NEC UPC2746TB-E3

DATA SHEET
BIPOLAR ANALOG INTEGRATED CIRCUITS
mPC2745TB, mPC2746TB
3 V, SUPER MINIMOLD SILICON MMIC
WIDEBAND AMPLIFIER FOR MOBILE COMMUNICATIONS
DESCRIPTION
The mPC2745TB and mPC2746TB are silicon monolithic integrated circuits designed as buffer amplifier for mobile
communications. These ICs are packaged in super minimold package which is smaller than conventional minimold.
The mPC2745TB and mPC2746TB have each compatible pin connections and performance to mPC2745T/
mPC2746T of conventional minimold version. So, in the case of reducing your system size, mPC2745TB/mPC2746TB
are suitable to replace from mPC2745T/mPC2746T.
These ICs are manufactured using NEC’s 20 GHz fT NESATäIII silicon bipolar process. This process uses silicon
nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and
prevent corrosion/migration. Thus, these IC have excellent performance, uniformity and reliability.
FEATURES
• High-density surface mounting : 6 pin super minimold package
• Supply voltage
: Recommended VCC = 2.7 to 3.3 V
• Wideband response
: fu = 2.7 GHzTYP. @mPC2745TB
• High isolation
: ISL = 38 dBTYP. @mPC2745TB
Circuit operation VCC = 1.8 to 3.3 V
fu = 1.5 GHzTYP. @mPC2746TB
ISL = 45 dBTYP. @mPC2746TB
APPLICATION
• 1.5 GHz to 2.5 GHz communication system (PHS, wireless LAN; etc.): mPC2745TB
: mPC2746TB
• 800 MHz to 900 MHz cellular telephone (CT2, GSM, etc.)
ORDERING INFORMATION
PART NUMBER
PACKAGE
MARKING
SUPPLYING FORM
fU
mPC2745TB-E3
6 pin super
C1Q
Embossed tape 8 mm wide.
2.7 GHzTYP.
mPC2746TB-E3
minimold
C1R
1, 2, 3 pins face to perforation side of the tape. Qty 3 kp/reel.
1.5 GHzTYP.
Remarks To order evaluation samples, please contact your local NEC sales office.
(Part number: mPC2745TB, mPC2746TB)
Caution: Electro-static sensitive devices
Document No. P11511EJ2V0DS00 (2nd edition)
Date Published April 1997 N
©
1996
mPC2745TB, mPC2746TB
PIN CONNECTIONS
3
2
1
(Bottom View)
C1Q
(Top View)
4
4
Pin NO.
3
5
5
2
6
6
1
Pin name
1
INPUT
2
GND
3
GND
4
OUTPUT
5
GND
6
VCC
Marking is an example of µ PC2745TB
PRODUCT LINE-UP OF mPC2745, mPC2746 (TA = +25 °C, VCC = 3.0 V, ZL = Zs = 50 W)
PART NO.
mPC2745T
mPC2745TB
mPC2746T
mPC2746TB
fu (GHz)
PO(sat) (dBm)
GP (dB)
NF (dB)
ICC (mA)
2.7
-1
12
6.0
7.5
PACKAGE
MARKING
6 pin minimold
C1Q
6 pin super minimold
6 pin minimold
1.5
0
19
4.0
7.5
C1R
6 pin super minimold
Remarks Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.
Notice The package size distinguish between minimold and super minimold.
SYSTEM APPLICATION EXAMPLE
Digital Cellular System Block Diagram
Digital Cellular System Block Diagram
RX
DEMO
PLL
I
Q
PLL
SW
I
0˚
TX
PA
φ
90˚
Q
: µPC2745TB, µPC2746TB applicable
To know the associated products, please refer to each latest data sheet.
2
mPC2745TB, mPC2746TB
PIN EXPLANATION
Pin
NO.
1
Pin Name
INPUT
Applied
voltage
V
¾
Pin
voltage
Note
V
0.87
0.82
4
OUTPUT
¾
1.95
2.54
6
VCC
2
3
5
GND
Function and applications
Internal equivalent circuit
Signal input pin. A internal matching circuit,
configured with resistors, enables 50 W
connection over a wide band. this pin must be
coupled to signal source with capacitor for DC
cut.
Signal output pin. A internal matching circuit,
configured with resistors, enables 50 W
connection over a wide band. This pin must
be coupled to next stage with capacitor for DC
cut.
2.7 to 3.3
¾
Power supply pin. This pin should be
externally equipped with bypass capacity to
minimize ground impedance.
0
¾
Ground pin. This pin should be connected to
system ground with minimum inductance.
Ground pattern on the board should be formed
as wide as possible. All the ground pins must
be connected together with wide ground
pattern to decrease impedance difference.
