DATA SHEET BIPOLAR ANALOG INTEGRATED CIRCUITS mPC2745TB, mPC2746TB 3 V, SUPER MINIMOLD SILICON MMIC WIDEBAND AMPLIFIER FOR MOBILE COMMUNICATIONS DESCRIPTION The mPC2745TB and mPC2746TB are silicon monolithic integrated circuits designed as buffer amplifier for mobile communications. These ICs are packaged in super minimold package which is smaller than conventional minimold. The mPC2745TB and mPC2746TB have each compatible pin connections and performance to mPC2745T/ mPC2746T of conventional minimold version. So, in the case of reducing your system size, mPC2745TB/mPC2746TB are suitable to replace from mPC2745T/mPC2746T. These ICs are manufactured using NEC’s 20 GHz fT NESATäIII silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, these IC have excellent performance, uniformity and reliability. FEATURES • High-density surface mounting : 6 pin super minimold package • Supply voltage : Recommended VCC = 2.7 to 3.3 V • Wideband response : fu = 2.7 GHzTYP. @mPC2745TB • High isolation : ISL = 38 dBTYP. @mPC2745TB Circuit operation VCC = 1.8 to 3.3 V fu = 1.5 GHzTYP. @mPC2746TB ISL = 45 dBTYP. @mPC2746TB APPLICATION • 1.5 GHz to 2.5 GHz communication system (PHS, wireless LAN; etc.): mPC2745TB : mPC2746TB • 800 MHz to 900 MHz cellular telephone (CT2, GSM, etc.) ORDERING INFORMATION PART NUMBER PACKAGE MARKING SUPPLYING FORM fU mPC2745TB-E3 6 pin super C1Q Embossed tape 8 mm wide. 2.7 GHzTYP. mPC2746TB-E3 minimold C1R 1, 2, 3 pins face to perforation side of the tape. Qty 3 kp/reel. 1.5 GHzTYP. Remarks To order evaluation samples, please contact your local NEC sales office. (Part number: mPC2745TB, mPC2746TB) Caution: Electro-static sensitive devices Document No. P11511EJ2V0DS00 (2nd edition) Date Published April 1997 N © 1996 mPC2745TB, mPC2746TB PIN CONNECTIONS 3 2 1 (Bottom View) C1Q (Top View) 4 4 Pin NO. 3 5 5 2 6 6 1 Pin name 1 INPUT 2 GND 3 GND 4 OUTPUT 5 GND 6 VCC Marking is an example of µ PC2745TB PRODUCT LINE-UP OF mPC2745, mPC2746 (TA = +25 °C, VCC = 3.0 V, ZL = Zs = 50 W) PART NO. mPC2745T mPC2745TB mPC2746T mPC2746TB fu (GHz) PO(sat) (dBm) GP (dB) NF (dB) ICC (mA) 2.7 -1 12 6.0 7.5 PACKAGE MARKING 6 pin minimold C1Q 6 pin super minimold 6 pin minimold 1.5 0 19 4.0 7.5 C1R 6 pin super minimold Remarks Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail. Notice The package size distinguish between minimold and super minimold. SYSTEM APPLICATION EXAMPLE Digital Cellular System Block Diagram Digital Cellular System Block Diagram RX DEMO PLL I Q PLL SW I 0˚ TX PA φ 90˚ Q : µPC2745TB, µPC2746TB applicable To know the associated products, please refer to each latest data sheet. 