HUF76113T3ST TM Data Sheet June 2000 4.7A, 30V, 0.031 Ohm, N-Channel, Logic Level UltraFET Power MOSFET File Number 4388.3 Features • Logic Level Gate Drive This N-Channel power MOSFET is ® manufactured using the innovative UltraFET process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and batteryoperated products. • 4.7A, 30V • Ultra Low On-Resistance, rDS(ON) = 0.031Ω • Temperature Compensating PSPICE® Model • Temperature Compensating SABER™ Model • Thermal Impedance SPICE Model • Thermal Impedance SABER Model • Peak Current vs Pulse Width Curve • UIS Rating Curve Formerly developmental type TA76113. • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Ordering Information Symbol PART NUMBER PACKAGE BRAND D HUF76113T3ST SOT-223 76113 NOTE: HUF76113T3ST is available only in tape and reel. G S Packaging SOT-223 DRAIN (FLANGE) SOURCE DRAIN GATE 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFET® is a registered trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation. SABER™ is a trademark of Analogy, Inc. 1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000 HUF76113T3ST Absolute Maximum Ratings TA = 25oC, Unless Otherwise Specified HUF76113T3ST UNITS 30 30 ±16 V V V 4.7 2.7 2.6 Figure 4 Figure 6 1.1 0.0091 -55 to 150 A A A W W/oC oC 300 260 oC oC Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TA= 25oC, VGS = 10V) (Figure 2) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 5V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 4.5V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 30 - - V VDS = 25V, VGS = 0V - - 1 µA VDS = 25V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage BVDSS Zero Gate Voltage Drain Current IDSS Gate to Source Leakage Current IGSS ID = 250µA, VGS = 0V (Figure 12) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 4.7A, VGS = 10V (Figure 9, 10) - 0.027 0.031 W ID = 2.7A, VGS = 5V (Figure 9) - 0.033 0.038 W ID = 2.6A, VGS = 4.5V (Figure 9) - 0.035 0.040 W Pad Area = 0.173 in2 (Note 2) - - 110 oC/W Pad Area = 0.068 in2 (See TB377) - - 133 oC/W Pad Area = 0.026 in2 (See TB377) - - 157 oC/W VDD = 15V, ID ≅ 2.6A, RL = 5.8Ω, VGS = 4.5V, RGS = 18Ω (Figure 15) - - 90 ns - 12 - ns - 46 - ns td(OFF) - 31 - ns tf - 31 - ns tOFF - - 95 ns THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time 2 HUF76113T3ST TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS - - 40 ns - 4 - ns - 21 - ns td(OFF) - 31 - ns tf - 25 - ns tOFF - - 85 ns - 17.0 20.5 nC - 9.5 11.5 nC - 0.73 0.90 nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 15V, ID ≅ 4.7A, RL = 3.2Ω, VGS = 10V, RGS = 9.1Ω (Figure 16) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge VDD = 15V, ID ≅ 2.7A, RL = 5.5Ω Ig(REF) = 1.0mA (Figure 14) Gate to Source Gate Charge Qgs - 1.50 - nC Gate to Drain “Miller” Charge Qgd - 4.30 - nC - 625 - pF - 310 - pF - 60 - pF MIN TYP MAX UNITS ISD = 4.7A - - 1.25 V ISD = 2.7A - - 1.00 V trr ISD = 2.7A, dISD/dt = 100A/µs - - 44 ns QRR ISD = 2.7A, dISD/dt = 100A/µs - - 46 nC CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) NOTES: 2. Rated with RθJA=110oC/W measured using FR-4 board with 0.173 in2 copper at 1000 seconds. Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge TEST CONDITIONS Typical Performance Curves 5 VGS = 10V, RθJA = 110oC/W 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 0.2 4 3 VGS = 4.5V, RθJA = 110oC/W 2 1 0 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE 3 25 50 75 100 125 150 TA, AMBIENT TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE HUF76113T3ST Typical Performance Curves 2 ZθJA, NORMALIZED THERMAL IMPEDANCE 1 0.1 (Continued) DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 RθJA = 110oC/W PDM t1 0.01 t2 SINGLE PULSE NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA 0.001 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 500 RθJA = 110oC/W 100 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I VGS = 5V = I25 150 - TA 125 VGS = 10V 10 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 1 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY TJ = MAX RATED TA = 25oC ID, DRAIN CURRENT (A) 100 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10ms VDSS(MAX) = 30V 1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) IAS, AVALANCHE CURRENT (A) 40 200 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 10 STARTING TJ = 25oC STARTING TJ = 150oC 1 100 0.01 0.1 1 10 100 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 4 FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY HUF76113T3ST Typical Performance Curves 30 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 25 ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 30 (Continued) 20 15 10 150oC VGS = 3.5V 20 15 10 VGS = 3V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25oC 5 5 25oC VGS = 10V VGS = 5V VGS = 4V 25 -55oC 0 0 0 1 2 3 4 VGS, GATE TO SOURCE VOLTAGE (V) 0 5 FIGURE 7. TRANSFER CHARACTERISTICS NORMALIZED DRAIN TO SOURCE ON RESISTANCE rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 70 60 ID = 4.7A 50 40 ID = 0.5A 30 1.6 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 4.7A 1.4 1.2 1.0 0.8 0.6 20 2 4 6 8 10 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 1.1 1.0 0.9 0.8 0.7 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 4 FIGURE 8. SATURATION CHARACTERISTICS 1.8 80 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) ID = 250µA 1.1 1.0 0.9 0.6 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 5 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE HUF76113T3ST Typical Performance Curves (Continued) 10 VGS , GATE TO SOURCE VOLTAGE (V) C, CAPACITANCE (pF) 1000 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD 800 CISS 600 400 COSS 200 CRSS 0 0 5 10 15 20 25 VDS , DRAIN TO SOURCE VOLTAGE (V) VDD = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 4.7A ID = 0.5A 2 0 0 30 10 15 20 Qg, GATE CHARGE (nC) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 150 100 VGS = 4.5V, VDD = 15V, ID = 2.6A, RL = 5.8Ω VGS = 10V, VDD = 15V, ID = 4.7A, RL = 3.2Ω tr 80 SWITCHING TIME (ns) SWITCHING TIME (ns) 5 td(OFF) 60 tf 40 td(ON) 120 td(OFF) 90 tf 60 tr 30 20 td(ON) 0 0 0 10 20 30 40 0 50 RGS, GATE TO SOURCE RESISTANCE (Ω) 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT 6 FIGURE 18. UNCLAMPED ENERGY WAVEFORMS HUF76113T3ST Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 10 VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM Thermal Resistance vs. Mounting Pad Area The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. In using surface mount devices such as the SOT-223 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. ( T JM – T A ) P DM = ------------------------------Z θJA (EQ. 1) 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. 7 HUF76113T3ST Intersil provides thermal information to assist the designer’s preliminary application evaluation. Figure 23 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. The smallest areas represent 200 RθJA (oC/W) 157oC/W - 0.026in2 150 133oC/W - 0.068in2 100 RθJA = 65.3 - 25 * ln(AREA) 0.1 Thermal resistances corresponding to other copper areas can be obtained from Figure 23 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. R θJA = 65.3 – 25 × ln ( Area ) (EQ. 2) The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 24 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. 