TI V62/05610-01YE

THS4271-EP
DGN-8
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
LOW NOISE, HIGH SLEW RATE, UNITY GAIN STABLE
VOLTAGE FEEDBACK AMPLIFIER
Check for Samples: THS4271-EP
FEATURES
1
•
•
23
•
•
•
•
•
Unity Gain Stability
Low Voltage Noise
– 3 nV/√Hz
High Slew Rate: 1000 V/ms
Low Distortion
– –92 dBc THD at 30 MHz
Wide Bandwidth: 1.4 GHz
Supply Voltages
– +5 V, ±5 V
Evaluation Module Available
APPLICATIONS
•
•
•
•
•
High Linearity ADC Preamplifier
Wireless Communication Receivers
Differential to Single-Ended Conversion
DAC Output Buffer
Active Filtering
SUPPORTS DEFENSE, AEROSPACE,
AND MEDICAL APPLICATIONS
•
•
•
•
•
•
•
(1)
Controlled Baseline
One Assembly/Test Site
One Fabrication Site
Available in Military (–55°C/125°C)
Temperature Range (1)
Extended Product Life Cycle
Extended Product-Change Notification
Product Traceability
Additional temperature ranges are available - contact factory
THS4271
NC
IN−
IN+
VS−
1
8
2
7
3
6
4
5
NC
VS+
VOUT
NC
DESCRIPTION
The THS4271 is a low-noise, high slew rate, unity
gain stable voltage-feedback amplifier designed to
run from supply voltages as low as 5 V. The
combination of low-noise, high slew rate, wide
bandwidth, low distortion, and unity gain stability
make the THS4271 a high performance device
across multiple ac specifications.
Designers using the THS4271 are rewarded with
higher dynamic range over a wider frequency band
without the stability concerns of decompensated
amplifiers. The devices are available in SOIC, MSOP
with PowerPAD™, and leadless MSOP with
PowerPAD™ packages.
The THS4271 may have low-level oscillation when
the die temperature (also known as the junction
temperature)
exceeds
+60°C
and
is
not
recommended for new designs. For more information,
see Maximum Die Temperature to Prevent
Oscillation.
RELATED DEVICES
DEVICE
DESCRIPTION
THS4211
1-GHz voltage-feedback amplifier
THS4503
Wideband, fully-differential amplifier
THS3202
Dual, wideband current feedback amplifier
1
2
3
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PowerPAD is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2004–2010, Texas Instruments Incorporated
THS4271-EP
www.ti.com
Harmonic and Intermodulation Distortion − dB
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
HARMONIC AND INTERMODULATION
DISTORTION
vs
FREQUENCY
−40
Gain = 2
Rf = 249 Ω
RL = 150 Ω
VO = 2 VPP
VS = ±5 V
−50
−60
IMD3
200 kHz Tone Spacing
VO = 2 VPP Envelope
−70
−80
HD2
−90
HD3
−100
1
10
f − Frequency − MHz
100
Low-Noise, Low-Distortion, Wideband Application Circuit
+5 V
50 Ω Source
50 Ω
+
VI
49.9 Ω
VO
THS4271
_
-5 V
249 Ω
249 Ω
NOTE: Power supply decoupling capacitors not shown
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
PACKAGING/ORDERING INFORMATION (1)
ORDERABLE PACKAGE AND NUMBER
PLASTIC MSOP (2)
PowerPAD
PACKAGE
PACKAGE MARKING
THS4271MDGNTEP
BLT
THS4271MDGNREP
(1)
(2)
2
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
All packages are available taped and reeled. The R suffix standard quantity is 2500 (e.g., THS4271MDGNREP).
