HUF75531SK8 Data Sheet December 2001 6A, 80V, 0.030 Ohm, N-Channel, UltraFET Power MOSFET Packaging JEDEC MS-012AA Features BRANDING DASH • Ultra Low On-Resistance - rDS(ON) = 0.030Ω, VGS = 10V 5 1 2 3 4 • Simulation Models - Temperature Compensated PSPICE® and SABER™ Electrical Models - Spice and SABER Thermal Impedance Models - www.fairchildsemi.com • Peak Current vs Pulse Width Curve • UIS Rating Curve Symbol SOURCE (1) DRAIN (8) SOURCE (2) DRAIN (7) SOURCE (3) DRAIN (6) GATE (4) DRAIN (5) Absolute Maximum Ratings Ordering Information PART NUMBER HUF75531SK8 PACKAGE MS-012AA BRAND 75531SK8 NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF75531SK8T. TA = 25oC, Unless Otherwise Specified HUF75531SK8 UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 80 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 80 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V Drain Current Continuous (TA= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 6 4 Figure 4 A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figures 6, 14, 15 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 20 W mW/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 150 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief TB370. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300 260 oC oC NOTES: 1. TJ = 25oC to 125oC. 2. 50oC/W measured using FR-4 board with 0.76 in 2 (490.3 mm2) copper pad at 10 second. 3. 152oC/W measured using FR-4 board with 0.054 in 2 (34.8 mm2) copper pad at 1000 seconds 4. 189oC/W measured using FR-4 board with 0.0115 in 2 (7.42 mm2) copper pad at 1000 seconds CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html For severe environments, see our Automotive HUFA series. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2001 Fairchild Semiconductor Corporation HUF75531SK8 Rev. B HUF75531SK8 Electrical Specifications TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ID = 250µA, VGS = 0V (Figure 11) 80 - - V VDS = 75V, VGS = 0V - - 1 µA VDS = 70V, VGS = 0V, TA = 150oC - - 250 µA VGS = ±20V - - ±100 nA ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V Drain to Source On Resistance rDS(ON) ID = 6A, VGS = 10V (Figure 9) - 0.025 0.030 Ω Pad Area = 0.76 in2 (490.3 mm2) (Note 2) - - 50 oC/W Pad Area = 0.054 in2 (34.8 mm2) (Note 3) - - 152 oC/W 189 oC/W THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient RθJA Pad Area = 0.0115 in2 (7.42 mm2)(Note 4) SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time tON td(ON) tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 40V, ID = 6A VGS = 10V, RGS = 6.8Ω (Figures 18, 19) - - 55 ns - 10.5 - ns - 25 - ns td(OFF) - 49 - ns tf - 29 - ns tOFF - - 115 ns GATE CHARGE SPECIFICATIONS Qg(TOT) VGS = 0V to 20V Gate Charge at 10V Total Gate Charge Qg(10) VGS = 0V to 10V Threshold Gate Charge Qg(TH) VGS = 0V to 2V VDD = 40V, ID = 6A, Ig(REF) = 1.0mA - 68 82 nC - 37 45 nC - 2.4 2.9 nC Gate to Source Gate Charge Qgs - 4.8 - nC Gate to Drain "Miller" Charge Qgd - 14 - nC (Figures 13, 16, 17) CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) - 1210 - pF - 385 - pF - 115 - pF Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ©2001 Fairchild Semiconductor Corporation SYMBOL VSD MIN TYP MAX UNITS ISD = 6A TEST CONDITIONS - - 1.25 V ISD = 4A - - 1.00 V trr ISD = 6A, dISD/dt = 100A/µs - - 105 ns QRR ISD = 6A, dISD/dt = 100A/µs - - 325 nC HUF75531SK8 Rev. B HUF75531SK8 Typical Performance Curves 8 VGS = 10V, RθJA = 50oC/W 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 6 4 2 0.2 0 0 25 50 75 125 100 0 150 25 50 TA , AMBIENT TEMPERATURE (oC) 75 100 125 150 TA, AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 3 ZθJA, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 RθJA = 50oC/W 0.1 PDM t1 0.01 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x R θJA + TA SINGLE PULSE 0.001 10 -5 10-4 10 -3 10-2 10 -1 10 0 101 10 2 10 3 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 500 TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: IDM, PEAK CURRENT (A) RθJA = 50oC/W 100 VGS = 10V I = I25 150 - TA 125 10 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 1 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY ©2001 Fairchild Semiconductor Corporation HUF75531SK8 Rev. B HUF75531SK8 Typical Performance Curves (Continued) 200 RθJA = 50oC/W 100 ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) 200 100µs 