2 mPC2745TB, mPC2746TB PIN EXPLANATION Pin NO. 1 Pin Name INPUT Applied voltage V ¾ Pin voltage Note V 0.87 0.82 4 OUTPUT ¾ 1.95 2.54 6 VCC 2 3 5 GND Function and applications Internal equivalent circuit Signal input pin. A internal matching circuit, configured with resistors, enables 50 W connection over a wide band. this pin must be coupled to signal source with capacitor for DC cut. Signal output pin. A internal matching circuit, configured with resistors, enables 50 W connection over a wide band. This pin must be coupled to next stage with capacitor for DC cut. 2.7 to 3.3 ¾ Power supply pin. This pin should be externally equipped with bypass capacity to minimize ground impedance. 0 ¾ Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All the ground pins must be connected together with wide ground pattern to decrease impedance difference. 6 4 1 2 3 5 Note Pin voltage is measured at VCC = 3.0 V. Above: mPC2745TB, Below: mPC2746TB 3 mPC2745TB, mPC2746TB ABSOLUTE MAXIMUM RATINGS PARAMETER SYMBOL CONDITION RATINGS UNIT Supply voltage VCC TA = +25 °C 4.0 V Circuit current ICC TA = +25 °C 16 mA Input power level Pin TA = +25 °C 0 dBm Total power dissipation PD Mounted on double sided copper clad 50 ´ 50 ´ 1.6 mm epoxy glass PWB (TA = +85 °C) 200 mW Operating ambient temperature TA -40 to +85 °C Storage temperature TSTG -55 to +150 °C RECOMMENDED OPERATING CONDITIONS PARAMETER SYMBOL MIN. TYP. MAX. UNIT Supply voltage VCC 2.7 3.0 3.3 V Operating ambient temperature TA -40 +25 +85 °C NOTICE ELECTRICAL CHARACTERISTICS (TA = + 25 °C, VCC = 3.0 V, ZL = ZS = 50 W) PARAMETER 4 SYMBOL mPC2745TB TEST CONDITION mPC2746TB UNIT MIN. TYP. MAX. MIN. TYP. MAX. Circuit current ICC No signals 5.0 7.5 10.0 5.0 7.5 10.0 mA Power Gain GP f = 0.5 GHz 9.0 12 14 16 19 21 dB Noise figure NF f = 0.5 GHz ¾ 6 7.5 ¾ 4.0 5.5 dB Upper limit operating frequency fu 3 dB down below from gain at f = 100 MHz 2.3 2.7 ¾ 1.1 1.5 ¾ GHz Isolation ISL f = 0.5 GHz 33 38 ¾ 40 45 ¾ dB Input return loss RLin f = 0.5 GHz 8 11 ¾ 10 13 ¾ dB Output return loss RLout f = 0.5 GHz 2.5 5.5 ¾ 5.5 8.5 ¾ dB Maximum output level PO(sat) f = 0.5 GHz, Pin = -6 dBm -4 -1 ¾ -3 0 ¾ dBm mPC2745TB, mPC2746TB STANDARD CHARACTERISTICS FOR REFERENCE (TA = +25 °C, VCC = 3.0 V, ZL = ZS = 50 W) PARAMETER SYMBOL TEST CONDITION mPC2745TB mPC2745B UNIT Circuit current ICC VCC = 1.8 V, No signals 4.5 4.5 mA Power Gain GP VCC = 3.0 V, f = 1 GHz VCC = 3.0 V, f = 2 GHz VCC = 1.8 V, f = 500 MHz 12 11 7 18.5 dB VCC = 3.0 V, f = 1 GHz VCC = 3.0 V, f = 2 GHz VCC = 1.8 V, f = 500 MHz 5.5 5.7 8.0 4.2 VCC = 1.8 V, 3 dB down below from gain at f = 100 MHz 1.8 1.1 GHz VCC = 3.0 V, f = 1 GHz VCC = 3.0 V, f = 2 GHz VCC = 1.8 V, f = 500 MHz 33 30 35 38 dB VCC = 3.0 V, f = 1 GHz VCC = 3.0 V, f = 2 GHz VCC = 1.8 V, f = 500 MHz 13 14 6.5 10 VCC = 3.0 V, f = 1 GHz VCC = 3.0 V, f = 2 GHz VCC = 1.8 V, f = 500 MHz 6.5 8.5 6.0 8.5 VCC = 3.0 V, f = 1 GHz, Pin = -6 dBm VCC = 3.0 V, f = 2 GHz, Pin = -6 dBm VCC = 1.8 