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
ABSOLUTE MAXIMUM RATINGS
Over operating free-air temperature range unless otherwise noted (1)
UNIT
VS
Supply voltage
VI
Input voltage
IO
Output current
16.5 V
±VS
100 mA
Continuous power dissipation
TJ
TJ
TJ
(2)
(3)
Tstg
See Dissipation Ratings Table
Maximum junction temperature
+150°C
Maximum junction temperature, continuous operation long term reliability
+125°C
Maximum junction temperature to prevent oscillation
+60°C
Storage temperature range
–65°C to +150°C
Lead temperature (1,6 mm (1/16 inch) from case for 10 seconds)
+300°C
HBM
3000 V
ESD ratings CDM
1000 V
MM
(1)
(2)
(3)
100 V
The absolute maximum temperature under any condition is limited by the constraints of the silicon process. Stresses above these
ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability.
These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not
implied.
Long-term high-temperature storage and/or extended use at maximum recommended operating conditions may result in a reduction of
overall device life. See Figure 1 for additional information on thermal derating.
See Maximum Die Temperature to Prevent Oscillation section in the Application Information of this data sheet.
PACKAGE DISSIPATION RATINGS
(1)
(2)
PACKAGE
qJC
(°C/W)
qJA (1)
(°C/W)
DGN (8 pin) (2)
4.7
58.4
This data was taken using the JEDEC standard High-K test PCB.
The THS4271 may incorporate a PowerPAD™ on the underside of the chip. This feature acts as a
heat sink and must be connected to a thermally dissipative plane for proper power dissipation. Failure
to do so may result in exceeding the maximum junction temperature which could permanently damage
the device. See TI technical briefs SLMA002 and SLMA004 for more information about utilizing the
PowerPAD thermally enhanced package.
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
3
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
WIREBOND LIFE
vs
JUNCTION TEMPERATURE
1G
Time-to-Fail - Hrs
100M
80°C, 74M Hrs
10M
100°C, 5.9M Hrs
1M
120°C, 490K Hrs
100K
140°C, 58K Hrs
10K
80
90
100
120
110
130
140
150
TJ - Junction Temperature - °C
Figure 1. EME−G600 Estimated Wirebond Life
RECOMMENDED OPERATING CONDITIONS
Supply voltage (VS+ and VS–)
Dual supply
Single supply
Input common-mode voltage range
MIN
MAX
±2.5
±5
5
10
VS- + 1.4
VS+ – 1.4
UNIT
V
V
PIN ASSIGNMENTS
DGN PACKAGE
(TOP VIEW)
1
8
NC
ININ+
2
7
3
6
VS-
4
5
NC
VS+
VOUT
NC
NC - No internal connection
4
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
ELECTRICAL CHARACTERISTICS: VS = ±5 V
At RF = 249 Ω, RL = 499 Ω, G = +2, unless otherwise noted.
TYP
PARAMETER
TEST CONDITIONS
+25°C
OVER
TEMPERATURE (1)
+25°C
–55°C to
+125°C
UNITS
MIN/
TYP/
MAX
AC PERFORMANCE
G = 1, VO = 100 mVPP, RL = 150 Ω
1.4
GHz
Typ
G = –1, VO = 100 mVPP
400
MHz
Typ
G = 2, VO = 100 mVPP
390
MHz
Typ
G = 5, VO = 100 mVPP
85