6
4
1
2
3
5
Note Pin voltage is measured at VCC = 3.0 V. Above: mPC2745TB, Below: mPC2746TB
3
mPC2745TB, mPC2746TB
ABSOLUTE MAXIMUM RATINGS
PARAMETER
SYMBOL
CONDITION
RATINGS
UNIT
Supply voltage
VCC
TA = +25 °C
4.0
V
Circuit current
ICC
TA = +25 °C
16
mA
Input power level
Pin
TA = +25 °C
0
dBm
Total power dissipation
PD
Mounted on double sided copper clad
50 ´ 50 ´ 1.6 mm epoxy glass PWB
(TA = +85 °C)
200
mW
Operating ambient temperature
TA
-40 to +85
°C
Storage temperature
TSTG
-55 to +150
°C
RECOMMENDED OPERATING CONDITIONS
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
Supply voltage
VCC
2.7
3.0
3.3
V
Operating ambient temperature
TA
-40
+25
+85
°C
NOTICE
ELECTRICAL CHARACTERISTICS (TA = + 25 °C, VCC = 3.0 V, ZL = ZS = 50 W)
PARAMETER
4
SYMBOL
mPC2745TB
TEST CONDITION
mPC2746TB
UNIT
MIN.
TYP.
MAX.
MIN.
TYP.
MAX.
Circuit current
ICC
No signals
5.0
7.5
10.0
5.0
7.5
10.0
mA
Power Gain
GP
f = 0.5 GHz
9.0
12
14
16
19
21
dB
Noise figure
NF
f = 0.5 GHz
¾
6
7.5
¾
4.0
5.5
dB
Upper limit operating
frequency
fu
3 dB down below
from gain at f = 100
MHz
2.3
2.7
¾
1.1
1.5
¾
GHz
Isolation
ISL
f = 0.5 GHz
33
38
¾
40
45
¾
dB
Input return loss
RLin
f = 0.5 GHz
8
11
¾
10
13
¾
dB
Output return loss
RLout
f = 0.5 GHz
2.5
5.5
¾
5.5
8.5
¾
dB
Maximum output level
PO(sat)
f = 0.5 GHz,
Pin = -6 dBm
-4
-1
¾
-3
0
¾
dBm
mPC2745TB, mPC2746TB
STANDARD CHARACTERISTICS FOR REFERENCE (TA = +25 °C, VCC = 3.0 V, ZL = ZS = 50 W)
PARAMETER
SYMBOL
TEST CONDITION
mPC2745TB mPC2745B
UNIT
Circuit current
ICC
VCC = 1.8 V, No signals
4.5
4.5
mA
Power Gain
GP
VCC = 3.0 V, f = 1 GHz
VCC = 3.0 V, f = 2 GHz
VCC = 1.8 V, f = 500 MHz
12
11
7
18.5
dB
VCC = 3.0 V, f = 1 GHz
VCC = 3.0 V, f = 2 GHz
VCC = 1.8 V, f = 500 MHz
5.5
5.7
8.0
4.2
VCC = 1.8 V, 3 dB down below from gain at f = 100 MHz
1.8
1.1
GHz
VCC = 3.0 V, f = 1 GHz
VCC = 3.0 V, f = 2 GHz
VCC = 1.8 V, f = 500 MHz
33
30
35
38
dB
VCC = 3.0 V, f = 1 GHz
VCC = 3.0 V, f = 2 GHz
VCC = 1.8 V, f = 500 MHz
13
14
6.5
10
VCC = 3.0 V, f = 1 GHz
VCC = 3.0 V, f = 2 GHz
VCC = 1.8 V, f = 500 MHz
6.5
8.5
6.0
8.5
VCC = 3.0 V, f = 1 GHz, Pin = -6 dBm
VCC = 3.0 V, f = 2 GHz, Pin = -6 dBm
VCC = 1.8 V, f = 500 MHz, Pin = -10 dBm
-2.5
-3.5
-11
-1
¾
-8
dBm
VCC = 3.0 V, Pout = -20 dBm, f1 = 500 MHz, f2 = 502 MHz
VCC = 3.0 V, Pout = -20 dBm, f1 = 1 000 MHz, f2 = 1 002 MHz
VCC = 1.8 V, Pout = -20 dBm, f1 = 500 MHz, f2 = 502 MHz
-54
-50
-31
-51
¾
-37
dBc
Noise figure
Upper limit
operating
frequency
Isolation
Input return loss
Output return
loss
NF
fu
ISL
RLin
RLout
Maximum output
level
PO(sat)
3rd order
intermodulation
distortion
IM3
¾
14
dB
¾
5.0
¾
37
dB
¾
10
dB
¾
9.5
5
mPC2745TB, mPC2746TB
TEST CIRCUIT
VCC
1 000 pF
C3
6
50 Ω
C1
1
IN
C2
4
1 000 pF
50 Ω
OUT
1 000 pF
2, 3, 5
EXAMPLE OF APPLICATION CIRCUIT
VCC
1 000 pF
1 000 pF
C3
C6
6
50 Ω
C1
IN
6
1
4
1 000 pF
C4
C5
1 000 pF
1 000 pF
R1
50 to 200 Ω
1
2, 3, 5
4
C2
50 Ω
OUT
1 000 pF
2, 3, 5
To stabilize operation,
please connect R1, C5
The application circuits and their parameters are for references only and are not intended for use in actual designin's.