110oC/W - 0.173in2 50 0.01 the minimum bond pad area and the package outline area respectively as determined from the package diagram 1 AREA, TOP COPPER AREA (in2) FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA 120 COPPER BOARD AREA - DESCENDING ORDER 0.077 in2 0.308 in2 0.535 in2 0.760 in2 0.996 in2 IMPEDANCE (oC/W) ZθJA, THERMAL 100 80 60 40 20 0 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 24. THERMAL IMPEDANCE vs MOUNTING PAD AREA 8 102 103 HUF76113T3ST PSPICE Electrical Model .SUBCKT HUF76113T3 2 1 3 ; REV August 1998 CA 12 8 8.7e-10 CB 15 14 8.7e-10 CIN 6 8 5.6e-10 LDRAIN DPLCAP DRAIN 2 5 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD ESLC 11 - EBREAK 11 7 17 18 34.3 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 + 17 EBREAK 18 50 - EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LDRAIN 2 5 1e-9 LGATE 1 9 1.69e-9 LSOURCE 3 7 4.1e-10 LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 9.2e-3 RGATE 9 20 2.5 RLDRAIN 2 5 10 RLGATE 1 9 16.9 RLSOURCE 3 7 4.1 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 12.5e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 5 51 IT 8 17 1 RLDRAIN RSLC1 51 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 VBAT 5 8 EDS - - IT 14 + + - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*180),2.5))} .MODEL DBODYMOD D (IS = 9.35e-13 RS = 1.39e-2 TRS1 = 1.12e-6 TRS2 = 1.05e-6 CJO = 9.85e-10 TT = 2.82e-8 M = 0.42) .MODEL DBREAKMOD D (RS = 1.5e-1 TRS1 = 3.51e-3 TRS2 = -5e-5) .MODEL DPLCAPMOD D (CJO = 4.4e-10 IS = 1e-30 N = 10 M = 0.6) .MODEL MMEDMOD NMOS (VTO = 1.95 KP = 3.55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.5) .MODEL MSTROMOD NMOS (VTO = 2.23 KP = 29 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.68 KP = 0.095 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 25 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.7e-4 TC2 = -5e-7) .MODEL RDRAINMOD RES (TC1 = 5.8e-3 TC2 = 1.12e-5) .MODEL RSLCMOD RES (TC1 = -9.92e-3 TC2 = -2.06e-5) .MODEL RSOURCEMOD RES (TC1 = 3e-3 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -1.2e-3 TC2 = -5.42e-6) .MODEL RVTEMPMOD RES (TC1 = -1.9e-3 TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -7.0 VOFF = -1.5) VON = -1.5 VOFF = -7.0) VON = -0.8 VOFF = 0.6) VON = 0.6 VOFF = -0.8) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 9 HUF76113T3ST SABER Electrical Model REV October 1998 template huf76113T3 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 9.35e-13, cjo = 9.85e-10, tt = 2.82e-8, m = 0.42) d..model dbreakmod = () d..model dplcapmod = (cjo = 4.4e-10, is = 1e-30, n = 10, m = 0.6) m..model mmedmod = (type=_n, vto = 1.95, kp = 3.55, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.23, kp = 29, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.68, kp = 0.095, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -7.0, voff = -1.5) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.5, voff = -7.0) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.8, voff = 0.6) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.6, voff = -0.8) LDRAIN DPLCAP DRAIN 2 5 10 RSLC1 51 RLDRAIN RDBREAK RSLC2 c.ca n12 n8 = 8.7e-10 c.cb n15 n14 = 8.7e-10 c.cin n6 n8 = 5.6e-10 72 ISCL d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod EVTHRES + 19 8 + LGATE i.it n8 n17 = 1 RDRAIN 6 8 ESG GATE 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 1.69e-9 l.lsource n3 n7 = 4.1e-10 EVTEMP