MHz
Typ
G = 10, VO = 100 mVPP
40
MHz
Typ
0.1-dB flat bandwidth
G = 1, VO = 100 mVPP, RL = 150 Ω
200
MHz
Typ
Gain bandwidth product
G > 10, f = 1 MHz
400
MHz
Typ
Full-power bandwidth
G = –1, VO = 2 Vp
80
MHz
Typ
G = 1, VO = 2 V Step
950
V/ms
Typ
Small-signal bandwidth
Slew rate
G = –1, VO = 2 V Step
1000
V/ms
Typ
Settling time to 0.1%
G = –1, VO = 4 V Step
25
ns
Typ
Settling time to 0.01%
G = –1, VO = 4 V Step
38
ns
Typ
Harmonic distortion
G = 1, VO = 1 VPP, f = 30 MHz
RL = 150 Ω
-92
dBc
Typ
RL = 499 Ω
-80
dBc
Typ
RL = 150 Ω
-95
dBc
Typ
RL = 499 Ω
-95
dBc
Typ
RL = 150 Ω
-65
dBc
Typ
RL = 499 Ω
-70
dBc
Typ
RL = 150 Ω
-80
dBc
Typ
RL = 499 Ω
-90
dBc
Typ
Third-order intermodulation (IMD3)
G = 2, VO = 2 VPP, RL = 150 Ω,
f = 70 MHz
-60
dBc
Typ
Third-order output intercept (OIP3)
G = 2, VO = 2 VPP, RL = 150Ω,
f = 70 MHz
35
dBm
Typ
Differential gain (NTSC, PAL)
G = 2, RL = 150 Ω
0.007%
Differential phase (NTSC, PAL)
G = 2, RL = 150 Ω
0.004
°
Typ
Input voltage noise
f = 1 MHz
3
nV/√Hz
Typ
Input current noise
f = 1 MHz
3
pA√Hz
Typ
Open-loop voltage gain (AOL)
VO = ± 50 mV, RL = 499 Ω
75
65
56
dB
Min
Input offset voltage
VCM = 0 V
5
14
±16
mV
Max
Average offset voltage drift
VCM = 0 V
±10
mV/°C
Typ
Input bias current
VCM = 0 V
6
15
18
mA
Max
Average bias current drift
VCM = 0 V
±10
nA/°C
Typ
Input offset current
VCM = 0 V
8
mA
Max
Average offset current drift
VCM = 0 V
±10
nA/°C
Typ
Min
Second harmonic distortion
Third harmonic distortion
Harmonic distortion
Second harmonic distortion
Third harmonic distortion
G = 2, VO = 2 VPP, f = 30 MHz
Typ
DC PERFORMANCE
1
6
INPUT CHARACTERISTICS
Common-mode input range
±4
±3.6
±3.5
V
Common-mode rejection ratio
VCM = ± 2 V
72
67
62
dB
Min
Input resistance
Common-mode
5
MΩ
Typ
(1)
See application section "Maximum Die Temperature to Prevent Oscillation".
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
5
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
ELECTRICAL CHARACTERISTICS: VS = ±5 V (continued)
At RF = 249 Ω, RL = 499 Ω, G = +2, unless otherwise noted.
TYP
PARAMETER
TEST CONDITIONS
+25°C
Input capacitance
Common-mode / differential
OVER
TEMPERATURE (1)
+25°C
–55°C to
+125°C
0.4/0.8
UNITS
MIN/
TYP/
MAX
pF
Typ
OUTPUT CHARACTERISTICS
Output voltage swing
G = +2
±4
±3.75
±3.6
V
Min
Output current (sourcing)
RL = 10 Ω
160
120
104
mA
Min
Output current (sinking)
RL = 10 Ω
80
60
44
mA
Min
Output impedance
f = 1 MHz
0.1
Ω
Typ
POWER SUPPLY
Specified operating voltage
±5
±5
±5
V
Max
Maximum quiescent current
22
24
34
mA
Max
Minimum quiescent current
22
20
13
mA
Min
Power-supply rejection (+PSRR)
VS+ = 5.5 V to 4.5 V, VS– = 5 V
85
75
58
dB
Min
Power-supply rejection (-PSRR)
VS+ = 5 V, VS– = -5.5 V to -4.5 V
75
65
57
dB
Min
6
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
ELECTRICAL CHARACTERISTICS: VS = 5 V
At RF = 249 Ω, RL = 499 Ω, G = +2, unless otherwise noted.
