/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 150 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Tech Brief TB370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg 300 260 oC oC NOTES: 1. TJ = 25oC to 125oC. 2. 50oC/W measured using FR-4 board with 0.76 in2 (490.3 mm2) copper pad at 10 second. 3. 152oC/W measured using FR-4 board with 0.054 in2 (34.8 mm2) copper pad at 1000 seconds 4. 189oC/W measured using FR-4 board with 0.0115 in2 (7.42 mm2) copper pad at 1000 seconds CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 1 CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation. SABER© is a Copyright of Analogy Inc. 1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000 HUF75831SK8 TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 150 - - V VDS = 140V, VGS = 0V - - 1 µA VDS = 135V, VGS = 0V, TA = 150oC - - 250 µA VGS = ±20V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS Gate to Source Leakage Current IGSS ID = 250µA, VGS = 0V (Figure 11) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V Drain to Source On Resistance rDS(ON) ID = 3A, VGS = 10V (Figure 9) - 0.079 0.095 W Pad Area = 0.76 in2 (490.3 mm2) (Note 2) - - 50 oC/W Pad Area = 0.054 in2 (34.8 mm2) (Note 3) - - 152 oC/W 189 oC/W THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient RθJA Pad Area = 0.0115 in2 (7.42 mm2)(Note 4) SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time - - 25 ns - 11 - ns - 6 - ns td(OFF) - 40 - ns tf - 9 - ns tOFF - - 75 ns - 66 80 nC - 35 42 nC - 2.4 2.9 nC td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 75V, ID = 3A VGS = 10V, RGS = 4.7Ω (Figures 18, 19) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 20V Gate Charge at 10V Qg(10) VGS = 0V to 10V Threshold Gate Charge Qg(TH) VGS = 0V to 2V VDD = 75V, ID = 3A, Ig(REF) = 1.0mA (Figures 13, 16, 17) Gate to Source Gate Charge Qgs - 4.3 - nC Gate to Drain "Miller" Charge Qgd - 11 - nC - 1175 - pF - 275 - pF - 72 - pF MIN TYP MAX UNITS ISD = 3A - - 1.25 V ISD = 1.5A - - 1.00 V trr ISD = 3A, dISD/dt = 100A/µs - - 132 ns QRR ISD = 3A, dISD/dt = 100A/µs - - 380 nC CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge 2 TEST CONDITIONS HUF75831SK8 Typical Performance Curves 4 VGS = 10V, RθJA = 50oC/W 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 3 2 1 0.2 0 0 25 50 75 100 125 0 150 25 50 75 100 125 150 TA, AMBIENT TEMPERATURE (oC) TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 3 ZθJA, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 RθJA = 50oC/W 0.1 PDM t1 0.01 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 0.001 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 500 TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: IDM, PEAK CURRENT (A) RθJA = 50oC/W 100 I = I25 150 - TA 125 VGS = 10V 10 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 1 10-5 10-4 10-3 10-2 10-1 100 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 3 101 102 103 HUF75831SK8 Typical Performance Curves (Continued) 100 IAS , AVALANCHE CURRENT (A) 100 ID, DRAIN CURRENT (A) RθJA = 50oC/W 10 100µs 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 10ms SINGLE PULSE TJ = MAX RATED TA = 25oC 0.1 1 STARTING TJ = 25oC STARTING TJ = 150oC 0.1 1 NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 20 20 15 10 TJ = 150oC TJ = -55oC 5 ID, DRAIN CURRENT (A) VGS = 20V VGS = 10V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V VGS =5V 15 VGS = 7V VGS = 6V 10 5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25oC TJ = 25oC 0 2.0 2.5 3.5 3.0 4.0 4.5 0 5.0 0 0.5 VGS , GATE TO SOURCE VOLTAGE (V) 1.0 1.5 2.0 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS 2.5 1.2 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE 100 10 tAV, TIME IN AVALANCHE (ms) 500 VDS, DRAIN TO SOURCE VOLTAGE (V) ID, DRAIN CURRENT (A) 10 1 0.01 100 10 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 2.0 1.5 1.0 1.1 1.0 0.9 0.8 VGS = 10V, ID = 3A 0.5 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 4 160 0.7 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE HUF75831SK8 Typical Performance Curves (Continued) 3000 VGS = 0V, f = 1MHz ID = 250µA 1000 1.10 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.15 1.05 1.00 CISS = CGS + CGD COSS ≅ CDS + CGD 100 0.95 CRSS = CGD 0.90 -80 -40 0 40 80 120 10 0.1 160 TJ , JUNCTION TEMPERATURE (oC) 1.0 10 150 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE VGS , GATE TO SOURCE VOLTAGE (V) 10 VDD = 75V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 3A ID = 0.5A 2 0 10 0 20 30 Qg , GATE CHARGE (nC) 40 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG - VGS VDS IAS VDD VDD DUT 0V tP IAS 0 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT 5 FIGURE 15. UNCLAMPED ENERGY WAVEFORMS HUF75831SK8 Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + - VDD VGS = 10V VGS DUT VGS = 2V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT 10% 50% 50% PULSE WIDTH FIGURE 19. SWITCHING TIME WAVEFORM Thermal Resistance vs Mounting Pad Area The maximum rated junction temperature, TJM , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM , in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. ( T JM – T A ) P DM = ------------------------------Z θJA (EQ. 1) In using surface mount devices such as the SOP-8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power 6 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Intersil provides thermal information to assist the designer’s preliminary application evaluation. Figure 20 defines the RθJA for the device as a function of the top copper HUF75831SK8 Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM . Thermal resistances corresponding to other copper areas can be obtained from Figure 20 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. R θJA = 83.2 – 23.6 × ln ( Area ) graph. Spice and SABER thermal models are provided for each of the listed pad areas. Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. 240 RθJA = 83.2 - 23.6*ln(AREA) 200 RθJA (oC/W) (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. 152oC/W - 0.054in2 160 120 (EQ. 2) The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 21 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the 189oC/W - 0.0115in2 80 0.01 0.1 1.0 AREA, TOP COPPER AREA (in2) FIGURE 20. THERMAL RESISTANCE vs MOUNTING PAD AREA 150 ZθJA, THERMAL IMPEDANCE (oC/W) 120 90 COPPER BOARD AREA - DESCENDING ORDER 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.00 in2 60 30 0 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 21. THERMAL IMPEDANCE vs MOUNTING PAD AREA 7 102 103 HUF75831SK8 PSPICE Electrical Model .SUBCKT HUF75831SK8 2 1 3 ; rev 4 Feb 2000 CA 12 