STB130NH02L STP130NH02L N-CHANNEL 24V - 0.0034 Ω - 120A D²PAK/TO-220 STripFET™ III POWER MOSFET FOR DC-DC CONVERSION Table 1: General Features TYPE STB130NH02L STP130NH02L ■ ■ ■ ■ ■ ■ ■ Figure 1:Package VDSS RDS(on) ID 24 V 24 V < 0.0044 Ω < 0.0044 Ω 90 A(2) 90 A(2) TYPICAL RDS(on) = 0.0034 Ω @ 10 V TYPICAL RDS(on) = 0.005 Ω @ 5 V RDS(ON) * Qg INDUSTRY’s BENCHMARK CONDUCTION LOSSES REDUCED SWITCHING LOSSES REDUCED LOW THRESHOLD DEVICE SURFACE-MOUNTING D2PAK (TO-263) POWER PACKAGE IN TUBE (NO SUFFIX) OR IN TAPE & REEL (SUFFIX “T4”) 3 1 D2PAK TO-263 (Suffix “T4”) 3 1 2 TO-220 DESCRIPTION The STB_P130NH02L utilizes the latest advanced design rules of ST’s proprietary STripFET™ technology. It is ideal in high performance DC-DC converter applications where efficiency is to be achieved at very high output currents. Figure 2: Internal Schematic Diagram APPLICATIONS ■ SYNCHRONOUS RECTIFICATIONS FOR TELECOM AND COMPUTER ■ OR-ING DIODE Table 2: Ordering Information SALES TYPE STB130NH02LT4 STP130NH02L MARKING B130NH02L P130NH02L PACKAGE TO-263 TO-220 PACKAGING TAPE & REEL TUBE ABSOLUTE MAXIMUM RATINGS Symbol Vspike(1) VDS VDGR VGS ID(2) ID(2) IDM(3) Ptot EAS (4) Tstg Tj April 2005 Parameter Drain-source Voltage Rating Drain-source Voltage (VGS = 0) Drain-gate Voltage (RGS = 20 kΩ) Gate- source Voltage Drain Current (continuous) at TC = 25°C Drain Current (continuous) at TC = 100°C Drain Current (pulsed) Total Dissipation at TC = 25°C Derating Factor Single Pulse Avalanche Energy Storage Temperature Max. Operating Junction Temperature Value 30 24 24 ± 20 90 90 360 150 1 900 Unit V V V V A A A W W/°C mJ -55 to 175 °C Rev. 2.0 1/13 STB130NH02L STP130NH02L Table 4: THERMAL DATA Rthj-case Rthj-amb Tl Thermal Resistance Junction-case Thermal Resistance Junction-ambient Maximum Lead Temperature For Soldering Purpose Max Max °C/W °C/W °C 1.0 62.5 300 ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) Table 5: OFF Symbol V(BR)DSS IDSS IGSS Parameter Test Conditions Drain-source Breakdown Voltage ID = 25 mA, VGS = 0 Zero Gate Voltage Drain Current (VGS = 0) VDS = 20 V VDS = 20 V Gate-body Leakage Current (VDS = 0) VGS = ± 20 V Min. Typ. Max. 24 Unit V TC = 125°C 1 10 µA µA ±100 nA Max. Unit Table 6: ON (*) Symbol Parameter Test Conditions VGS(th) Gate Threshold Voltage VDS = VGS ID = 250 µA RDS(on) Static Drain-source On Resistance VGS = 10 V VGS = 5 V ID = 45 A ID = 22.5 A Min. Typ. 1 V 0.0034 0.005 0.0044 0.008 Ω Ω Typ. Max. Unit Table 7: DYNAMIC Symbol Test Conditions gfs (5) Forward Transconductance VDS = 10 V Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance VDS = 15V f = 1 MHz VGS = 0 Gate Input Resistance f = 1 MHz Gate DC Bias = 0 Test Signal Level = 20 mV Open Drain RG 2/13 Parameter ID = 45 A Min. 55 S 4450 1126 141 pF pF pF 1.6 Ω STB130NH02L STP130NH02L ELECTRICAL CHARACTERISTICS (continued) Table 8: SWITCHING ON Symbol Parameter Test Conditions Min. Typ. td(on) tr Turn-on Delay Time Rise Time VDD = 10 V ID = 45 A VGS = 10 V RG = 4.7 Ω (Resistive