V, f = 500 MHz, Pin = -10 dBm -2.5 -3.5 -11 -1 ¾ -8 dBm VCC = 3.0 V, Pout = -20 dBm, f1 = 500 MHz, f2 = 502 MHz VCC = 3.0 V, Pout = -20 dBm, f1 = 1 000 MHz, f2 = 1 002 MHz VCC = 1.8 V, Pout = -20 dBm, f1 = 500 MHz, f2 = 502 MHz -54 -50 -31 -51 ¾ -37 dBc Noise figure Upper limit operating frequency Isolation Input return loss Output return loss NF fu ISL RLin RLout Maximum output level PO(sat) 3rd order intermodulation distortion IM3 ¾ 14 dB ¾ 5.0 ¾ 37 dB ¾ 10 dB ¾ 9.5 5 mPC2745TB, mPC2746TB TEST CIRCUIT VCC 1 000 pF C3 6 50 Ω C1 1 IN C2 4 1 000 pF 50 Ω OUT 1 000 pF 2, 3, 5 EXAMPLE OF APPLICATION CIRCUIT VCC 1 000 pF 1 000 pF C3 C6 6 50 Ω C1 IN 6 1 4 1 000 pF C4 C5 1 000 pF 1 000 pF R1 50 to 200 Ω 1 2, 3, 5 4 C2 50 Ω OUT 1 000 pF 2, 3, 5 To stabilize operation, please connect R1, C5 The application circuits and their parameters are for references only and are not intended for use in actual designin's. Capacitors for VCC, input and output pins 1 000 pF capacitors are recommendable as bypass capacitor for VCC pin and coupling capacitors for input/output pins. Bypass capacitor for VCC pin is intended to minimize VCC pin’s ground impedance. Therefore, stable bias can be supplied against VCC fluctuation. Coupling capacitors for input/output pins are intended to minimize RF serial impedance and cut DC. To get flat gain from 100 MHz up, 1 000 pF capacitors are assembled on the test circuit. [Actually, 1 000 pF capacitors give flat gain at least 10 MHz. In the case of under 10 MHz operation, increase the value of coupling capacitor such as 2 200 pF. Because the coupling capacitors are determined by the equation of C = 1/(2 p fZs).] 6 mPC2745TB, mPC2746TB Illustration of the test circuit assembled on evaluation board AMP-2 Top View 1 23 IN OUT C 1Q C C 6 54 Mounting direction (Marking is an example for µ PC2745TB) VCC C Notes Component List 1. 30 × 30 × 0.4 mm double sided copper clad polyimide board. Value C 1 000 pF 2. Back side: GND pattern 3. Solder plated on pattern 4. : Through holes 7 mPC2745TB, mPC2746TB TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25 °C) ¾ mPC2745TB ¾ CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE 10 10 8 8 Circuit Current ICC (mA) Circuit Current ICC (mA) CIRCUIT CURRENT vs. SUPPLY VOLTAGE 6 4 VCC = 3.0 V 6 VCC = 1.8 V 4 2 2 0 1 2 3 0 –40 4 –20 0 20 40 60 80 Supply Voltage VCC (V) Operating Ambient Temperature TA (˚C) NOISE FIGURE, POWER GAIN vs. FREQUENCY POWER GAIN vs. FREQUENCY 15 15 VCC = 3.0 V VCC = 3.3 V 100 TA = –40 ˚C 9 8 5 VCC = 1.8 V GP VCC = 1.8 V 0 –5 7 VCC = 2.7 V Power Gain GP (dB) 10 Power Gain GP (dB) Noise Figure NF (dB) 10 NF TA = +85 ˚C TA = +25 ˚C 10 VCC = 2.7 V VCC = 3.0 V 6 VCC = 3.0 V VCC = 3.3 V –10 0.1 5 0.3 1.0 5 0.1 3.0 Frequency f (GHz) 0.3 0 –10 INPUT RETURN LOSS, OUTPUT RETURN LOSS vs. FREQUENCY