8 2.00e-9 CB 15 14 2.00e-9 CIN 6 8 1.10e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP DRAIN 2 5 10 5 51 ESLC 11 - RDRAIN 6 8 EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD + 17 EBREAK 18 50 - IT 8 17 1 LSOURCE CIN 8 SOURCE 3 7 RSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 5.80e-2 RGATE 9 20 1.95 RLDRAIN 2 5 10 RLGATE 1 9 11.2 RLSOURCE 3 7 1.29 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 2.20e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 ESG LDRAIN 2 5 1.0e-9 LGATE 1 9 1.12e-9 LSOURCE 3 7 1.29e-10 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 155.4 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLSOURCE S2A S1A 12 S1B CA RBREAK 15 14 13 13 8 17 18 RVTEMP S2B 13 CB 6 8 VBAT 5 8 EDS - 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD - IT 14 + + EGS 19 - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*40),2))} .MODEL DBODYMOD D (IS = 9.95e-13 RS = 6.61e-3 TRS1 = 1.02e-4 TRS2 = 0 CJO = 1.53e-9 TT = 2.12e-7 M = 0.62) .MODEL DBREAKMOD D (RS = 9.00e-1 TRS1 = 9.94e-4 TRS2 = 1.06e-7) .MODEL DPLCAPMOD D (CJO = 1.35e-9 IS = 1e-30 M = 0.90) .MODEL MMEDMOD NMOS (VTO = 3.18 KP = 1.70 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.95) .MODEL MSTROMOD NMOS (VTO = 3.56 KP = 30 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.85 KP = 0.08 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 19.5 Rs = 0.10) .MODEL RBREAKMOD RES (TC1 = 9.97e-4 TC2 = 5.07e-7) .MODEL RDRAINMOD RES (TC1 = 8.52e-3 TC2 = 2.44e-5) .MODEL RSLCMOD RES (TC1 = 3.28e-3 TC2 = 0) .MODEL RSOURCEMOD RES (TC1 = 1.00e-3 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.08e-3 TC2 = -8.86e-6) .MODEL RVTEMPMOD RES (TC1 = -3.08e-3 TC2 = 0) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -6.0 VOFF= -4.0) VON = -4.0 VOFF= -6.0) VON = -3.0 VOFF= 0.0) VON = 0.0 VOFF= -3.0) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 8 HUF75831SK8 SABER Electrical Model REV 4 feb 2000 template huf75831sk8 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (is = 9.95e-13, rs=6.61e-3, trs1=1.02e-4, trs2=0, cjo = 1.53e-9, tt = 2.12e-7, m = 0.62) dp..model dbreakmod = (rs=9.00e-1, trs1=9.94e-4, trs2=1.06e-7) dp..model dplcapmod = (cjo = 1.35e-9, is = 1e-30, m = 0.90) m..model mmedmod = (type=_n, vto = 3.18, kp = 1.70, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.56, kp = 30, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.85, kp = 0.08, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.0, voff = -4.0) DPLCAP 5 sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -.4.0, voff = -6.0) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -3.0, voff = 0.0) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.0, voff = -3.0) RSLC1 LDRAIN DRAIN 2 RLDRAIN 51 c.ca n12 n8 = 2.00e-9 c.cb n15 n14 = 2.00e-9 c.cin n6 n8 = 1.10e-9 RSLC2 ISCL EVTHRES + 19 8 + i.it n8 n17 = 1 LGATE GATE 1 l.ldrain n2 n5 = 1.00e-9 l.lgate n1 n9 = 1.12e-9 l.lsource n3 n7 = 1.29e-10 RDRAIN 6 8 ESG EVTEMP RGATE + 18 22 9 20 MWEAK MSTRO CIN DBODY EBREAK + 17 18 MMED m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u - 8 LSOURCE 7 RSOURCE RLSOURCE S1A 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/40))** 2)) } } - IT 14 + + spe.ebreak n11 n7 n17 n18 = 155.4 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 9 21 11 16 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 