Capacitors for VCC, input and output pins
1 000 pF capacitors are recommendable as bypass capacitor for VCC pin and coupling capacitors for input/output
pins.
Bypass capacitor for VCC pin is intended to minimize VCC pin’s ground impedance. Therefore, stable bias can be
supplied against VCC fluctuation.
Coupling capacitors for input/output pins are intended to minimize RF serial impedance and cut DC.
To get flat gain from 100 MHz up, 1 000 pF capacitors are assembled on the test circuit. [Actually, 1 000 pF
capacitors give flat gain at least 10 MHz. In the case of under 10 MHz operation, increase the value of coupling
capacitor such as 2 200 pF. Because the coupling capacitors are determined by the equation of C = 1/(2 p fZs).]
6
mPC2745TB, mPC2746TB
Illustration of the test circuit assembled on evaluation board
AMP-2
Top View
1
23
IN
OUT
C
1Q
C
C
6
54
Mounting direction
(Marking is an example for µ PC2745TB)
VCC
C
Notes
Component List
1. 30 × 30 × 0.4 mm double sided copper clad polyimide board.
Value
C
1 000 pF
2. Back side: GND pattern
3. Solder plated on pattern
4.
: Through holes
7
mPC2745TB, mPC2746TB
TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25 °C)
¾ mPC2745TB ¾
CIRCUIT CURRENT vs. OPERATING
AMBIENT TEMPERATURE
10
10
8
8
Circuit Current ICC (mA)
Circuit Current ICC (mA)
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
6
4
VCC = 3.0 V
6
VCC = 1.8 V
4
2
2
0
1
2
3
0
–40
4
–20
0
20
40
60
80
Supply Voltage VCC (V)
Operating Ambient Temperature TA (˚C)
NOISE FIGURE, POWER GAIN vs. FREQUENCY
POWER GAIN vs. FREQUENCY
15
15
VCC = 3.0 V
VCC = 3.3 V
100
TA = –40 ˚C
9
8
5
VCC = 1.8 V
GP
VCC = 1.8 V
0
–5
7
VCC = 2.7 V
Power Gain GP (dB)
10
Power Gain GP (dB)
Noise Figure NF (dB)
10
NF
TA = +85 ˚C
TA = +25 ˚C
10
VCC = 2.7 V
VCC = 3.0 V
6
VCC = 3.0 V
VCC = 3.3 V
–10
0.1
5
0.3
1.0
5
0.1
3.0
Frequency f (GHz)
0.3
0
–10
INPUT RETURN LOSS, OUTPUT RETURN
LOSS vs. FREQUENCY
VCC = 1.8 V
RLout
Input Return Loss RLin (dB)
Output Return Loss RLout (dB)
–20
Isolation ISL (dB)
VCC = 1.8 V
–30
–40
VCC = 3.0 V
–50
0.3
1.0
Frequency f (GHz)
8
3.0
Frequency f (GHz)
ISOLATION vs. FREQUENCY
–60
0.1
1.0
3.0
–10
RLin
VCC = 3.0 V
VCC = 1.8 V
–20
VCC = 3.0 V
–30
–40
0.1
0.3
1.0
Frequency f (GHz)
3.0
mPC2745TB, mPC2746TB
¾ mPC2745TB ¾
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
10
10
VCC = 3.0 V
f = 500 MHz
VCC = 3.0 V
VCC = 3.3 V
0
Output Power PO (dBm)
Output Power PO (dBm)
f = 500 MHz
VCC = 2.7 V
–10
–20
VCC = 1.8 V
0
TA = +25 ˚C
TA = –40 ˚C
–20
TA = +85 ˚C
–40
–30
–20
–40
–50
0
–10
–40
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
–10
0
OUTPUT POWER vs. INPUT POWER
VCC = 3.3 V
f = 2.0 GHz
VCC = 3.0 V
Output Power PO (dBm)
0
Output POwer PO (dBm)
–20
10
f = 1.0 GHz
VCC = 2.7 V
–10
–20
VCC = 1.8 V
–30
VCC = 3.0 V
0
VCC = 3.3 V
–10
VCC = 2.7 V
–20
VCC = 1.8 V
–30
–40
–30
–20
–10
–40
–50
0
–40
–30
–20
–10
0
Input Power Pin (dBm)
SATURATED OUTPUT POWER vs. FREQUENCY
3RD ORDER INTERMODULATION DISTORTION
vs. OUTPUT POWER OF EACH TONE
Pin = –6 dBm
VCC = 3.0 V
VCC = 3.3 V
0
–5
VCC = 2.7 V
–10
–15
0.1
VCC = 1.8 V
0.3
1.0
Frequency f (GHz)
3.0
3rd Order Intermodulation Distortion IM3 (dBc)
Input Power Pin (dBm)
5
Saturated Output Power PO(sat) (dBm)
–30
Input Power Pin (dBm)
10
–40
–50
TA = –40 ˚C
TA = +25 ˚C
–10
–30
–30
–40
–50
TA = +85 ˚C
60
f1 = 500 MHz
f2 = 502 MHz
50
VCC = 3.3 V
40
VCC = 2.7 V
VCC = 1.8 V
30
VCC = 3.0 V
20
10
–30
–25
–20
–15
–10
–5
Output Power of Each Tone PO(each) (dBm)
9
0.4
1
0.40
0.10
0.39
0.11
0
-100
-90
-80
0.38
0.12
0.37
0.13
0.36
0.14
0.35
0.15
1.4
1.2
1.0
1.6
NE
GA
0.4
30
2.0
-1
1.8
0.6
0.