VCC = 1.8 V RLout Input Return Loss RLin (dB) Output Return Loss RLout (dB) –20 Isolation ISL (dB) VCC = 1.8 V –30 –40 VCC = 3.0 V –50 0.3 1.0 Frequency f (GHz) 8 3.0 Frequency f (GHz) ISOLATION vs. FREQUENCY –60 0.1 1.0 3.0 –10 RLin VCC = 3.0 V VCC = 1.8 V –20 VCC = 3.0 V –30 –40 0.1 0.3 1.0 Frequency f (GHz) 3.0 mPC2745TB, mPC2746TB ¾ mPC2745TB ¾ OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 10 10 VCC = 3.0 V f = 500 MHz VCC = 3.0 V VCC = 3.3 V 0 Output Power PO (dBm) Output Power PO (dBm) f = 500 MHz VCC = 2.7 V –10 –20 VCC = 1.8 V 0 TA = +25 ˚C TA = –40 ˚C –20 TA = +85 ˚C –40 –30 –20 –40 –50 0 –10 –40 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER –10 0 OUTPUT POWER vs. INPUT POWER VCC = 3.3 V f = 2.0 GHz VCC = 3.0 V Output Power PO (dBm) 0 Output POwer PO (dBm) –20 10 f = 1.0 GHz VCC = 2.7 V –10 –20 VCC = 1.8 V –30 VCC = 3.0 V 0 VCC = 3.3 V –10 VCC = 2.7 V –20 VCC = 1.8 V –30 –40 –30 –20 –10 –40 –50 0 –40 –30 –20 –10 0 Input Power Pin (dBm) SATURATED OUTPUT POWER vs. FREQUENCY 3RD ORDER INTERMODULATION DISTORTION vs. OUTPUT POWER OF EACH TONE Pin = –6 dBm VCC = 3.0 V VCC = 3.3 V 0 –5 VCC = 2.7 V –10 –15 0.1 VCC = 1.8 V 0.3 1.0 Frequency f (GHz) 3.0 3rd Order Intermodulation Distortion IM3 (dBc) Input Power Pin (dBm) 5 Saturated Output Power PO(sat) (dBm) –30 Input Power Pin (dBm) 10 –40 –50 TA = –40 ˚C TA = +25 ˚C –10 –30 –30 –40 –50 TA = +85 ˚C 60 f1 = 500 MHz f2 = 502 MHz 50 VCC = 3.3 V 40 VCC = 2.7 V VCC = 1.8 V 30 VCC = 3.0 V 20 10 –30 –25 –20 –15 –10 –5 Output Power of Each Tone PO(each) (dBm) 9 0.4 1 0.40 0.10 0.39 0.11 0 -100 -90 -80 0.38 0.12 0.37 0.13 0.36 0.14 0.35 0.15 1.4 1.2 1.0 1.6 NE GA 0.4 30 2.0 -1 1.8 0.6 0. 0. 43 07 0.9 0.8 0.4 0.0 2 8 .09 -110 -70 4 0.3 6 0.1 0 -12 -60 32 0. 18 0. 3 0.3 7 0.1 0.2 0 0.8 0 1. 0.1 G 0.4 0.5 G 0.2 0.2 9 1 0. 0. 31 19 0.7 1.0 50 20 10 5.0 4.0 3.0 1.8 2.0 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0 0 2.0 0.5 1.8 1.4 1.2 1.0 0.9 0.8 0.7 1.6 0.6 1.4 1.2 1.0 0.9 0.8 1.6 0.7 0.6 0. 4 M CO CE AN CT EA –JX E R Zo TIV 40 -1 P ON 0 1. EN T 5.0 50 20 10 4.0 3.0 1.8 2.0 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 2.0 1.8 0.5 30 0.2 1. 5.0 0.2 8 0.2 2 0.6 -20 1.0 G 0.27 0.23 0 NE GA 0.3 4.0 0.6 0.1 10 0.4 20 -10 0.5 1.0 0.3 0.2 0 0 0 -4 4 3. 0.39 0.11 0 -12 EA C T AN +JX CE C Zo OM PO 3. 0.26 0.24 P ON 0.6 0 0.6 2.0 G 50 -30 4.0 0.1 0.4 20 0.25 0.25 M CO CE AN CT EA –JX E R Zo TIV 0.6 10 0.24 0.26 5.0 0.40 0.10 0.4 1 0.0 9 -100 -90 -80 0.38 0.12 0.37 0.13 0.36 0.14 0.35 0.15 0. 0. 43 07 0.4 0.0 2 8 -110 -70 4 0.3 6 0.1 -1 0.2 5 0.4 5 0.0 0 44 0. 06 0. 0.6 3. 0. 0. 06 44 1.0 14 0.8 4.0 POS ITIV ER 0.2 0 1. 14 0 EA C T AN +JX C E C Zo OM PO POS ITIV ER 5.0 10 0.1 0. 8 0.23 0.27 RESISTANCE COMPONENT R 0.2 Zo -5 0.1 0.3 7 3 10 20 60 20 8 0. 