RGATE + 18 22 9 20 21 MSTRO - 8 LSOURCE 7 RLSOURCE S1A S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/180))** 2.5)) } } - IT 14 + + spe.ebreak n11 n7 n17 n18 = 34.3 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 10 DBODY EBREAK + 17 18 RSOURCE 12 res.rbreak n17 n18 = 1, tc1 = 9.7e-4, tc2 = -5e-7 res.rdbody n71 n5 = 1.39e-2, tc1 = 1.12e-6, tc2 = 1.05e-6 res.rdbreak n72 n5 = 1.5e-1, tc1 = 3.51e-3, tc2 = -5e-5 res.rdrain n50 n16 = 9.2e-3, tc1 = 5.8e-3, tc2 = 1.12e-5 res.rgate n9 n20 = 2.5 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 16.9 res.rlsource n3 n7 = 4.1 res.rslc1 n5 n51 = 1e-6, tc1 = -9.92e-3, tc2 = -2.06e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 12.5e-3, tc1 = 3e-3, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.9e-3, tc2 = 1e-6 res.rvthres n22 n8 = 1, tc1 = -1.2e-3, tc2 = -5.42e-6 MWEAK MMED CIN 71 11 16 6 RLGATE m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u DBREAK 50 - RDBODY VBAT 5 8 EDS - + 8 22 RVTHRES SOURCE 3 HUF76113T3ST SPICE Thermal Model th REV August 1998 HUF76113T3ST Copper Area = 0.077 in2 CTHERM1 th 8 1.9e-5 CTHERM2 8 7 9.5e-4 CTHERM3 7 6 1.9e-3 CTHERM4 6 5 3.5e-3 CTHERM5 5 4 2.0e-2 CTHERM6 4 3 6.5e-2 CTHERM7 3 2 2.4e-1 CTHERM8 2 tl 9.0e-1 JUNCTION CTHERM1 RTHERM1 8 CTHERM2 RTHERM2 7 RTHERM1 th 8 3.5e-3 RTHERM2 8 7 3.1e-2 RTHERM3 7 6 2.0e-1 RTHERM4 6 5 8.0e-1 RTHERM5 5 4 2.1 RTHERM6 4 3 11 RTHERM7 3 2 32 RTHERM8 2 tl 66 RTHERM3 SABER Thermal Model RTHERM5 CTHERM3 6 CTHERM4 RTHERM4 5 Copper Area = 0.077 in2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 1.9e-5 ctherm.ctherm2 8 7 = 9.5e-4 ctherm.ctherm3 7 6 = 1.9e-3 ctherm.ctherm4 6 5 = 3.5e-3 ctherm.ctherm5 5 4 = 2.0e-2 ctherm.ctherm6 4 3 = 6.5e-2 ctherm.ctherm7 3 2 = 2.4e-1 ctherm.ctherm8 2 tl = 9.0e-1 CTHERM5 4 CTHERM6 RTHERM6 3 CTHERM7 RTHERM7 2 CTHERM8 RTHERM8 rtherm.rtherm1 th 8 = 3.5e-3 rtherm.rtherm2 8 7 = 3.1e-2 rtherm.rtherm3 7 6 = 2.0e-1 rtherm.rtherm4 6 5 = 8.0e-1 rtherm.rtherm5 5 4 = 2.1 rtherm.rtherm6 4 3 = 11 rtherm.rtherm7 3 2 = 32 rtherm.rtherm8 2 tl = 66 } tl AMBIENT TABLE 1. THERMAL MODELS 0.077 in2 0.308 in2 0.535 in2 0.76 in2 0.996 in2 CTHERM6 6.5e-2 6.7e-2 6.7e-2 6.7e-2 6.7e-2 CTHERM7 2.4e-1 3.5e-1 3.5e-1 3.5e-1 3.5e-1 CTHERM8 9.0e-1 1.7 1.9 2 2.4 RTHERM6 11 9 9 9 9 RTHERM7 32 18 16 15.5 14.5 RTHERM8 66 45.5 40 36 31.5 COMPONENT All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com 11 HUF76113T3ST SOT-223 (TO-261AA) SMALL OUTLINE TRANSISTOR D INCHES A D1 E A1 E1 c e L b SYMBOL MIN MAX MIN MAX NOTES A 0.063 0.070 1.60 1.78 - A1 0.0008 0.004 0.02 0.10 - b 0.026 0.033 0.65 0.85 - c 0.010 0.014 0.25 0.35 - D 0.248 0.264 6.30 6.70 D1 0.116 0.124 2.95 3.15 E 0.264 0.287 6.70 7.30 - E1 0.130 0.146 3.30 3.70 2 e 0-10 MILLIMETERS L 0.0905 BSC 0.036 - 2.30 BSC 0.91 - 3 NOTES: 1. All dimensions are within the allowable dimensions of Rev. A of JEDEC TO-261 outline dated 1-90. 2. Dimension "E1" does not include inter-lead flash or gate burr protrusions. Inter-lead flash and protrusions shall not exceed 0.010 inches (.25mm) per side. 3. "L" is the length of terminal for soldering. 4. Controlling dimension: Millimeter. 5. Revision 5 dated 5-99. 0.003 IN 0.08 mm 0.15 3.8 0.079 2.0 0.244 6.2 0.079 2.0 0.059 1.5 0.091 2.3 0.181 4.6 MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS SOT-223 1.5mm DIA. HOLE 4.0mm USER DIRECTION OF FEED 1.75mm 2.0mm C L 16mm TAPE AND REEL 16mm 8.0mm COVER TAPE ACCESS HOLE 22.4mm 13mm 330mm 100mm GENERAL INFORMATION 1. 3500 PIECES PER REEL. 2. ORDER IN MULTIPLES OF FULL REELS ONLY. 3. MEETS EIA-481 REVISION "A" SPECIFICATIONS. 12 16.4mm