0. 43
07
0.9
0.8
0.4
0.0 2
8
.09
-110
-70
4
0.3
6
0.1
0
-12
-60
32
0. 18
0.
3
0.3 7
0.1
0.2
0
0.8
0
1.
0.1 G
0.4
0.5 G
0.2
0.2 9
1
0.
0. 31
19
0.7
1.0
50
20
10
5.0
4.0
3.0
1.8
2.0
1.6
1.4
1.2
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0
0
2.0
0.5
1.8
1.4
1.2
1.0
0.9
0.8
0.7
1.6
0.6
1.4
1.2
1.0
0.9
0.8
1.6
0.7
0.6
0.
4
M
CO
CE
AN 
CT
EA –JX 
E R  Zo

TIV
40
-1
P ON
0
1.
EN T
5.0
50
20
10
4.0
3.0
1.8
2.0
1.6
1.4
1.2
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
2.0
1.8
0.5
30
0.2
1.
5.0
0.2
8
0.2
2
0.6
-20
1.0 G
0.27
0.23
0
NE
GA
0.3
4.0
0.6
0.1
10
0.4
20
-10
0.5
1.0
0.3
0.2 0
0
0
-4
4
3.
0.39
0.11
0
-12
EA C
T
 AN
 +JX CE C
Zo  OM
PO

3.
0.26
0.24
P ON
0.6
0
0.6
2.0 G
50
-30
4.0
0.1
0.4
20
0.25
0.25
M
CO
CE
AN 
CT
EA –JX 
E R  Zo

TIV
0.6
10
0.24
0.26
5.0
0.40
0.10
0.4
1
0.0
9
-100
-90
-80
0.38
0.12
0.37
0.13
0.36
0.14
0.35
0.15
0.
0. 43
07
0.4
0.0 2
8
-110
-70
4
0.3
6
0.1
-1
0.2
5
0.4 5
0.0
0
44
0. 06
0.
0.6
3.
0.
0. 06
44
1.0
14
0.8
4.0
POS
ITIV
ER
0.2
0
1.
14
0
EA C
T
 AN
 +JX C E C
Zo  OM
PO

POS
ITIV
ER
5.0
10
0.1
0.
8
0.23
0.27
RESISTANCE COMPONENT
R
0.2
 Zo 
-5
0.1
0.3 7
3
10
20
60
20
8
0.
0.1
6
0.3
4
3
0.3 7
0.1
0.2
-60
70
2
0.2
8
0.2
EN T
1.0 G
0
0.15
0.35
1
0.2 9
0.2
40
-1
4.0
0.26
0.24
0.8
30
5
0.4 5
0.0
3.
0.25
0.25
80
0.2
0.2 9
1
0.4
40
44
0. 06
0.
1.0
0.2
8
0.2
2
0.14
0.36
0
0.2 0
0.3
0.1
-20
0.13
0.37
5.0
0.3
0.8
-10
90
32
0. 18
0.
8
0.
0.27
0.23
0.4
→WAVELENG
0
0.01 THS TOW
0.49
ARD
0.02
0.48
0
0.49
0.01
0.0 GENE
0.48
←
7
3
0.02
RA
0.4
N
O
COEFFICIENT IN D
I
T
C
E
L
F
0.4
.
F RE
EGREE
7
0.0 TOR
.03
NGLE O
6
0
A
S
0.4 4
0.4 4 →
0
6
-1
0
6
0.0
0.0
0.4 5
15
0
0
5
-15
0.4
50
0.6
19
0. 31
0.
NT
0.5 G
10
20
0.6
0.