0.1 6 0.3 4 3 0.3 7 0.1 0.2 -60 70 2 0.2 8 0.2 EN T 1.0 G 0 0.15 0.35 1 0.2 9 0.2 40 -1 4.0 0.26 0.24 0.8 30 5 0.4 5 0.0 3. 0.25 0.25 80 0.2 0.2 9 1 0.4 40 44 0. 06 0. 1.0 0.2 8 0.2 2 0.14 0.36 0 0.2 0 0.3 0.1 -20 0.13 0.37 5.0 0.3 0.8 -10 90 32 0. 18 0. 8 0. 0.27 0.23 0.4 →WAVELENG 0 0.01 THS TOW 0.49 ARD 0.02 0.48 0 0.49 0.01 0.0 GENE 0.48 ← 7 3 0.02 RA 0.4 N O COEFFICIENT IN D I T C E L F 0.4 . F RE EGREE 7 0.0 TOR .03 NGLE O 6 0 A S 0.4 4 0.4 4 → 0 6 -1 0 6 0.0 0.0 0.4 5 15 0 0 5 -15 0.4 50 0.6 19 0. 31 0. NT 0.5 G 10 20 0.6 0. 0. 06 44 2.0 0 .5 1.4 1.2 1.0 0.9 0.8 0.7 1.6 0.6 1.8 50 0 100 0.1 G -5 0.2 0.1 0.3 7 3 0.24 0.26 0.4 60 10 110 0.12 0.38 0. 8 0.23 0.27 2.0 G 0.1 6 0.3 4 20 0 0.11 0.39 70 2 0.2 8 0.2 RESISTANCE COMPONENT R 0.2 Zo 0.15 0.35 0. 0. 31 19 12 0.10 0.40 0.14 0.36 1 0.2 9 0.2 0.1 0 0. NE -4 0 13 NT 80 0.3 0.2 0 0 07 0. 43 0. 8 0.0 2 0.4 9 0.0 1 0.4 0.13 0.37 -30 0.3 4 0. 0. 4 NE 100 90 30 0.2 1 110 0.12 0.38 40 0.2 0.2 10 0.3 30 0 0.11 0.39 0 0.2 0 0.3 0.2 12 0.10 0.40 50 07 0. 43 0. 8 0.0 2 0.4 9 0.0 1 0.4 19 0. 31 0. →WAVELENG 0 0.01 THS TOW 0.49 ARD 0.02 0.48 0 0.49 0.01 0.0 GENE 0.48 ← 7 3 0.02 RA 0.4 N O COEFFICIENT IN D I T C E L F 0.4 . F RE EGREE 7 0.0 TOR .03 NGLE O 6 0 A S → 0.4 4 0.4 4 0 6 -1 0 6 0.0 0.0 0.4 5 15 0 0 5 -15 mPC2745TB, mPC2746TB S Parameter (VCC = 3.0 V) ¾ mPC2745TB ¾ S11-FREQUENCY 0. 0. 18 32 0 50 S22-FREQUENCY 0. 0. 18 32 0 50 mPC2745TB, mPC2746TB Typical S Parameter Values (TA = +25 °C) mPC2745TB VCC = 3.0 V, ICC = 8.4 mA FREQUENCY MHz S11 S21 S12 S22 MAG ANG MAG ANG MAG ANG MAG 100.0000 .318 62.9 .593 .006 54.2 .584 300.0000 .346 .009 42.0 .579 400.0000 .341 .012 29.4 .562 500.0000 .339 3.842 .013 11.8 .546 600.0000 .326 1.6 .527 .311 .017 .312 3.497 3.503 173.7 .020 3.542 156.7 .022 3.569 139.1 .023 3.520 121.4 .025 3.501 103.7 .025 3.429 86.8 .025 3.355 69.7 .026 3.303 52.7 .028 3.229 35.8 .028 3.179 18.8 .030 3.081 1.5 .031 2.999 -15.4 -32.5 -49.4 -66.0 -82.3 -98.6 .031 -11.9 -24.2 -38.4 -45.9 -54.3 -70.5 -78.4 -88.4 -102.9 -114.1 -125.7 -130.3 -142.5 -152.4 -164.9 -177.1 .515 800.0000 -104.7 -121.5 -138.1 -154.2 -170.3 .015 700.0000 -10.8 -13.9 -20.8 -25.8 -31.9 -32.8 -32.7 -31.2 -30.9 -30.8 -30.3 -31.3 -30.5 -31.6 -29.6 -30.0 -28.6 -29.5 -31.6 -35.1 -39.9 -40.3 -40.9 -35.5 -30.2 -20.6 -17.2 -35.5 -52.5 -70.7 -87.3 .003 .325 -3.9 -5.9 -7.2 -8.9 4.055 200.0000 .033 171.1 .365 .034 160.8 .346 .036 148.3 .331 .036 134.8 .321 .034 121.4 .311 -114.6 -130.2 -146.4 .036 106.5 .299 .032 92.8 .279 .031 83.6 .254 900.0000 .325 1000.0000 .356 1100.0000 .382 1200.0000 .416 1300.0000 .416 1400.0000 .415 1500.0000 .393 1600.0000 .386 1700.0000 .373 1800.0000 .369 1900.0000 .366 2000.0000 .353 2100.0000 .344 2200.0000 .313 2300.0000 .293 2400.0000 .267 2500.0000 .262 2600.0000 .253 2700.0000 .253 2800.0000 .248 2900.0000 .237 3000.0000 .230 