Load, Figure ) 14 224 Qg Qgs Qgd Total Gate Charge Gate-Source Charge Gate-Drain Charge VDD=10 V ID=90 A VGS=10 V 69 13 9 Max. Unit ns ns 93 nC nC nC Qoss(6) Output Charge VDS= 16 V VGS= 0 V 27 nC Qgls(7) Third-quadrant Gate Charge VDS< 0 V VGS= 10 V 64 nC Table 9: SWITCHING OFF Symbol td(off) tf Parameter Turn-off Delay Time Fall Time Test Conditions Min. Typ. Max. Unit 69 40 54 ns ns Typ. Max. Unit 90 360 A A 1.3 V VDD = 10 V ID = 45 A VGS = 10 V RG = 4.7Ω, (Resistive Load, Figure 3) Table 10: SOURCE DRAIN DIODE Symbol Parameter ISD ISDM Source-drain Current Source-drain Current (pulsed) VSD (5) trr Qrr IRRM Test Conditions Forward On Voltage ISD = 45 A Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current ISD = 90 A di/dt = 100A/µs Tj = 150°C VDD = 15 V (see test circuit, Figure 5) Min. VGS = 0 47 58 2.5 (1) Garanted when external Rg=4.7 Ω and tf < tfmax. (2) Value limited by wire bonding (3) Pulse width limited by safe operating area. (4) Starting Tj = 25 oC, ID = 45A, VDD = 10V . (5) Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %. (6) Qoss = Coss*∆ Vin , Coss = Cgd + Cds . See Appendix A (7) Gate charge for synchronous operation Figure 3: Safe Operating Area Figure 4: Thermal Impedance ns nC A 3/13 STB130NH02L STP130NH02L Figure 5: Output Characteristics Figure 6: Transfer Characteristics Figure 7: Transconductance Figure 8: Static Drain-source On Resistance Figure 9: Gate Charge vs Gate-source Voltage Figure 10: Capacitance Variations 4/13 STB130NH02L STP130NH02L Figure 11: Normalized Gate Threshold Voltage vs Temperature Figure 12: Normalized on Resistance vs Temperature Figure 13: Source-drain Diode Forward Characteristics Figure 14: Normalized Breakdown Voltage vs Temperature . . 5/13 STB130NH02L STP130NH02L Figure 15: Unclamped Inductive Load Test Circuit Figure 16: Unclamped Inductive Waveform Figure 17: Switching Times Test Circuits For Resis- Figure 18: Gate Charge test Circuit tive Load Figure 19: Test Circuit For Inductive Load Switch- ing And Diode Recovery Times 6/13 STB130NH02L STP130NH02L TO-220 MECHANICAL DATA DIM. mm. MIN. TYP. inch. MAX. MIN. A 4.4 4.6 0.173 TYP. 0.181 TYP. C 1.23 1.32 0.048 0.051 D 2.40 2.72 0.094 0.107 E 0.49 0.70 0.019 0.027 F 0.61 0.88 0.024 0.034 F1 1.14 1.70 0.044 0.067 F2 1.14 1.70 0.044 0.067 G 4.95 5.15 0.194 0.203 G1 2.40 2.70 0.094 0.106 H2 10 10.40 0.393 0.409 L2 16.40 L3 0.645 28.90 1.137 L4 13 14 0.511 0.551 L5 2.65 2.95 0.104 0.116 L6 15.25 15.75 0.600 0.620 L7 6.20 6.60 0.244 0.260 L9 3.50 3.93 0.137 0.154 DIA 3.75 3.85 0.147 0.151 7/13 STB130NH02L STP130NH02L D2PAK MECHANICAL DATA DIM. mm. MIN. MAX. MIN. A 4.4 4.6 0.173 0.181 A1 2.49 2.69 0.098 0.106 A2 0.03 0.23 0.001 0.009 TYP. TYP. B 0.7 0.93 0.028 0.037 B2 1.14 1.7 0.045 0.067 C 0.45 0.6 0.018 0.024 C2 1.21 1.36 0.048 0.054 D 8.95 9.35 0.352 D1 E 8 10 E1 0.368 0.315 10.4 0.394 8.5 0.409 0.334 G 4.88 5.28 0.192 0.208 L 15 15.85 0.591 0.624 L2 1.27 1.4 0.050 0.055 L3 1.4 1.75 0.055 0.069 M 2.4 3.2 0.094 R V2 8/13 TYP. inch. 