HUF75631SK8 Data Sheet October 1999 File Number 4785 5.5A, 100V, 0.039 Ohm, N-Channel, UltraFET Power MOSFET Packaging Features JEDEC MS-012AA • Ultra Low On-Resistance - rDS(ON) = 0.039Ω, VGS = 10V BRANDING DASH 5 1 2 3 • Simulation Models - Temperature Compensated PSPICE® and SABER© Electrical Models - Spice and SABER© Thermal Impedance Models - www.Intersil.com 4 • Peak Current vs Pulse Width Curve • UIS Rating Curve Symbol Ordering Information SOURCE (1) DRAIN (8) SOURCE (2) DRAIN (7) PART NUMBER HUF75631SK8 SOURCE (3) DRAIN (6) GATE (4) DRAIN (5) Absolute Maximum Ratings PACKAGE MS-012AA BRAND 75631SK8 NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF75631SK8T. TA = 25oC, Unless Otherwise Specified HUF75631SK8 UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 100 V 100 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V Drain Current Continuous (TA= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM 5.5 3.5 Figure 4 A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Figures 6, 14, 15 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 20 W mW/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg -55 to 150 oC 300 260 oC oC NOTES: 1. TJ = 25oC to 150oC. 2. 50oC/W measured using FR-4 board with 0.76 in2 (490.3 mm2) copper pad at 10 second. 3. 152oC/W measured using FR-4 board with 0.054 in2 (34.8 mm2) copper pad at 1000 seconds 4. 189oC/W measured using FR-4 board with 0.0115 in2 (7.42 mm2) copper pad at 1000 seconds CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 1 CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE™ is a registered trademark of MicroSim Corporation. SABER© is a Copyright of Analogy Inc. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 HUF75631SK8 TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 100 - - V VDS = 95V, VGS = 0V - - 1 µA VDS = 90V, VGS = 0V, TA = 150oC - - 250 µA VGS = ±20V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS Gate to Source Leakage Current IGSS ID = 250µA, VGS = 0V (Figure 11) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V Drain to Source On Resistance rDS(ON) ID = 5.5A, VGS = 10V (Figure 9) - 0.033 0.039 Ω Pad Area = 0.76 in2 (490.3 mm2) (Note 2) (Figures 20, 21) - - 50 oC/W Pad Area = 0.054 in2 (34.8 mm2) (Note 3) (Figures 20, 21) - - 152 oC/W Pad Area = 0.0115 in2 (7.42 mm2)(Note 4) (Figures 20, 21) - - 189 oC/W VDD = 50V, ID = 5.5A VGS = 10V, RGS = 6.8Ω (Figures 18, 19) - - 50 ns - 11 - ns tr - 23 - ns td(OFF) - 39 - ns tf - 31 - ns tOFF - - 105 ns - 66 79 nC - 35 43 nC - 2.4 2.9 nC THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 20V Gate Charge at 10V Qg(10) VGS = 0V to 10V Threshold Gate Charge Qg(TH) VGS = 0V to 2V VDD = 50V, ID = 5.5A, Ig(REF) = 1.0mA (Figures 13, 16, 17) Gate to Source Gate Charge Qgs - 4.75 - nC Gate to Drain “Miller” Charge Qgd - 12 - nC - 1225 - pF - 330 - pF - 105 - pF MIN TYP MAX UNITS ISD = 5.5 A - - 1.25 V ISD = 2.5 A - - 1.00 V trr ISD = 5.5 A, dISD/dt = 100A/µs - - 96 ns QRR ISD = 5.5 A, dISD/dt = 100A/µs - - 310 nC CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge 2 TEST CONDITIONS HUF75631SK8 1.2 6 1.0 5 VGS = 10V, RθJA = 50oC/W ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER Typical Performance Curves 0.8 0.6 0.4 0.2 4 3 2 1 0 0 25 50 75 100 125 0 150 25 50 TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE ZθJA, NORMALIZED THERMAL IMPEDANCE 10 1 75 100 150 125 TA, AMBIENT TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 RθJA = 50oC/W PDM 0.1 t1 t2 0.01 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 0.001 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 500 TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: RθJA = 50oC/W 100 VGS = 10V I = I25 150 - TA 125 10 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 1 10-5 10-4 10-3 10-2 10-1 100 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 3 101 102 103 HUF75631SK8 Typical Performance Curves (Continued) 100 200 RθJA = 50oC/W IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 100 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 10ms SINGLE PULSE TJ = MAX RATED TA = 25oC 0.1 1 100 10 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 10 STARTING TJ = 25oC STARTING TJ = 150oC 1 0.01 