TYP
PARAMETER
TEST CONDITIONS
+25°C
OVER
TEMPERATURE (1)
+25°C
–55°C to
+125°C
UNITS
MIN/
TYP/
MAX
AC PERFORMANCE
G = 1, VO = 100 mVPP, RL = 150 Ω
1.2
GHz
Typ
G = –1, VO = 100 mVPP
380
MHz
Typ
G = 2, VO = 100 mVPP
360
MHz
Typ
G = 5, VO = 100 mVPP
80
MHz
Typ
G = 10, VO = 100 mVPP
35
MHz
Typ
0.1-dB flat bandwidth
G = 1, VO = 100 mVPP, RL = 150 Ω
120
MHz
Typ
Gain bandwidth product
G > 10, f = 1 MHz
350
MHz
Typ
Full-power bandwidth
G = –1, VO = 2 Vp
60
MHz
Typ
G = 1, VO = 2 V Step
700
V/ms
Typ
Small-signal bandwidth
Slew rate
G = –1, VO = 2 V Step
750
V/ms
Typ
Settling time to 0.1%
G = –1, VO = 2 V Step
18
ns
Typ
Settling time to 0.01%
G = –1, VO = 2 V Step
66
ns
Typ
Harmonic distortion
G = 1, VO = 1 VPP, f = 30 MHz
RL = 150 Ω
75
dBc
Typ
RL = 499 Ω
72
dBc
Typ
RL = 150 Ω
-70
dBc
Typ
RL = 499 Ω
70
dBc
Typ
Third-order intermodulation (IMD3)
G = 2, VO = 1 VPP, RL = 150Ω,
f = 70 MHz
-65
dBc
Typ
Third-order output intercept (OIP3)
G = 2, VO = 1 VPP, RL = 150Ω,
f = 70 MHz
32
dBm
Typ
Input voltage noise
f = 1 MHz
3
nV/√Hz
Typ
Input current noise
f = 10 MHz
3
pA/√Hz
Typ
Open-loop voltage gain (AOL)
VO = ± 50 mV, RL = 499 Ω
68
63
56
dB
Min
Input offset voltage
VCM = VS/2
5
±14
±16
mV
Max
Average offset voltage drift
VCM = VS/2
±10
mV/°C
Typ
Input bias current
VCM = VS/2
6
15
18
mA
Max
Average bias current drift
VCM = VS/2
±10
nA/°C
Typ
Input offset current
VCM = VS/2
Average offset current drift
VCM = VS/2
Second harmonic distortion
Third harmonic distortion
DC PERFORMANCE
1
6
8
mA
Max
±10
nA/°C
Typ
V
Min
INPUT CHARACTERISTICS
Common-mode input range
1/4
1.3/3.7
1.5/3.5
67
62
Common-mode rejection ratio
VCM = ± 0.5 V, VO = 2.5 V
72
dB
Min
Input resistance
Common-mode
5
MΩ
Typ
Input capacitance
Common-mode / differential
0.4/0.8
pF
Typ
Output voltage swing
G = +2
1.2/3.8
1.4/3.6
1.5/3.5
V
Min
Output current (sourcing)
RL = 10 Ω
120
90
78
mA
Min
Output current (sinking)
RL = 10 Ω
65
45
37
mA
Min
Output impedance
f = 1 MHz
0.1
Ω
Typ
OUTPUT CHARACTERISTICS
(1)
See application section "Maximum Die Temperature to Prevent Oscillation".
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
7
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
ELECTRICAL CHARACTERISTICS: VS = 5 V (continued)
At RF = 249 Ω, RL = 499 Ω, G = +2, unless otherwise noted.