0. 06
44
2.0
0 .5
1.4
1.2
1.0
0.9
0.8
0.7
1.6
0.6
1.8
50
0
100
0.1 G
-5
0.2
0.1
0.3 7
3
0.24
0.26
0.4
60
10
110
0.12
0.38
0.
8
0.23
0.27
2.0 G
0.1
6
0.3
4
20
0
0.11
0.39
70
2
0.2
8
0.2
RESISTANCE COMPONENT
R
0.2
 Zo 
0.15
0.35
0.
0. 31
19
12
0.10
0.40
0.14
0.36
1
0.2 9
0.2
0.1
0
0.
NE
-4
0
13
NT
80
0.3
0.2 0
0
07
0. 43
0.
8
0.0 2
0.4
9
0.0
1
0.4
0.13
0.37
-30
0.3
4
0.
0.
4
NE
100
90
30
0.2
1
110
0.12
0.38
40
0.2
0.2
10
0.3
30
0
0.11
0.39
0
0.2 0
0.3
0.2
12
0.10
0.40
50
07
0. 43
0.
8
0.0 2
0.4
9
0.0
1
0.4
19
0. 31
0.
→WAVELENG
0
0.01 THS TOW
0.49
ARD
0.02
0.48
0
0.49
0.01
0.0 GENE
0.48
←
7
3
0.02
RA
0.4
N
O
COEFFICIENT IN D
I
T
C
E
L
F
0.4
.
F RE
EGREE
7
0.0 TOR
.03
NGLE O
6
0
A
S
→
0.4 4
0.4 4
0
6
-1
0
6
0.0
0.0
0.4 5
15
0
0
5
-15
mPC2745TB, mPC2746TB
S Parameter (VCC = 3.0 V)
¾ mPC2745TB ¾
S11-FREQUENCY
0.
0. 18
32
0
50
S22-FREQUENCY
0.
0. 18
32
0
50
mPC2745TB, mPC2746TB
Typical S Parameter Values (TA = +25 °C)
mPC2745TB
VCC = 3.0 V, ICC = 8.4 mA
FREQUENCY
MHz
S11
S21
S12
S22
MAG
ANG
MAG
ANG
MAG
ANG
MAG
100.0000
.318
62.9
.593
.006
54.2
.584
300.0000
.346
.009
42.0
.579
400.0000
.341
.012
29.4
.562
500.0000
.339
3.842
.013
11.8
.546
600.0000
.326
1.6
.527
.311
.017
.312
3.497
3.503
173.7
.020
3.542
156.7
.022
3.569
139.1
.023
3.520
121.4
.025
3.501
103.7
.025
3.429
86.8
.025
3.355
69.7
.026
3.303
52.7
.028
3.229
35.8
.028
3.179
18.8
.030
3.081
1.5
.031
2.999
-15.4
-32.5
-49.4
-66.0
-82.3
-98.6
.031
-11.9
-24.2
-38.4
-45.9
-54.3
-70.5
-78.4
-88.4
-102.9
-114.1
-125.7
-130.3
-142.5
-152.4
-164.9
-177.1
.515
800.0000
-104.7
-121.5
-138.1
-154.2
-170.3
.015
700.0000
-10.8
-13.9
-20.8
-25.8
-31.9
-32.8
-32.7
-31.2
-30.9
-30.8
-30.3
-31.3
-30.5
-31.6
-29.6
-30.0
-28.6
-29.5
-31.6
-35.1
-39.9
-40.3
-40.9
-35.5
-30.2
-20.6
-17.2
-35.5
-52.5
-70.7
-87.3
.003
.325
-3.9
-5.9
-7.2
-8.9
4.055
200.0000
.033
171.1
.365
.034
160.8
.346
.036
148.3
.331
.036
134.8
.321
.034
121.4
.311
-114.6
-130.2
-146.4
.036
106.5
.299
.032
92.8
.279
.031
83.6
.254
900.0000
.325
1000.0000
.356
1100.0000
.382
1200.0000
.416
1300.0000
.416
1400.0000
.415
1500.0000
.393
1600.0000
.386
1700.0000
.373
1800.0000
.369
1900.0000
.366
2000.0000
.353
2100.0000
.344
2200.0000
.313
2300.0000
.293
2400.0000
.267
2500.0000
.262
2600.0000
.253
2700.0000
.253
2800.0000
.248
2900.0000
.237
3000.0000
.230
4.030
3.985
3.916
3.775
3.668
3.594
3.525
2.911
2.802
2.695
2.598
2.496
2.400
2.306
2.209
.018
.020
.019
.511
.512
.523
.525
.530
.518
.509
.492
.481
.474
.468
.457
.440
.416
.389
K
ANG
-6.6
-12.1
-16.5
-20.6
-23.0
-26.2
-29.9
-32.4
-34.8
-35.8
-36.3
-36.8
-37.5
-38.8
-40.5
-42.5
-43.8
-44.8
-44.8
-45.0
-45.0
-45.4
-46.4
-47.4
-48.2
-48.3