4.030 3.985 3.916 3.775 3.668 3.594 3.525 2.911 2.802 2.695 2.598 2.496 2.400 2.306 2.209 .018 .020 .019 .511 .512 .523 .525 .530 .518 .509 .492 .481 .474 .468 .457 .440 .416 .389 K ANG -6.6 -12.1 -16.5 -20.6 -23.0 -26.2 -29.9 -32.4 -34.8 -35.8 -36.3 -36.8 -37.5 -38.8 -40.5 -42.5 -43.8 -44.8 -44.8 -45.0 -45.0 -45.4 -46.4 -47.4 -48.2 -48.3 -47.6 -46.7 -46.3 -46.2 20.94 11.68 8.29 6.26 6.29 5.50 5.46 5.36 4.91 4.93 4.56 4.14 3.92 3.53 3.68 3.78 3.68 3.50 3.63 3.62 3.85 4.23 4.23 4.40 4.45 4.54 5.08 5.01 5.88 6.49 11 mPC2745TB, mPC2746TB TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25 °C) ¾ mPC2746TB ¾ CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE 10 10 8 8 Circuit Current ICC (mA) Circuit Current ICC (mA) CIRCUIT CURRENT vs. SUPPLY VOLTAGE 6 4 2 1 2 3 20 40 60 80 NOISE FIGURE, POWER GAIN vs. FREQUENCY POWER GAIN vs. FREQUENCY 16 21 3.0 V GP 14 1.8 V 12 10 TA = –40 ˚C 20 2.7 V 8 100 22 VCC = 3.3 V Power Gain GP (dB) Power Gain GP (dB) 0 Operating Ambient Temprature TA (˚C) 18 Noise Figure NF (dB) –40 –20 Supply Voltage VCC (V) 20 VCC = 1.8 V NF 19 +25 ˚C 18 17 +85 ˚C 16 15 14 6 13 4 0.1 3 4 0 –60 4 22 5 1.8 V 2 0 7 VCC = 3.0 V 6 0.3 2.7 V–3.3 V 1.0 VCC = 3.0 V 12 0.1 3.0 0.3 1.0 3.0 Frequency f (GHz) Frequency f (GHz) ISOLATION vs. FREQUENCY INPUT RETURN LOSS, OUTPUT RETURN LOSS vs. FREQUENCY 10 10 VCC = 3.0 V –20 1.8 V –40 VCC = 3.0 V –60 –80 0.1 0.3 1.0 Frequency f (GHz) 12 Input Return Loss RLin (dB) Output Return Loss RLout (dB) Isolation ISL (dB) 0 3.0 0 VCC = 1.8 V 3.0 V RLout –10 RLin –20 3.0 V 1.8 V –30 0.1 0.3 1.0 Frequency f (GHz) 3.0 mPC2745TB, mPC2746TB ¾ mPC2746TB ¾ OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 10 10 3.0 V 0 2.7 V –10 1.8 V –20 –30 0 2.7 V –10 1.8 V –20 –40 –30 –20 –10 –40 –50 0 –40 Input Power Pin (dBm) –30 –20 –10 0 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 10 10 TA = +85 ˚C f = 500 MHz VCC = 3.0 V 0 +25 ˚C –40 ˚C +25 ˚C –10 –40 ˚C TA = +85 ˚C f = 1.0 GHz VCC = 3.0 V Output Power PO (dBm) Output Power PO (dBm) 3.0 V –30 –40 –50 +85 ˚C –20 –30 0 +25 ˚C –40 ˚C +25 ˚C –10 –40 ˚C +85 ˚C –20 –30 –40 –50 –40 –30 –20 –10 –40 –50 0 –40 Input Power Pin (dBm) VCC = 2.7 to 3.3 V Pin = –6 dBm 5 VCC = 3.3 V 3.0 V 0 2.7 V –5 1.8 V –10 VCC = 1.8 V Pin = –10 dBm –15 0.1 0.3 1.0 Frequency f (GHz) 3.0 3rd Order Intermodulation Distortion IM3 (dBc) 10 –30 –20 –10 0 Input Power Pin (dBm) SATURATED OUTPUT POWER vs. FREQUENCY Saturated Output Power PO(sat) (dBm) VCC = 3.3 V f = 1.0 GHz Output Power PO (dBm) Output Power PO (dBm) f = 500 MHz VCC = 3.3 V 3RD ORDER INTERMODULATION DISTORTION vs. OUTPUT POWER OF EACH TONE 60 f1 = 500 MHz VCC = 3.3 V f2 = 502 MHz 50 3.0 V 40 2.7 V 30 1.8 V 20 10 –30 –25 –20 –15 –10 –5 0 Output Power of Each Tone PO(each) (dBm) 13 0.39 0.11 0.40 0.10 0.4 1 0.0 9 -100 -90 -80 0.38 0.12 0.37 0.13 0.36 0.14 0.35 0.15 0.9 1.4 1.2 1.0 4 0.3 6 0.1 1.6 30 2.0 -1 1.8 NE GA 0.4 0. 