TYP
PARAMETER
TEST CONDITIONS
OVER
TEMPERATURE (1)
UNITS
MIN/
TYP/
MAX
10
V
Max
34
mA
Max
18
13
mA
Min
+25°C
+25°C
–55°C to
+125°C
Specified operating voltage
5
10
Maximum quiescent current
20
23
Minimum quiescent current
20
POWER SUPPLY
Power-supply rejection (+PSRR)
VS+ = 5.5 V to 4.5 V, VS– = 0 V
85
70
57
dB
Min
Power-supply rejection (-PSRR)
VS+ = 5 V, VS– = –0.5 V to 0.5 V
75
65
56
dB
Min
8
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
TYPICAL CHARACTERISTICS
Table of Graphs (±5 V)
FIGURE
Small-signal unity gain frequency response
1
Small-signal frequency response
2
0.1-dB gain flatness frequency response
3
Large-signal frequency response
4
Slew rate
vs Output voltage
Harmonic distortion
vs Frequency
Harmonic distortion
vs Output voltage swing
Third-order intermodulation distortion
vs Frequency
14, 16
Third-order intercept point
vs Frequency
15, 17
Voltage and current noise
vs Frequency
18
Differential gain
vs Number of loads
19
Differential phase
vs Number of loads
20
Settling time
5
6, 7, 8, 9
10, 11, 12, 13
21
Quiescent current
vs Supply voltage
22
Output voltage
vs Load resistance
23
Frequency response
vs Capacitive load
24
Open-loop gain and phase
vs Frequency
25
Open-loop gain
vs Supply voltage
26
Rejection ratios
vs Frequency
27
Rejection ratios
vs Case temperature
28
Common-mode rejection ratio
vs Input common-mode range
29
Input offset voltage
vs Case temperature
30
Input bias and offset current
vs Case temperature
31
Small-signal transient response
32
Large-signal transient response
33
Overdrive recovery
34
Closed-loop output impedance
vs Frequency
35
Power-down quiescent current
vs Supply voltage
36
Power-down output impedance
vs Frequency
37
Turn-on and turn-off delay times
38
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
9
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
Table of Graphs (5 V)
FIGURE
Small-signal unity gain frequency response
39
Small-signal frequency response
40
0.1-dB gain flatness frequency response
41
Large-signal frequency response
42
Slew rate
vs Output voltage
Harmonic distortion
vs Frequency
44, 45, 46, 47
Harmonic distortion
vs Output voltage swing
48, 49, 50, 51
Third-order intermodulation distortion
vs Frequency
52, 54
Third-order intercept point
vs Frequency
53, 55
Voltage and current noise
vs Frequency
56
Settling time
43
57
Quiescent current
vs Supply voltage
58
Output voltage
vs Load resistance
59
Frequency response
vs Capacitive load
60
Open-loop gain and phase
vs Frequency
61
Open-loop gain
vs Case temperature
62
Rejection ratios
vs Frequency
63
Rejection ratios
vs Case temperature
64
Common-mode rejection ratio
vs Input common-mode range
65
Input offset voltage
vs Case temperature
66
Input bias and offset current
vs Case temperature
67
Small-signal transient response
68
Large-signal transient response
69
Overdrive recovery
70
Closed-loop output impedance
vs Frequency
71
Power-down quiescent current
vs Supply voltage
72
Power-down output impedance
vs Frequency
73
Turn-on and turn-off delay times
10
74
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
TYPICAL CHARACTERISTICS: ±5 V
SMALL-SIGNAL UNIT GAIN
FREQUENCY RESPONSE
SMALL-SIGNAL
FREQUENCY RESPONSE
22
2
1
0
−1
−2
0
Gain = 10
18
Small Signal Gain − dB
16
Gain = 5
14
RL = 499 Ω
Rf = 249 Ω
VO = 100 mVPP
VS = ±5 V
12
10
8
6
Gain = 2
4
2
−3
−4
100 k
1M
10 M
1G
100 M
Gain = −1
−2
−4
100 k
1M
10 G
f − Frequency − Hz
10 M
100 M
f − Frequency − Hz
1M
10 M
100 M
−50
1000
8
6
800
Rise
600
400
Gain = −1
RL = 499 Ω
Rf = 249 Ω
VS = ±5 V
Gain = 2
200
2
0
100 k
Harmonic Distortion − dBc
10
Gain = 1
VO = 1 VPP
VS = ±5 V
Fall
RL = 499 Ω
Rf = 249 Ω
VO = 1 VPP
VS = ±5 V
10 M
100 M
0
1G
−60
−70
HD3, RL = 499Ω
HD3, RL = 150Ω
−80
HD2, RL = 150Ω
HD2, RL = 499Ω
−90
−100
0
1M
f − Frequency − Hz
0.5
1
1.5
2
2.5
3
3.5
4 4.5
5
1
VO − Output Voltage − V
10
f − Frequency − MHz
Figure 5.