-47.6
-46.7
-46.3
-46.2
20.94
11.68
8.29
6.26
6.29
5.50
5.46
5.36
4.91
4.93
4.56
4.14
3.92
3.53
3.68
3.78
3.68
3.50
3.63
3.62
3.85
4.23
4.23
4.40
4.45
4.54
5.08
5.01
5.88
6.49
11
mPC2745TB, mPC2746TB
TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25 °C)
¾ mPC2746TB ¾
CIRCUIT CURRENT vs. OPERATING AMBIENT
TEMPERATURE
10
10
8
8
Circuit Current ICC (mA)
Circuit Current ICC (mA)
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
6
4
2
1
2
3
20
40
60
80
NOISE FIGURE, POWER GAIN vs. FREQUENCY
POWER GAIN vs. FREQUENCY
16
21
3.0 V
GP
14
1.8 V
12
10
TA = –40 ˚C
20
2.7 V
8
100
22
VCC = 3.3 V
Power Gain GP (dB)
Power Gain GP (dB)
0
Operating Ambient Temprature TA (˚C)
18
Noise Figure NF (dB)
–40 –20
Supply Voltage VCC (V)
20
VCC = 1.8 V
NF
19
+25 ˚C
18
17
+85 ˚C
16
15
14
6
13
4
0.1
3
4
0
–60
4
22
5
1.8 V
2
0
7
VCC = 3.0 V
6
0.3
2.7 V–3.3 V
1.0
VCC = 3.0 V
12
0.1
3.0
0.3
1.0
3.0
Frequency f (GHz)
Frequency f (GHz)
ISOLATION vs. FREQUENCY
INPUT RETURN LOSS, OUTPUT RETURN
LOSS vs. FREQUENCY
10
10
VCC = 3.0 V
–20
1.8 V
–40
VCC = 3.0 V
–60
–80
0.1
0.3
1.0
Frequency f (GHz)
12
Input Return Loss RLin (dB)
Output Return Loss RLout (dB)
Isolation ISL (dB)
0
3.0
0
VCC = 1.8 V
3.0 V
RLout
–10
RLin
–20
3.0 V
1.8 V
–30
0.1
0.3
1.0
Frequency f (GHz)
3.0
mPC2745TB, mPC2746TB
¾ mPC2746TB ¾
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
10
10
3.0 V
0
2.7 V
–10
1.8 V
–20
–30
0
2.7 V
–10
1.8 V
–20
–40
–30
–20
–10
–40
–50
0
–40
Input Power Pin (dBm)
–30
–20
–10
0
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
10
10
TA = +85 ˚C
f = 500 MHz
VCC = 3.0 V
0
+25 ˚C
–40 ˚C
+25 ˚C
–10
–40 ˚C
TA = +85 ˚C
f = 1.0 GHz
VCC = 3.0 V
Output Power PO (dBm)
Output Power PO (dBm)
3.0 V
–30
–40
–50
+85 ˚C
–20
–30
0
+25 ˚C
–40 ˚C
+25 ˚C
–10
–40 ˚C
+85 ˚C
–20
–30
–40
–50
–40
–30
–20
–10
–40
–50
0
–40
Input Power Pin (dBm)
VCC =
2.7 to 3.3 V
Pin = –6 dBm
5
VCC = 3.3 V
3.0 V
0
2.7 V
–5
1.8 V
–10
VCC = 1.8 V
Pin = –10 dBm
–15
0.1
0.3
1.0
Frequency f (GHz)
3.0
3rd Order Intermodulation Distortion IM3 (dBc)
10
–30
–20
–10
0
Input Power Pin (dBm)
SATURATED OUTPUT POWER vs. FREQUENCY
Saturated Output Power PO(sat) (dBm)
VCC = 3.3 V
f = 1.0 GHz
Output Power PO (dBm)
Output Power PO (dBm)
f = 500 MHz
VCC = 3.3 V
3RD ORDER INTERMODULATION DISTORTION
vs. OUTPUT POWER OF EACH TONE
60
f1 = 500 MHz
VCC = 3.3 V f2 = 502 MHz
50
3.0 V
40
2.7 V
30
1.8 V
20
10
–30
–25
–20
–15
–10
–5
0
Output Power of Each Tone PO(each) (dBm)
13
0.39
0.11
0.40
0.10
0.4
1
0.0
9
-100
-90
-80
0.38
0.12
0.37
0.13
0.36
0.14
0.35
0.15
0.9
1.4
1.2
1.0
4
0.3
6
0.1
1.6
30
2.0
-1
1.8
NE
GA
0.4
0.
0. 43
07
0.8
0.8
0.4
0.0 2
8
-110
-70
0
-12
-60
3
0.3 7
0.1
0.2
0
0.