9.97e-4, tc2 = 5.07e-7 res.rdrain n50 n16 = 5.80e-2, tc1 = 8.52e-3, tc2 = 2.44e-5 res.rgate n9 n20 = 1.95 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 11.2 res.rlsource n3 n7 = 1.29 res.rslc1 n5 n51 = 1e-6, tc1 = 3.28e-3, tc2 = 0 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 2.20e-3, tc1 = 1.00e-3, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -3.08e-3, tc2 = 0 res.rvthres n22 n8 = 1, tc1 = -2.08e-3, tc2 = -8.86e-6 DBREAK 50 - dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod VBAT 5 8 EDS - + 8 22 RVTHRES SOURCE 3 HUF75831SK8 SPICE Thermal Model REV 02 Feb 2000 HUF75831SK8 Copper Area = 0.04 in2 CTHERM1 th 8 2.0e-3 CTHERM2 8 7 5.0e-3 CTHERM3 7 6 1.0e-2 CTHERM4 6 5 4.0e-2 CTHERM5 5 4 9.0e-2 CTHERM6 4 3 1.2e-1 CTHERM7 3 2 0.5 CTHERM8 2 tl 1.3 th JUNCTION RTHERM1 CTHERM1 8 RTHERM2 CTHERM2 7 RTHERM1 th 8 0.1 RTHERM2 8 7 0.5 RTHERM3 7 6 1.0 RTHERM4 6 5 5.0 RTHERM5 5 4 8.0 RTHERM6 4 3 26 RTHERM7 3 2 39 RTHERM8 2 tl 55 RTHERM3 CTHERM3 6 RTHERM4 CTHERM4 C SABER Thermal Model 5 Copper Area = 0.04 in2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 2.0e-3 ctherm.ctherm2 8 7 = 5.0e-3 ctherm.ctherm3 7 6 = 1.0e-2 ctherm.ctherm4 6 5 = 4.0e-2 ctherm.ctherm5 5 4 = 9.0e-2 ctherm.ctherm6 4 3 = 1.2e-1 ctherm.ctherm7 3 2 = 0.5 ctherm.ctherm8 2 tl = 1.3 CTHERM5 RTHERM5 4 CTHERM6 RTHERM6 3 CTHERM7 RTHERM7 2 rtherm.rtherm1 th 8 = 0.1 rtherm.rtherm2 8 7 = 0.5 rtherm.rtherm3 7 6 = 1.0 rtherm.rtherm4 6 5 = 5.0 rtherm.rtherm5 5 4 = 8.0 rtherm.rtherm6 4 3 = 26 rtherm.rtherm7 3 2 = 39 rtherm.rtherm8 2 tl = 55 CTHERM8 RTHERM8 tl CASE TABLE 1. THERMAL MODELS 0.04 in2 COMPONENT 0.28 in2 0.52 in2 0.76 in2 1.0 in2 CTHERM6 1.2e-1 1.5e-1 2.0e-1 2.0e-1 2.0e-1 CTHERM7 0.5 1.0 1.0 1.0 1.0 CTHERM8 1.3 2.8 3.0 3.0 3.0 RTHERM6 26 20 15 13 12 RTHERM7 39 24 21 19 18 RTHERM8 55 38.7 31.3 29.7 25 10 HUF75831SK8 MS-012AA 8 LEAD JEDEC MS-012AA SMALL OUTLINE PLASTIC PACKAGE E E1 INCHES A A1 1 e 2 6 D 5 b MIN MAX MIN MAX NOTES A 0.0532 0.0688 1.35 1.75 - A1 0.004 0.0098 0.10 0.25 - b 0.013 0.020 0.33 0.51 - c 0.0075 0.0098 0.19 0.25 - D 0.189 0.1968 4.80 5.00 2 E 0.2284 0.244 5.80 6.20 - E1 0.1497 0.1574 3.80 4.00 3 e h x 45o c 0.004 IN 0.10 mm L 0o-8o 0.060 1.52 0.050 1.27 0.024 0.6 0.155 4.0 0.275 7.0 MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE-MOUNTED APPLICATIONS 1.5mm DIA. HOLE MILLIMETERS SYMBOL 0.050 BSC 1.27 BSC - H 0.0099 0.0196 0.25 0.50 - L 0.016 0.050 0.40 1.27 4 NOTES: 1. All dimensions are within allowable dimensions of Rev. C of JEDEC MS-012AA outline dated 5-90. 2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.006 inches (0.15mm) per side. 3. Dimension “E1” does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 0.010 inches (0.25mm) per side. 4. “L” is the length of terminal for soldering. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. Controlling dimension: Millimeter. 7. Revision 8 dated 5-99. 4.0mm 2.0mm USER DIRECTION OF FEED 1.75mm CL MS-012AA 12mm 12mm TAPE AND REEL 8.0mm 40mm MIN. ACCESS HOLE 18.4mm COVER TAPE 13mm 330mm GENERAL INFORMATION 1. 2500 PIECES PER REEL. 2. ORDER IN MULTIPLES OF FULL REELS ONLY. 3. MEETS EIA-481 REVISION “A” SPECIFICATIONS. 11 50mm 12.4mm HUF75831SK8 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240 12 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029