0. 43 07 0.8 0.8 0.4 0.0 2 8 -110 -70 0 -12 -60 3 0.3 7 0.1 0.2 0 0. 0. 31 19 0.7 0.6 0 0.6 1.0 0 1. 1.8 2.0 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 1.0 0.5 G 50 20 10 5.0 4.0 3.0 0 0 2.0 0.5 1.8 1.4 1.2 1.0 0.9 0.8 0.7 1.6 0.6 1.4 1.2 1.0 0.9 0.8 1.6 0.7 0.6 M CO CE AN CT EA –JX R o Z E TIV 40 -1 P ON 0 1. E NT 5.0 50 20 10 4.0 3.0 1.8 2.0 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 2.0 1.8 0.5 30 0. 4 0.2 1. 3. 5.0 0.2 0.2 9 1 0 -4 4 3. NE GA 0.3 0.8 0.2 8 0.2 2 4.0 0.39 0.11 0. 0. 43 07 0 -12 EA C T AN +JX CE C Zo OM PO 0.6 4.0 0.6 0.1 10 0.4 20 0.26 0.24 1.0 G -20 5.0 ER 0.4 0.3 0.2 0 0 0.5 1.5 G 0.6 0.27 0.23 PO 50 -30 32 0. 18 0. 0.1 0.3 7 3 -5 60 -10 M CO CE AN CT EA –JX R o Z E TIV 50 0.40 0.10 0.4 1 0.0 9 -100 -90 -80 0.38 0.12 0.37 0.13 0.36 0.14 0.35 0.15 -1 0.2 0.4 0.0 2 8 -110 -70 4 0.3 6 0.1 0.4 20 0.25 0.25 0.4 0.1 6 0.3 4 10 20 0.1 G 3 0.3 7 0.1 RESISTANCE COMPONENT R 0.2 Zo -60 0.2 0 70 0 8 0. 0.15 0.35 -5 0.14 0.36 32 0. 18 0. 5 0.4 5 0.0 0 44 0. 06 0. 0.6 3. 0. 0. 06 44 0.8 4.0 14 1.0 5.0 POS ITIV 0.6 10 0.24 0.26 0.1 0.2 0 1. 14 0 EA C T AN +JX CE C Zo OM PO POS ITIV ER 5.0 10 T N EN 0. 8 0.23 0.27 0 4.0 0.26 0.24 80 20 -15 3. 0.25 0.25 0.13 0.37 2 0.2 8 0.2 40 -1 1.5 G 1 0.2 9 0.2 0.1 1.0 G 0.2 0.2 9 1 90 30 44 0. 06 0. 1.0 0.2 8 0.2 2 NT 40 0. 4 0. 8 0.2 6 0.4 4 0.0 8 0. -20 110 0.12 0.38 0 0.2 0 0.3 5 0.4 5 0.0 0.4 10 20 0.3 0.8 0.24 0.26 0.6 0.27 0.23 0.4 →WAVELENGT HS TO 0 0.01 0.49 0.02 WARD 0.48 0 0.49 G 0.01 0.0 ENE 0.48 ← 7 3 0.02 RA 0.4 N O COEFFICIENT IN D I T C E L F E T 0.4 . FR EGREE 7 0.0 OR .03 NGLE O 6 0 A S → 0.4 4 0.4 4 60 -1 0 6 .0 0.0 0 0.4 5 15 0 0 5 -15 0.6 19 0. 31 0. →WAVELENGT HS TO 0 0.01 0.49 0.02 WARD 0.48 0 0.49 G 0.01 0.0 ENE 0.48 ← 3 0.02 RA N O COEFFICIENT IN D I T C E L F E T 0.4 R OF EGREE 7 0.0 OR ANGLE S → 0.4 4 -160 0 6 0.0 0.4 5 15 0 5 0.4 -10 100 0. 0. 06 44 2.0 0 .5 1.4 1.2 1.0 0.9 0.8 0.7 1.6 0.6 1.8 50 0 0.11 0.39 0.1 0.3 7 3 0. 0. 31 19 0. NE 0 0.10 0.40 0 0 13 -4 12 0.2 60 0.3 0.2 0 0 8 0.0 2 0.4 9 0.0 1 0.4 0.1 6 0.3 4 10 0.1 70 50 0.1 0.5 G 0.23 0.27 RESISTANCE COMPONENT R 0.2 Zo 0.15 0.35 20 0.1 G 80 -30 07 0. 43 0. NT 0.14 0.36 2 0.2 8 0.2 4 0. 0.13 0.37 1 0.2 9 0.2 0.3 NE 100 90 30 14 0.3 1 110 0.12 0.38 40 0.2 30 0 0.11 0.39 0 0.2 0 0.3 0.2 12 0.10 0.40 0.2 07 0. 43 0. 8 0.0 2 0.4 9 0.0 1 0.4 19 0. 31 0. 7 0.4 3. 0.0 mPC2745TB, mPC2746TB S Parameter (VCC = 3.0 V) ¾ mPC2746TB ¾ S11-FREQUENCY 0. 0. 18 32 0 50 S22-FREQUENCY 0. 0. 