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1ms 10ms SINGLE PULSE TJ = MAX RATED TA = 25oC 100 10 VDS, DRAIN TO SOURCE VOLTAGE (V) STARTING TJ = 25oC 10 STARTING TJ = 150oC 1 0.01 0.1 1 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - V DD ) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 100 200 0.1 1 100 10 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 30 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 25 ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 30 20 15 TJ = 150oC 10 TJ = -55oC VGS = 20V VGS = 10V 25 20 VGS = 7V VGS = 6V 15 10 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25 oC 5 5 TJ = 25oC 0 0 2.0 3.0 4.0 5.0 0 6.0 0.5 1.0 1.5 2.0 V DS, DRAIN TO SOURCE VOLTAGE (V) VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS 2.5 1.2 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = VDS , ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE VGS =5V 2.0 1.5 1.0 1.0 0.8 VGS = 10V, ID = 6A 0.5 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE ©2001 Fairchild Semiconductor Corporation 160 0.6 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE HUF75531SK8 Rev. B HUF75531SK8 Typical Performance Curves (Continued) 3000 VGS = 0V, f = 1MHz ID = 250µA C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 1.1 1.0 CISS = CGS + CGD 1000 COSS ≅ C DS + CGD 100 CRSS = CGD 0.9 -80 -40 0 40 80 120 30 0.1 160 T J , JUNCTION TEMPERATURE (oC) 1.0 10 80 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE VGS , GATE TO SOURCE VOLTAGE (V) 10 VDD = 40V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 6A ID = 1A 2 0 10 0 20 30 Qg, GATE CHARGE (nC) 40 NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT ©2001 Fairchild Semiconductor Corporation FIGURE 15. UNCLAMPED ENERGY WAVEFORMS HUF75531SK8 Rev. B HUF75531SK8 Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + VDD VGS = 10V VGS DUT VGS = 2V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS VDD 10% 0 - 10% DUT 90% RGS VGS VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT 10% 50% 50% PULSE WIDTH FIGURE 19. SWITCHING TIME WAVEFORM Thermal Resistance vs. Mounting Pad Area The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. ( T JM – TA ) P = ------------------------------DM Z θJA 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. (EQ. 1) In using surface mount devices such as the SOP-8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power ©2001 Fairchild Semiconductor Corporation dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 20 HUF75531SK8 Rev. B HUF75531SK8 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. graph. Spice and SABER thermal models are provided for each of the listed pad areas. Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. R θJA = 83.2 – 23.6 × ln ( Area ) RθJA = 83.2 - 23.6*ln(AREA) 200 RθJA (oC/W) Thermal resistances corresponding to other copper areas can be obtained from Figure 20 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. 240 189oC/W - 0.0115in2 152oC/W - 0.054in2 160 120 (EQ. 2) 80 The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 21 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the 0.1 0.01 1.0 AREA, TOP COPPER AREA (in2) FIGURE 20. THERMAL RESISTANCE vs MOUNTING PAD AREA 150 Z θJA, THERMAL IMPEDANCE (oC/W) 120 90 COPPER BOARD AREA - DESCENDING ORDER 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.00 in2 60 30 0 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 21. THERMAL IMPEDANCE vs MOUNTING PAD AREA ©2001 Fairchild Semiconductor Corporation HUF75531SK8 Rev. B HUF75531SK8 PSPICE Electrical Model .SUBCKT HUF75531SK8 2 1 3 ; rev 22 Feb 2000 CA 12 8 2.00e-9 CB 15 14 2.00e-9 CIN 6 8 1.09e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP DRAIN 2 5 10 5 51 ESLC 11 - RDRAIN 6 8 EVTHRES + 19 8 + LGATE GATE 1 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD + 50 - IT 8 17 1 EVTEMP RGATE + 18 22 9 20 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 9.30e-3 RGATE 9 20 1.70 RLDRAIN 2 5 10 RLGATE 1 9 11.2 RLSOURCE 3 7 1.29 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 11.35e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 ESG LDRAIN 2 5 1.0e-9 LGATE 1 9 1.12e-9 LSOURCE 3 7 1.29e-10 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 86.60 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD RBREAK 15 VBAT 5 8 EDS - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*125),2))} .MODEL DBODYMOD D (IS = 1.06e-12 RS = 5.86e-3 TRS1 = 4.97e-5 TRS2 = 2.11e-6 CJO = 1.51e-9 TT = 1.05e-7 M = 0.53) .MODEL DBREAKMOD D (RS = 4.45e- 1TRS1 = 1.02e- 3TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 1.48e- 9IS = 1e-3 0M = 0.78) .MODEL MMEDMOD NMOS (VTO = 3.18 KP = 2.55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.70) .MODEL MSTROMOD NMOS (VTO = 3.67 KP = 55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.83 KP = 0.