MBT2222ADW1T1 General Purpose Transistor NPN Silicon • Moisture Sensitivity Level: 1 • ESD Rating: Human Body Model − 4 kV http://onsemi.com Machine Model − 400 V MAXIMUM RATINGS Rating (3) Symbol Value Unit Collector−Emitter Voltage VCEO 40 Vdc Collector−Base Voltage VCBO 75 Vdc Emitter−Base Voltage VEBO 6.0 Vdc IC 600 mAdc Symbol Max Unit PD 150 mW RJA 833 °C/W TJ, Tstg −55 to +150 Collector Current − Continuous (2) (1) Q1 Q2 (4) (5) (6) THERMAL CHARACTERISTICS Characteristic Total Package Dissipation (Note 1) TA = 25°C Thermal Resistance, Junction−to−Ambient Junction and Storage Temperature 1 SC−88/SC70−6/SOT−363 CASE 419B STYLE 1 °C Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint. MARKING DIAGRAM 6 1P D 1 1P = Specific Device Code D = Date Code ORDERING INFORMATION Device Package Shipping† MBT2222ADW1T1 SOT−363 3000/Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Semiconductor Components Industries, LLC, 2004 September, 2004 − Rev. 1 1 Publication Order Number: MBT2222ADW1T1/D MBT2222ADW1T1 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Max Unit Collector−Emitter Breakdown Voltage (IC = 10 mAdc, IB = 0) V(BR)CEO 40 − Vdc Collector−Base Breakdown Voltage (IC = 10 Adc, IE = 0) V(BR)CBO 75 − Vdc Emitter−Base Breakdown Voltage (IE = 10 Adc, IC = 0) V(BR)EBO 6.0 − Vdc Collector Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc) ICEX − 10 nAdc Collector Cutoff Current (VCB = 60 Vdc, IE = 0) (VCB = 60 Vdc, IE = 0, TA = 125°C) ICBO − − 0.01 10 Emitter Cutoff Current (VEB = 3.0 Vdc, IC = 0) IEBO − 100 nAdc IBL − 20 nAdc 35 50 75 35 100 50 40 − − − − 300 − − − − 0.3 1.0 0.6 − 1.2 2.0 OFF CHARACTERISTICS Base Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc) Adc ON CHARACTERISTICS DC Current Gain (IC = 0.1 mAdc, VCE = 10 Vdc) (IC = 1.0 mAdc, VCE = 10 Vdc) (IC = 10 mAdc, VCE = 10 Vdc) (IC = 10 mAdc, VCE = 10 Vdc, TA = −55°C) (IC = 150 mAdc, VCE = 10 Vdc) (Note 2) (IC = 150 mAdc, VCE = 1.0 Vdc) (Note 2) (IC = 500 mAdc, VCE = 10 Vdc) (Note 2) hFE Collector−Emitter Saturation Voltage (Note 2) (IC = 150 mAdc, IB = 15 mAdc) (IC = 500 mAdc, IB = 50 mAdc) VCE(sat) Base−Emitter Saturation Voltage (Note 2) (IC = 150 mAdc, IB = 15 mAdc) (IC = 500 mAdc, IB = 50 mAdc) VBE(sat) 2. Pulse Test: Pulse Width ≤ 300 s, Duty Cycle ≤ 2.0%. http://onsemi.com 2 − Vdc Vdc MBT2222ADW1T1 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Max Unit fT 300 − MHz Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1.0 MHz) Cobo − 8.0 pF Input Capacitance (VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz) Cibo − 25 pF 2.0 0.25 8.0 1.25 − − 8.0 4.0 50 75 300 375 5.0 25 35 200 − 150 − 4.0 SMALL−SIGNAL CHARACTERISTICS Current−Gain − Bandwidth Product (Note 3) (IC = 20 mAdc, VCE = 20 Vdc, f = 100 MHz) Input Impedance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hie Voltage Feedback Ratio (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hre Small−Signal Current Gain (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hfe Output Admittance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) (IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hoe Collector Base Time Constant (IE = 20 mAdc, VCB = 20 Vdc, f = 31.8 MHz) rb, Cc Noise Figure (IC = 100 Adc, VCE = 10 Vdc, RS = 1.0 k, f = 1.0 kHz) k X 10− 4 − mhos ps NF dB SWITCHING CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time (VCC = 30 Vdc, VBE(off) = − 0.5 Vdc, IC = 150 mAdc, IB1 = 15 mAdc) td − 10 tr − 25 (VCC = 30 Vdc, IC = 150 mAdc, IB1 = IB2 = 15 mAdc) ts − 225 tf − 60 3. fT is defined as the frequency at which |hfe| extrapolates to unity. http://onsemi.com 3 ns ns MBT2222ADW1T1 SWITCHING TIME EQUIVALENT TEST CIRCUITS +30 V +30 V +16 V 1.0 to 100 s, DUTY CYCLE ≈ 2.0% 200 1.0 to 100 s, DUTY CYCLE ≈ 2.0% +16 V 0 0 −2 V 1 k < 2 ns 1k −14 V CS* < 10 pF 200 < 20 ns CS* < 10 pF 1N914 −4 V Scope rise time < 4 ns *Total shunt capacitance of test jig, connectors, and oscilloscope. Figure 1. Turn−On Time Figure 2. Turn−Off Time hFE , DC CURRENT GAIN 1000 700 500 TJ = 125°C 300 200 25°C 100 70 50 −55°C 30 VCE = 1.0 V VCE = 10 V 20 10 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 IC, COLLECTOR CURRENT (mA) 50 70 100 200 300 500 700 1.0 k VCE , COLLECTOR−EMITTER VOLTAGE (VOLTS) Figure 3. DC Current Gain 1.0 TJ = 25°C 0.8 0.6 IC = 1.0 mA 10 mA 150 mA 500 mA 0.4 0.2 0 0.005 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 IB, BASE CURRENT (mA) 2.0 Figure 4. Collector Saturation Region http://onsemi.com 4 3.0 5.0 10 20 30 50 MBT2222ADW1T1 200 500 IC/IB = 10 TJ = 25°C tr @ VCC = 30 V td @ VEB(off) = 2.0 V td @ VEB(off) = 0 30 20 10 7.0 5.0 200 t′s = ts − 1/8 tf 100 70 50 tf 30 20 10 7.0 5.0 3.0 2.0 5.0 7.0 10 20 30 50 70 100 200 300 IC, COLLECTOR CURRENT (mA) 500 5.0 7.0 10 20 30 50 70 100 200 IC, COLLECTOR CURRENT (mA) Figure 5. Turn−On Time IC = 1.0 mA, RS = 150 500 A, RS = 200 100 A, RS = 2.0 k 50 A, RS = 4.0 k 8.0 6.0 f = 1.0 kHz 8.0 NF, NOISE FIGURE (dB) NF, NOISE FIGURE (dB) 500 10 RS = OPTIMUM RS = SOURCE RS = RESISTANCE 4.0 2.0 IC = 50 A 100 A 500 A 1.0 mA 6.0 4.0 2.0 0 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 500 1.0 k 2.0 k 5.0 k 10 k 20 k 50 k 100 k Figure 7. Frequency Effects Figure 8. Source Resistance Effects 10 7.0 5.0 Ccb 3.0 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 REVERSE VOLTAGE (VOLTS) 20 30 50 f T, CURRENT−GAIN BANDWIDTH PRODUCT (MHz) RS, SOURCE RESISTANCE (OHMS) Ceb 0.2 0.3 100 200 f, FREQUENCY (kHz) 20 0.1 0 50 50 100 30 CAPACITANCE (pF) 300 Figure 6. Turn−Off Time 10 2.0 VCC = 30 V IC/IB = 10 IB1 = IB2 TJ = 25°C 300 t, TIME (ns) t, TIME (ns) 100 70 50 Figure 9. Capacitances 500 VCE = 20 V TJ = 25°C 300 200 100 70 50 1.0 2.0 3.0 5.0 7.0 10 20 30 IC, COLLECTOR CURRENT (mA) 50 70 100 Figure 10. Current−Gain Bandwidth Product http://onsemi.com 5 MBT2222ADW1T1 1.0 +0.5 TJ = 25°C 0 VBE(sat) @ IC/IB = 10 0.6 COEFFICIENT (mV/° C) V, VOLTAGE (VOLTS) 0.8 1.0 V VBE(on) @ VCE = 10 V 0.4 0.2 RVC for VCE(sat) −0.5 −1.0 −1.5 RVB for VBE −2.0 VCE(sat) @ IC/IB = 10 0 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 IC, COLLECTOR CURRENT (mA) −2.5 500 1.0 k 0.1 0.2 Figure 11. “On” Voltages 0.5 1.0 2.0 5.0 10 20 50 100 200 IC, COLLECTOR CURRENT (mA) Figure 12. Temperature Coefficients http://onsemi.com 6 500 MBT2222ADW1T1 PACKAGE DIMENSIONS SC−88/SC70−6/SOT−363 CASE 419B−02 ISSUE 02U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419B−01 OBSOLETE, NEW STANDARD 419B−02. A G 6 5 DIM A B C D G H J K N S 4 S −B− 1 2 3 D 6 PL 0.2 (0.008) M B M J C K SOLDERING FOOTPRINT 0.50 0.0197 0.65 0.025 0.65 0.025 0.40 0.0157 1.9 0.0748 SCALE 20:1 http://onsemi.com 7 MILLIMETERS MIN MAX 1.80 2.20 1.15 1.35 0.80 1.10 0.10 0.30 0.65 BSC −−− 0.10 0.10 0.25 0.10 0.30 0.20 REF 2.00 2.20 STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2 N H INCHES MIN MAX 0.071 0.087 0.045 0.053 0.031 0.043 0.004 0.012 0.026 BSC −−− 0.004 0.004 0.010 0.004 0.012 0.008 REF 0.079 0.087 mm inches MBT2222ADW1T1 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Phone: 81−3−5773−3850 Email: [email protected] http://onsemi.com 8 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. MBT2222ADW1T1/D