Figure 6.
Figure 7.
HARMONIC DISTORTION
vs
FREQUENCY
HARMONIC DISTORTION
vs
FREQUENCY
HARMONIC DISTORTION
vs
FREQUENCY
−50
−50
Harmonic Distortion − dBc
Gain = 1
VO = 2 VPP
VS = ±5 V
HD2, RL = 150Ω
HD3, RL = 499Ω
−80
HD3, RL = 150Ω
HD2, RL = 499Ω
−100
100
Figure 8.
100
−50
Gain = 2
Rf = 249 Ω
VO = 1 VPP
VS = ±5 V
−60
−70
HD3, RL = 499Ω
HD3, RL = 150Ω
−80
HD2, RL = 499Ω
HD2, RL = 150Ω
−90
−100
10
f − Frequency − MHz
1G
f − Frequency − Hz
HARMONIC DISTORTION
vs
FREQUENCY
SR − Slew Rate − V/ µ s
Large Signal Gain − dB
Gain = 1
RL = 150 Ω
VO = 100 mVPP
VS = ±5 V
SLEW RATE
vs
OUTPUT VOLTAGE
12
1
−0.7
LARGE-SIGNAL
FREQUENCY RESPONSE
14
−90
−0.6
Figure 4.
Gain = 5
−70
−0.5
Figure 3.
Gain = 10
−60
−0.4
−1
100 k
1G
1200
4
−0.3
−0.9
20
16
−0.2
Figure 2.
22
18
−0.1
−0.8
0
Harmonic Distortion − dBc
Small Signal Gain − dB
3
0.1
20
Gain = 1
RL = 150 Ω
VO = 100 mVPP
VS = ±5 V
Small Signal Gain − dB
4
Harmonic Distortion − dBc
0.1-dB GAIN FLATNESS
FREQUENCY RESPONSE
Gain = 2
Rf = 249 Ω
VO = 2 VPP
VS = ±5 V
HD3, RL = 499Ω
−60
−70
HD2, RL = 499Ω
HD3, RL = 150Ω
−80
HD2, RL = 150Ω
−90
−100
1
10
f − Frequency − MHz
Figure 9.
100
1
10
f − Frequency − MHz
Figure 10.
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
100
11
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
TYPICAL CHARACTERISTICS: ±5 V (continued)
HARMONIC DISTORTION
vs
OUTPUT VOLTAGE SWING
HARMONIC DISTORTION
vs
OUTPUT VOLTAGE SWING
−50
−50
−60
Harmonic Distortion − dBc
Gain = 1
f= 8 MHz
VS = ±5 V
HD3, RL = 150Ω
−70
HD3, RL = 499Ω
−80
HD2, RL = 499Ω
HD2, RL = 150Ω
−90
−60
Gain = 1
f= 32 MHz
VS = ±5 V
−70
HD2, RL = 150Ω
Gain = 2
Rf = 249 Ω
f = 8 MHz
VS = ±5 V
HD2, RL = 499Ω
Harmonic Distortion − dBc
−50
Harmonic Distortion − dBc
HARMONIC DISTORTION
vs
OUTPUT VOLTAGE SWING
HD3, RL = 150Ω
−80
−90
−60
HD3, RL = 499Ω
−70
HD2, RL = 499Ω
HD3, RL = 150Ω
−80
HD2, RL = 150Ω
−90
HD3, RL = 499Ω
−100
0
0
0.5 1 1.5 2 2.5 3 3.5 4 4.5
VO − Output Voltage Swing − ±V
5
HARMONIC DISTORTION
vs
OUTPUT VOLTAGE SWING
THIRD-ORDER INTERMODULATION
DISTORTION
vs
FREQUENCY
THIRD-ORDER INTERMODULATION
DISTORTION
vs
FREQUENCY
Gain = 2
Rf = 249 Ω
f = 32 MHz
HD2, RL = 499Ω
VS = ±5 V
HD2, RL = 150Ω
−60
−70
−80
HD3,
RL = 150Ω
−90
HD3,
RL = 499Ω
0
1
2
3
4
VO − Output Voltage Swing − ±V
55
−40
Gain = 1
RL = 150 Ω
VS = ±5 V
200 kHz Tone Spacing
−50
Third-Order Output Intersept Point − dBm
Third-Order Intermodulation Distortion − dBc
Figure 13.