0. 31
19
0.7
0.6
0
0.6
1.0
0
1.
1.8
2.0
1.6
1.4
1.2
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
1.0
0.5 G
50
20
10
5.0
4.0
3.0
0
0
2.0
0.5
1.8
1.4
1.2
1.0
0.9
0.8
0.7
1.6
0.6
1.4
1.2
1.0
0.9
0.8
1.6
0.7
0.6
M
CO
CE
AN 
CT
EA –JX 
R
o
 Z
E

TIV
40
-1
P ON
0
1.
E NT
5.0
50
20
10
4.0
3.0
1.8
2.0
1.6
1.4
1.2
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
2.0
1.8
0.5
30
0.
4
0.2
1.
3.
5.0
0.2
0.2 9
1
0
-4
4
3.
NE
GA
0.3
0.8
0.2
8
0.2
2
4.0
0.39
0.11
0.
0. 43
07
0
-12
EA C
T
 AN
 +JX CE C
Zo  OM
PO

0.6
4.0
0.6
0.1
10
0.4
20
0.26
0.24
1.0 G
-20
5.0
ER
0.4
0.3
0.2 0
0
0.5
1.5 G
0.6
0.27
0.23
PO
50
-30
32
0. 18
0.
0.1
0.3 7
3
-5
60
-10
M
CO
CE
AN 
CT
EA –JX 
R
o
 Z
E

TIV
50
0.40
0.10
0.4
1
0.0
9
-100
-90
-80
0.38
0.12
0.37
0.13
0.36
0.14
0.35
0.15
-1
0.2
0.4
0.0 2
8
-110
-70
4
0.3
6
0.1
0.4
20
0.25
0.25
0.4
0.1
6
0.3
4
10
20
0.1 G
3
0.3 7
0.1
RESISTANCE COMPONENT
R
0.2
 Zo 
-60
0.2
0
70
0
8
0.
0.15
0.35
-5
0.14
0.36
32
0. 18
0.
5
0.4 5
0.0
0
44
0. 06
0.
0.6
3.
0.
0. 06
44
0.8
4.0
14
1.0
5.0
POS
ITIV
0.6
10
0.24
0.26
0.1
0.2
0
1.
14
0
EA C
T
 AN
 +JX CE C
Zo  OM
PO

POS
ITIV
ER
5.0
10
T
N EN
0.
8
0.23
0.27
0
4.0
0.26
0.24
80
20
-15
3.
0.25
0.25
0.13
0.37
2
0.2
8
0.2
40
-1
1.5 G
1
0.2 9
0.2
0.1
1.0 G
0.2
0.2 9
1
90
30
44
0. 06
0.
1.0
0.2
8
0.2
2
NT
40
0.
4
0.
8
0.2
6
0.4 4
0.0
8
0.
-20
110
0.12
0.38
0
0.2 0
0.3
5
0.4 5
0.0
0.4
10
20
0.3
0.8
0.24
0.26
0.6
0.27
0.23
0.4
→WAVELENGT
HS TO
0
0.01
0.49
0.02 WARD
0.48
0
0.49
G
0.01
0.0 ENE
0.48
←
7
3
0.02
RA
0.4
N
O
COEFFICIENT IN D
I
T
C
E
L
F
E
T
0.4
.
FR
EGREE
7
0.0 OR
.03
NGLE O
6
0
A
S
→
0.4 4
0.4 4
60
-1
0
6
.0
0.0
0
0.4 5
15
0
0
5
-15
0.6
19
0. 31
0.
→WAVELENGT
HS TO
0
0.01
0.49
0.02 WARD
0.48
0
0.49
G
0.01
0.0 ENE
0.48
←
3
0.02
RA
N
O
COEFFICIENT IN D
I
T
C
E
L
F
E
T
0.4
R
OF
EGREE
7
0.0 OR
ANGLE
S
→
0.4 4
-160
0
6
0.0
0.4 5
15
0
5
0.4
-10
100
0.
0. 06
44
2.0
0 .5
1.4
1.2
1.0
0.9
0.8
0.7
1.6
0.6
1.8
50
0
0.11
0.39
0.1
0.3 7
3
0.
0. 31
19
0.
NE
0
0.10
0.40
0
0
13
-4
12
0.2
60
0.3
0.2 0
0
8
0.0 2
0.4
9
0.0
1
0.4
0.1
6
0.3
4
10
0.1
70
50
0.1
0.5 G
0.23
0.27
RESISTANCE COMPONENT
R
0.2
 Zo 
0.15
0.35
20
0.1 G
80
-30
07
0. 43
0.
NT
0.14
0.36
2
0.2
8
0.2
4
0.
0.13
0.37
1
0.2 9
0.2
0.3
NE
100
90
30
14
0.3
1
110
0.12
0.38
40
0.2
30
0
0.11
0.39
0
0.2 0
0.3
0.2
12
0.10
0.40
0.2
07
0. 43
0.