200 0.1 1 10 tAV, TIME IN AVALANCHE (ms) VDS, DRAIN TO SOURCE VOLTAGE (V) 100 NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 50 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 40 VGS = 20V VGS = 10V ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 50 30 20 TJ = 150oC 10 TJ = 25oC TJ = -55oC 0 2 3 4 5 VGS, GATE TO SOURCE VOLTAGE (V) 40 VGS =5V 30 20 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25oC 10 0 0 6 FIGURE 7. TRANSFER CHARACTERISTICS 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) 4 FIGURE 8. SATURATION CHARACTERISTICS 2.5 1.2 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE VGS = 7V VGS = 6V 2.0 1.5 1.0 1.0 0.8 VGS = 10V, ID = 5.5A 0.5 0.6 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 4 160 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE HUF75631SK8 Typical Performance Curves (Continued) 3000 ID = 250µA CISS = CGS + CGD C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 1.1 1.0 1000 CRSS = CGD COSS ≅ CDS + CGD 100 VGS = 0V, f = 1MHz 0.9 -80 -40 0 40 80 120 30 0.1 160 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE VGS , GATE TO SOURCE VOLTAGE (V) 10 1.0 10 100 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE VDD = 50V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 5.5A ID = 2A 2 0 10 0 20 30 Qg, GATE CHARGE (nC) 40 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT 5 FIGURE 15. UNCLAMPED ENERGY WAVEFORMS HUF75631SK8 Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + VDD VGS = 10V VGS DUT VGS = 2V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS VDD 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT 10% 50% 50% PULSE WIDTH FIGURE 19. SWITCHING TIME WAVEFORM Thermal Resistance vs. Mounting Pad Area The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. ( T JM – T A ) P DM = ------------------------------Z θJA (EQ. 1) In using surface mount devices such as the SOP-8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 6 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Intersil provides thermal information to assist the designer’s preliminary application evaluation. Figure 20 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the HUF75631SK8 Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. Thermal resistances corresponding to other copper areas can be obtained from Figure 23 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. R θJA = 83.2 – 23.6 × ln ( Area ) Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. 240 RθJA = 83.2 - 23.6*ln(AREA) 200 RθJA (oC/W) necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. 152oC/W - 0.054in2 160 120 (EQ. 2) The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 21 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. 189oC/W - 0.0115in2 80 0.01 0.1 1.0 AREA, TOP COPPER AREA (in2) FIGURE 20. THERMAL RESISTANCE vs MOUNTING PAD AREA 150 ZθJA, THERMAL IMPEDANCE (oC/W) 120 90 COPPER BOARD AREA - DESCENDING ORDER 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.00 in2 60 30 0 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 21. THERMAL IMPEDANCE vs MOUNTING PAD AREA 7 102 103 HUF75631SK8 PSPICE Electrical Model .SUBCKT HUF75631SK8 2 1 3 ; rev 29 July 1999 CA 12 8 1.88e-9 CB 15 14 1.88e-9 CIN 6 8 1.12e-9 LDRAIN DPLCAP DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD 10 RLDRAIN RSLC1 51 DBREAK + RSLC2 EBREAK 11 7 17 18 114.8 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 5 51 ESLC 11 - RDRAIN 6 8 ESG IT 8 17 1 LGATE GATE 1 LDRAIN 2 5 1.0e-9 LGATE 1 9 1.12e-9 LSOURCE 3 7 1.29e-10 + 17 EBREAK 18 50 EVTHRES + 19 8 + EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD 8 SOURCE 3 7 RSOURCE RLSOURCE S2A S1A RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1.86e-2 RGATE 9 20 1.88 RLDRAIN 2 5 10 RLGATE 1 9 11.2 RLSOURCE 3 7 1.29 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 7.55e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DRAIN 2 5 12 14 13 13 8 S1B 17 18 RVTEMP S2B 13 CA RBREAK 15 CB 6 8 - - IT 14 + + EGS 19 VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*76),2))} .MODEL DBODYMOD D (IS = 1.02e-12 RS = 5.39e-3 TRS1 = 1.01e-3 TRS2 = 9.97e-7 CJO = 1.49e-9 TT = 9.98e-8 M = 0.58) .MODEL DBREAKMOD D (RS = 3.03e-1 TRS1 = 2.37e-3 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 1.44e-9 IS = 1e-30 M = 0.80) .MODEL MMEDMOD NMOS (VTO = 3.04 KP = 1.