−60
−70
VO = 2 VPP
−80
−90
VO = 1 VPP
−100
5
10
Gain = 1
RL = 150 Ω
VS = ±5 V
200 kHz Tone Spacing
50
VO = 2 VPP
45
VO = 1 VPP
40
35
30
100
0
20
40
60
f − Frequency − MHz
f − Frequency − MHz
80
100
Figure 14.
Figure 15.
Figure 16.
THIRD-ORDER INTERMODULATION
DISTORTION
vs
FREQUENCY
THIRD-ORDER OUTPUT INTERCEPT
POINT
vs
FREQUENCY
VOLTAGE AND CURRENT NOISE
vs
FREQUENCY
50
−60
VO = 2 VPP
−70
−80
VO = 1 VPP
−90
−100
10
100
45
40
Gain = 2
RL = 150 Ω
VS = ±5 V
200 kHz Tone Spacing
VO = 1 VPP
35
30
0
20
40
60
f − Frequency − MHz
f − Frequency − MHz
Figure 17.
Figure 18.
80
Submit Documentation Feedback
100
Hz
−50
100
VO = 2 VPP
Hz
Gain = 2
RL = 150 Ω
VS = ±5 V
200 kHz Tone Spacing
Vn − Voltage Noise − nV/
−40
Third-Order Output Intersept Point − dBm
Harmonic Distortion − dBc
5
Figure 12.
−100
Third-Order Intermodulation Distortion − dBc
1
2
3
4
VO − Output Voltage Swing − ±V
Figure 11.
−50
12
−100
0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
VO − Output Voltage Swing − ±V
100
Vn
10
10
In
1
100
1k
10 k
100 k
1M
10 M
I n − Current Noise − pA/
−100
1
100 M
f − Frequency − Hz
Figure 19.
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
TYPICAL CHARACTERISTICS: ±5 V (continued)
DIFFERENTIAL GAIN
vs
NUMBER OF LOADS
DIFFERENTIAL PHASE
vs
NUMBER OF LOADS
0.015
Gain = 2
Rf = 1.3 kΩ
VS = ±5 V
40 IRE − NTSC and Pal
Worst Case ±100 IRE Ramp
0.09
°
Differential Phase −
0.020
3
NTSC
0.010
0.08
0.07
Rising Edge
2
VO − Output Voltage − V
Gain = 2
Rf = 1.3 kΩ
VS = ±5 V
40 IRE − NTSC and Pal
Worst Case ±100 IRE Ramp
0.025
Differential Gain − %
SETTLING TIME
0.10
0.030
0.06
0.05
PAL
0.04
0.03
NTSC
0.02
PAL
0.005
1
Gain = −1
RL = 499 Ω
Rf = 249 Ω
f= 1 MHz
VS = ±5 V
0
−1
Falling Edge
−2
0.01
0
0
1
2
3
4
5
6
7
0
8
−3
0
Number of Loads − 150 Ω
1
2
3
4
5
6
7
8
0
Figure 22.
QUIESCENT CURRENT
vs
SUPPLY VOLTAGE
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
FREQUENCY RESPONSE
vs
CAPACITIVE LOAD
25
20
TA = −40°C
15
10
5
0
VS = ±5 V
TA = −40 to 85°C
3
2
Normalized Gain - dB
VO − Output Voltage − V
TA = 25°C
1
0
−1
−2
3
3.5
4
4.5
10
5
R(ISO) = 25 W, CL = 10 pF
-1
R(ISO) = 15 W, CL = 50 pF
-1.5
R(ISO) = 10 W, CL = 100 pF
-2
-2.5
−5
2.5
-0.5
−3
−4
0
VS − Supply Voltage − ±V
100
1k
RL − Load Resistance − Ω
RL = 499 W
VS = ±5 V
-3
1M
10 k
10 M
100 M
Capacitive Load - Hz
Figure 23.