18 32 0 50 mPC2745TB, mPC2746TB Typical S Parameter Values (TA = +25 °C) mPC2746TB VCC = 3.0 V, ICC = 7.7 mA FREQUENCY MHz S11 S21 S12 S22 K MAG ANG MAG ANG MAG ANG MAG ANG 100.0000 .146 165.0 6.443 77.0 .403 141.7 6.594 .003 51.8 .406 -5.3 -8.6 108.63 .130 300.0000 .117 117.9 6.623 .004 47.7 .418 .128 100.8 6.522 .005 51.1 .417 500.0000 .139 90.8 6.613 .008 33.1 .424 600.0000 .145 83.1 6.481 .009 21.7 .422 700.0000 .135 77.0 6.424 .010 14.7 .426 800.0000 .131 67.4 6.353 .011 -.4 .433 .014 -10.5 -24.2 -28.7 -48.0 -63.4 -72.2 -86.9 -99.6 .442 -110.7 -122.9 -135.3 -146.0 .318 -11.0 -14.0 -16.2 -19.4 -23.8 -27.7 -32.1 -34.7 -37.5 -39.7 -42.7 -45.5 -48.3 -49.9 -50.0 -49.2 -45.4 -40.5 16.33 400.0000 -19.4 -38.7 -58.1 -77.5 -96.9 .001 200.0000 900.0000 .119 49.3 6.234 -116.1 -135.1 -153.6 -172.1 1000.0000 .142 30.4 6.137 169.6 .015 1100.0000 .170 18.0 5.992 151.1 .016 1200.0000 .219 10.6 5.972 133.3 .019 1300.0000 .245 7.4 5.867 115.1 .019 1400.0000 .268 3.1 5.679 97.0 .022 1500.0000 .270 1.5 5.582 79.1 .021 1600.0000 .268 5.380 61.8 .022 1700.0000 .258 -3.9 -7.8 5.122 44.5 .024 1800.0000 .251 4.880 27.9 .024 1900.0000 .249 4.634 11.7 .025 2000.0000 .240 -14.3 -16.7 -20.5 4.475 -4.4 .026 .455 .455 .453 .433 .409 .375 .349 .294 .268 .248 20.56 12.34 8.14 7.22 6.52 5.63 4.80 4.44 4.02 3.49 3.40 3.16 3.38 3.36 3.42 3.67 3.73 3.91 15 mPC2745TB, mPC2746TB PACKAGE DIMENSIONS 6 pin super minimold (unit : mm) 0.15 +0.1 –0 2.1 ±0.1 1.25 ±0.1 0.1 to 0.2 +0.1 –0 0 to 0.1 0.65 0.65 1.3 2.0 ±0.2 16 0.7 0.9 ±0.1 mPC2745TB, mPC2746TB NOTES ON CORRECT USE (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference. (3) The bypass capacitor should be attached to VCC line. (4) The DC cut capacitor must be each attached to input and output pin. RECOMMENDED SOLDERING CONDITIONS This product should be soldered in the following recommended conditions. Other soldering methods and conditions than the recommended conditions are to be consulted with our sales representatives. mPC2745TB, mPC2746TB Soldering method Soldering conditions Recommended condition symbol Infrared ray reflow Package peak temperature : 235 °C, Hour : within 30 s. (more than 210 °C) Time : 3 times, Limited days : no.* IR35-00-3 VPS Package peak temperature : 215 °C, Hour : within 40 s. (more than 200 °C) Time : 3 times, Limited days : no.* VP15-00-3 Wave soldering Soldering tub temperature : less than 260 °C, Hour : within 10 s. Time : 1 times, Limited days : no.* WS60-00-1 Pin part heating Pin area temperature : 300 °C, Hour : within 3 s/pin. Limited days : no.* * It is the storage days after opening a dry pack, the storage conditions are 25 °C, less than 65 % RH. Note 1. The combined use of soldering method is to be avoided (However, except the pin area heating method). For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E). 17 mPC2745TB, mPC2746TB [MEMO] 18 mPC2745TB, mPC2746TB [MEMO] 19 mPC2745TB, mPC2746TB ATTENTION OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product. M4 96. 5 NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.