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.88) .MODEL MSTROMOD NMOS (VTO = 3.47 KP = 40 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.71 KP = 0.08 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 18.8 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.09e-3 TC2 = 0) .MODEL RDRAINMOD RES (TC1 = 9.09e-3 TC2 = 2.74e-5) .MODEL RSLCMOD RES (TC1 = 5.00e-3 TC2 = 0) .MODEL RSOURCEMOD RES (TC1 = 1.00e-3 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.66e-3 TC2 = -1.01e-5) .MODEL RVTEMPMOD RES (TC1 = -2.38e-3 TC2 = 1.39e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -5.5 VOFF= -4.0) VON = -4.0 VOFF= -5.5) VON = -1.0 VOFF= 0.0) VON = 0.0 VOFF= -1.0) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 8 HUF75631SK8 SABER Electrical Model REV 29 July 1999 template huf75631sk8 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 1.02e-12, cjo = 1.49e-9, tt = 9.98e-8, m = 0.58) d..model dbreakmod = () d..model dplcapmod = (cjo = 1.44e-9, is = 1e-30, m = 0.80 ) m..model mmedmod = (type=_n, vto = 3.04, kp = 1.75, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.47, kp = 40, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.71, kp = 0.08, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.5, voff = -4) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -4, voff = -5.5) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1, voff = 0) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0, voff = -1) LDRAIN DPLCAP DRAIN 2 5 10 RSLC1 51 RLDRAIN RDBREAK RSLC2 72 ISCL c.ca n12 n8 = 1.88e-9 c.cb n15 n14 = 1.88e-9 c.cin n6 n8 = 1.12e-9 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 MWEAK DBODY EBREAK + 17 18 MMED MSTRO CIN 71 11 16 6 RLGATE l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 1.12e-9 l.lsource n3 n7 = 1.29e-10 DBREAK 50 - RDBODY - 8 LSOURCE 7 RSOURCE RLSOURCE m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 1.09e-3, tc2 = 0 res.rdbody n71 n5 = 5.39e-3, tc1 = 1.01e-3, tc2 = 9.97e-7 res.rdbreak n72 n5 = 3.03e-1, tc1 = 2.37e-3, tc2 = 0 res.rdrain n50 n16 = 1.86e-2, tc1 = 9.09e-3, tc2 = 2.74e-5 res.rgate n9 n20 = 1.88 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 11.2 res.rlsource n3 n7 = 1.29 res.rslc1 n5 n51 = 1e-6, tc1 = 5.00e-3, tc2 = 0 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 7.55e-3, tc1 = 1.00e-3, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -2.38e-3, tc2 = 1.39e-6 res.rvthres n22 n8 = 1, tc1 = -2.66e-3, tc2 = -1.01e-5 S1A 12 S2A 13 8 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/76))** 2)) } } - IT 14 + + spe.ebreak n11 n7 n17 n18 = 114.8 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 9 RBREAK 15 14 13 VBAT 5 8 EDS - + 8 22 RVTHRES SOURCE 3 HUF75631SK8 SPICE Thermal Model REV 28 July 1999 HUF75631SK8 Copper Area = 0.04 in2 CTHERM1 th 8 2.0e-3 CTHERM2 8 7 5.0e-3 CTHERM3 7 6 1.0e-2 CTHERM4 6 5 4.0e-2 CTHERM5 5 4 9.0e-2 CTHERM6 4 3 1.2e-1 CTHERM7 3 2 0.5 CTHERM8 2 tl 1.3 th JUNCTION CTHERM1 RTHERM1 8 CTHERM2 RTHERM2 7 RTHERM1 th 8 0.1 RTHERM2 8 7 0.5 RTHERM3 7 6 1.0 RTHERM4 6 5 5.0 RTHERM5 5 4 8.0 RTHERM6 4 3 26 RTHERM7 3 2 39 RTHERM8 2 tl 55 CTHERM3 RTHERM3 6 RTHERM4 CTHERM4 5 SABER Thermal Model Copper Area = 0.04 in2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 2.0e-3 ctherm.ctherm2 8 7 = 5.0e-3 ctherm.ctherm3 7 6 = 1.0e-2 ctherm.ctherm4 6 5 = 4.0e-2 ctherm.ctherm5 5 4 = 9.0e-2 ctherm.ctherm6 4 3 = 1.2e-1 ctherm.ctherm7 3 2 = 0.5 ctherm.ctherm8 2 tl = 1.3 CTHERM5 RTHERM5 4 RTHERM6 CTHERM6 3 CTHERM7 RTHERM7 2 rtherm.rtherm1 th 8 = 0.1 rtherm.rtherm2 8 7 = 0.5 rtherm.rtherm3 7 6 = 1.0 rtherm.rtherm4 6 5 = 5.0 rtherm.rtherm5 5 4 = 8.0 rtherm.rtherm6 4 3 = 26 rtherm.rtherm7 3 2 = 39 rtherm.rtherm8 2 tl = 55 } CTHERM8 RTHERM8 tl CASE TABLE 1. Thermal Models 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.0 in2 CTHERM6 1.2e-1 1.5e-1 2.0e-1 2.0e-1 2.0e-1 CTHERM7 0.5 1.0 1.0 1.0 1.0 CTHERM8 1.3 2.8 3.0 3.0 3.0 RTHERM6 26 20 15 13 12 RTHERM7 39 24 21 19 18 RTHERM8 55 38.7 31.3 29.7 25 COMPONENT 10 HUF75631SK8 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 11 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029