8
0.0 2
0.4
9
0.0
1
0.4
19
0. 31
0.
7
0.4
3.
0.0
mPC2745TB, mPC2746TB
S Parameter (VCC = 3.0 V)
¾ mPC2746TB ¾
S11-FREQUENCY
0.
0. 18
32
0
50
S22-FREQUENCY
0.
0. 18
32
0
50
mPC2745TB, mPC2746TB
Typical S Parameter Values (TA = +25 °C)
mPC2746TB
VCC = 3.0 V, ICC = 7.7 mA
FREQUENCY
MHz
S11
S21
S12
S22
K
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
100.0000
.146
165.0
6.443
77.0
.403
141.7
6.594
.003
51.8
.406
-5.3
-8.6
108.63
.130
300.0000
.117
117.9
6.623
.004
47.7
.418
.128
100.8
6.522
.005
51.1
.417
500.0000
.139
90.8
6.613
.008
33.1
.424
600.0000
.145
83.1
6.481
.009
21.7
.422
700.0000
.135
77.0
6.424
.010
14.7
.426
800.0000
.131
67.4
6.353
.011
-.4
.433
.014
-10.5
-24.2
-28.7
-48.0
-63.4
-72.2
-86.9
-99.6
.442
-110.7
-122.9
-135.3
-146.0
.318
-11.0
-14.0
-16.2
-19.4
-23.8
-27.7
-32.1
-34.7
-37.5
-39.7
-42.7
-45.5
-48.3
-49.9
-50.0
-49.2
-45.4
-40.5
16.33
400.0000
-19.4
-38.7
-58.1
-77.5
-96.9
.001
200.0000
900.0000
.119
49.3
6.234
-116.1
-135.1
-153.6
-172.1
1000.0000
.142
30.4
6.137
169.6
.015
1100.0000
.170
18.0
5.992
151.1
.016
1200.0000
.219
10.6
5.972
133.3
.019
1300.0000
.245
7.4
5.867
115.1
.019
1400.0000
.268
3.1
5.679
97.0
.022
1500.0000
.270
1.5
5.582
79.1
.021
1600.0000
.268
5.380
61.8
.022
1700.0000
.258
-3.9
-7.8
5.122
44.5
.024
1800.0000
.251
4.880
27.9
.024
1900.0000
.249
4.634
11.7
.025
2000.0000
.240
-14.3
-16.7
-20.5
4.475
-4.4
.026
.455
.455
.453
.433
.409
.375
.349
.294
.268
.248
20.56
12.34
8.14
7.22
6.52
5.63
4.80
4.44
4.02
3.49
3.40
3.16
3.38
3.36
3.42
3.67
3.73
3.91
15
mPC2745TB, mPC2746TB
PACKAGE DIMENSIONS
6 pin super minimold (unit : mm)
0.15 +0.1
–0
2.1 ±0.1
1.25 ±0.1
0.1 to
0.2 +0.1
–0
0 to 0.1
0.65
0.65
1.3
2.0 ±0.2
16
0.7
0.9 ±0.1
mPC2745TB, mPC2746TB
NOTES ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All
the ground pins must be connected together with wide ground pattern to decrease impedance difference.
(3) The bypass capacitor should be attached to VCC line.
(4) The DC cut capacitor must be each attached to input and output pin.
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered in the following recommended conditions.
Other soldering methods and
conditions than the recommended conditions are to be consulted with our sales representatives.
mPC2745TB, mPC2746TB
Soldering method
Soldering conditions
Recommended condition symbol
Infrared ray
reflow
Package peak temperature : 235 °C, Hour : within 30 s. (more than 210
°C) Time : 3 times, Limited days : no.*
IR35-00-3
VPS
Package peak temperature : 215 °C, Hour : within 40 s. (more than 200
°C) Time : 3 times, Limited days : no.*
VP15-00-3
Wave soldering
Soldering tub temperature : less than 260 °C, Hour : within 10 s.
Time : 1 times, Limited days : no.*
WS60-00-1
Pin part heating
Pin area temperature : 300 °C, Hour : within 3 s/pin.
Limited days : no.*
* It is the storage days after opening a dry pack, the storage conditions are 25 °C, less than 65 % RH.
Note 1. The combined use of soldering method is to be avoided (However, except the pin area heating method).
For details of recommended soldering conditions for surface mounting, refer to information document
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
17
mPC2745TB, mPC2746TB
[MEMO]
18
mPC2745TB, mPC2746TB
[MEMO]
19
mPC2745TB, mPC2746TB
ATTENTION
OBSERVE PRECAUTIONS
FOR HANDLING
ELECTROSTATIC
SENSITIVE
DEVICES
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this
document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on
a customer designated "quality assurance program" for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96. 5
NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.