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 17.0 Rs = 0.10) .MODEL RBREAKMOD RES (TC1 = 1.21e- 3TC2 = 0) .MODEL RDRAINMOD RES (TC1 = 1.32e-2 TC2 = 3.21e-5) .MODEL RSLCMOD RES (TC1 = 4.00e-3 TC2 = 0) .MODEL RSOURCEMOD RES (TC1 = 1.00e-3 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.56e-3 TC2 = -9.91e-6) .MODEL RVTEMPMOD RES (TC1 = -2.44e- 3TC2 = 0) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -6.0 VOFF= -4.0) VON = -4.0 VOFF= -6.0) VON = -3.0 VOFF= 0.0) VON = 0.0 VOFF= -3.0) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2001 Fairchild Semiconductor Corporation HUF75531SK8 Rev. B HUF75531SK8 SABER Electrical Model REV 22 feb 2000 template huf75531sk8 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (is = 1.06e-12, rs=5.86e-3, trs1=4.97e-5, trs2=2.11e-6, cjo = 1.51e-9, tt = 1.05e-7, m = 0.53) dp..model dbreakmod = (rs=4.45e-1, trs1=1.02e-3, trs2= 0) dp..model dplcapmod = (cjo = 1.48e-9, is = 1e-30, m = 0.78) m..model mmedmod = (type=_n, vto = 3.18, kp = 2.55, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.67, kp = 55, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.83, kp = 0.1, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.0, voff = -4.0) DPLCAP 5 sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -.4.0, voff = -6.0) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -3.0, voff = 0.0) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.0, voff = -3.0) RSLC1 DRAIN 2 RLDRAIN 51 c.ca n12 n8 = 2.00e-9 c.cb n15 n14 = 2.00e-9 c.cin n6 n8 = 1.09e-9 RSLC2 ISCL RDRAIN 6 8 ESG EVTHRES + 19 8 + i.it n8 n17 = 1 LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 11 16 MWEAK 6 MSTRO CIN m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u DBODY EBREAK + 17 18 MMED RLGATE res.rbreak n17 n18 = 1, tc1 = 1.21e-3, tc2 = 0 res.rdrain n50 n16 = 9.30e-3, tc1 = 1.32e-2, tc2 = 3.21e-5 res.rgate n9 n20 = 1.70 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 11.2 res.rlsource n3 n7 = 1.29 res.rslc1 n5 n51 = 1e-6, tc1 = 4.00e-3, tc2 = 0 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 11.35e-3, tc1 = 1.00e-3, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -2.44e-3, tc2 = 0 res.rvthres n22 n8 = 1, tc1 = -2.56e-3, tc2 = -9.91e-6 DBREAK 50 - dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod l.ldrain n2 n5 = 1.00e-9 l.lgate n1 n9 = 1.12e-9 l.lsource n3 n7 = 1.29e-10 LDRAIN - 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 + 6 8 EGS 19 CB + - - IT 14 VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 86.60 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/125))** 2)) } } ©2001 Fairchild Semiconductor Corporation HUF75531SK8 Rev. B HUF75531SK8 SPICE Thermal Model REV 12 Feb 2000 HUF75531SK8 JUNCTION th Copper Area = 0.04 in2 CTHERM1 th 8 2.0e-3 CTHERM2 8 7 5.0e-3 CTHERM3 7 6 1.0e-2 CTHERM4 6 5 4.0e-2 CTHERM5 5 4 9.0e-2 CTHERM6 4 3 1.2e-1 CTHERM7 3 2 0.5 CTHERM8 2 tl 1.3 RTHERM1 CTHERM1 8 RTHERM2 CTHERM2 7 RTHERM1 th 8 0.1 RTHERM2 8 7 0.5 RTHERM3 7 6 1.0 RTHERM4 6 5 5.0 RTHERM5 5 4 8.0 RTHERM6 4 3 26 RTHERM7 3 2 39 RTHERM8 2 tl 55 RTHERM3 CTHERM3 6 RTHERM4 CTHERM4 C 5 SABER Thermal Model Copper Area = 0.04 in2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 2.0e-3 ctherm.ctherm2 8 7 = 5.0e-3 ctherm.ctherm3 7 6 = 1.0e-2 ctherm.ctherm4 6 5 = 4.0e-2 ctherm.ctherm5 5 4 = 9.0e-2 ctherm.ctherm6 4 3 = 1.2e-1 ctherm.ctherm7 3 2 = 0.5 ctherm.ctherm8 2 tl = 1.3 RTHERM5 CTHERM5 4 RTHERM6 CTHERM6 3 RTHERM7 CTHERM7 2 rtherm.rtherm1 th 8 = 0.1 rtherm.rtherm2 8 7 = 0.5 rtherm.rtherm3 7 6 = 1.0 rtherm.rtherm4 6 5 = 5.0 rtherm.rtherm5 5 4 = 8.0 rtherm.rtherm6 4 3 = 26 rtherm.rtherm7 3 2 = 39 rtherm.rtherm8 2 tl = 55 RTHERM8 CTHERM8 tl CASE TABLE 1. THERMAL MODELS 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.0 in2 CTHERM6 1.2e-1 1.5e-1 2.0e-1 2.0e-1 2.0e-1 CTHERM7 0.5 1.0 1.0 1.0 1.0 CTHERM8 1.3 2.8 3.0 3.0 3.0 RTHERM6 26 20 15 13 12 RTHERM7 39 24 21 19 18 RTHERM8 55 38.7 31.3 29.7 25 COMPONENT ©2001 Fairchild Semiconductor Corporation HUF75531SK8 Rev. B