0.4 0° 0.126 0.015 8° 0° 8° STB130NH02L STP130NH02L D2PAK FOOTPRINT TUBE SHIPMENT (no suffix)* TAPE AND REEL SHIPMENT (suffix ”T4”)* REEL MECHANICAL DATA DIM. mm MIN. A inch MAX. MIN. 330 B 1.5 C 12.8 D 20.2 G 24.4 N 100 T MAX. 12.992 0.059 13.2 0.504 0.520 0.795 26.4 0.960 1.039 3.937 30.4 1.197 BASE QTY BULK QTY 1000 1000 TAPE MECHANICAL DATA DIM. mm inch MIN. MAX. MIN. MAX. A0 10.5 10.7 0.413 0.421 B0 15.7 15.9 0.618 0.626 D 1.5 1.6 0.059 0.063 D1 1.59 1.61 0.062 0.063 E 1.65 1.85 0.065 0.073 F 11.4 11.6 0.449 0.456 K0 4.8 5.0 0.189 0.197 0.161 P0 3.9 4.1 0.153 P1 11.9 12.1 0.468 0.476 P2 1.9 2.1 0075 0.082 R 50 T 0.25 0.35 .0.0098 1.574 0.0137 W 23.7 24.3 0.933 0.956 * on sales type 9/13 STB130NH02L STP130NH02L APPENDIX A Buck Converter: Power Losses Estimation SW1 SW2 The power losses associated with the FETs in a Synchronous Buck converter can be estimated using the equations shown in the table below. The formulas give a good approximation, for the sake of performance comparison, of how different pairs of devices affect the converter efficiency. However a very important parameter, the working temperature, is not considered. The real device behavior is really dependent on how the heat generated inside the devices is removed to allow for a safer working junction temperature. The low side (SW2) device requires: • • • • • Very low RDS(on) to reduce conduction losses Small Qgls to reduce the gate charge losses Small Coss to reduce losses due to output capacitance Small Qrr to reduce losses on SW1 during its turn-on The Cgd/Cgs ratio lower than Vth/Vgg ratio especially with low drain to source voltage to avoid the cross conduction phenomenon; The high side (SW1) device requires: • Small Rg and Ls to allow higher gate current peak and to limit the voltage feedback on the gate • Small Q g to have a faster commutation and to reduce gate charge losses • Low RDS(on) to reduce the conduction losses. 10/13 STB130NH02L STP130NH02L Pconduction Pswitching High Side Switch (SW1) Low Side Switch (SW2) R DS(on)SW1 * I 2L * δ R DS(on)SW2 * I 2L * (1 − δ ) Vin * (Q gsth(SW1) + Q gd(SW1) ) * f * IL Ig Zero Voltage Switching Recovery Not Applicable Conduction Not Applicable Vf(SW2) * I L * t deadtime * f Pgate(Q G ) Q g(SW1) * Vgg * f Q gls(SW2) * Vgg * f PQoss Vin * Q oss(SW1) * f Vin * Q oss(SW2) * f 2 2 Pdiode 1 Parameter d Qgsth Qgls Pconduction Pswitching Pdiode Meaning Duty-cycle Post threshold gate charge Third quadrant gate charge On state losses On-off transition losses Conduction and reverse recovery diode losses Pgate PQoss Gate drive losses Output capacitance losses 1 Vin * Q rr(SW2) * f Dissipated by SW1 during turn-on 11/13 STB130NH02L STP130NH02L Table 11:Revision History 12/13 Date Revision April 2005 2.0 Description of Changes ADDED PACKAGE TO-220 STB130NH02L STP130NH02L Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners. © 2005 STMicroelectronics - All Rights Reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America. www.st.com 13/13