Figure 24.
Figure 25.
OPEN-LOOP GAIN AND PHASE
vs
FREQUENCY
OPEN-LOOP GAIN
vs
SUPPLY VOLTAGE
REJECTION RATIOS
vs
FREQUENCY
0
VS = ±5 V
Gain
60
80
40
80
30
100
Phase
120
Phase − °
60
20
TA = 85°C
65
60
0
160
55
180
1G
50
1M
10 M
100 M
f − Frequency − Hz
Figure 26.
PSRR+
80
70
140
100 k
TA = 25°C
75
10
−10
10 k
TA = −40°C
40
50
VS = ±5 V
90
20
Open-Loop Gain − dB
70
100
85
Rejection Ratios − dB
80
25
0.5
5
4
Quiescent Current − mA
20
Figure 21.
TA = 85°C
Open-Loop Gain − dB
10
15
t − Time − ns
Figure 20.
30
2
5
Number of Loads − 150 Ω
70
PSRR−
60
50
CMRR
40
30
20
10
0
2.5
3
3.5
4
4.5
Supply Voltage − ±VS
Figure 27.
5
10 k
100 k
1M
10 M
f − Frequency − Hz
Figure 28.
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
100 M
13
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
TYPICAL CHARACTERISTICS: ±5 V (continued)
COMMON-MODE REJECTION RATIOS
vs
INPUT COMMON-MODE RANGE
VS = ±5 V
PSRR+
100
Rejection Ratios − dB
PSRR−
80
60
CMMR
40
20
0
−40−30−20−100 10 20 30 40 50 60 70 80 90
INPUT OFFSET VOLTAGE
vs
CASE TEMPERATURE
100
5
90
VOS − Input Offset Voltage − mV
120
CMRR − Common-Mode Rejection Ratio − dB
REJECTION RATIOS
vs
FREQUENCY
80
70
60
50
40
30
20
VS = ±5 V
TA = 25°C
10
0
−6
−4
Case Temperature − °C
−2
0
2
4
0
−40−30−20−10 0 10 20 30 40 50 60 70 80 90
6
TC − Case Temperature − °C
Figure 31.
INPUT BIAS AND OFFSET
CURRENT
vs
CASE TEMPERATURE
SMALL-SIGNAL TRANSIENT
RESPONSE
LARGE-SIGNAL TRANSIENT
RESPONSE
1.17
0.3
1.5
IOS
1.15
0.2
1
1.14
5
IIB+
4
1.13
3
1.12
2
1.11
1
1.1
0.1
0
Gain = −1
RL = 499 Ω
Rf = 249 Ω
tr/tf = 300 ps
VS = ±5 V
−0.1
−0.2
1.09
0
−40−30−20−10 0 10 20 30 40 50 60 70 80 90
VO − Output Voltage − V
6
VO − Output Voltage − V
1.16
IIB−
I OS − Input Offset Current − µ A
0.5
0
Gain = −1
RL = 499 Ω
Rf = 249 Ω
tr/tf = 300 ps
VS = ±5 V
−0.5
−1
−1.5
−0.3
0
TC − Case Temperature − °C
2
4
6
8
10
12
14 16
0
2
t − Time − ns
4
6 8 10 12 14
t − Time − ns
16 18
Figure 32.
Figure 33.
Figure 34.
OVERDRIVE RECOVERY
CLOSED-LOOP OUTPUT
IMPEDANCE
vs
FREQUENCY
POWER-DOWN QUIESCENT
CURRENT
vs
SUPPLY VOLTAGE
6
1.5
2
1
1
0.5
0
0
−1
−0.5
−2
−1
−3
−1.5
−4
−2
−5
−2.5
−3
−6
1
t − Time − µs
Figure 35.
Closed-Loop Output Impedance − Ω
2
3
VI − Input Voltage − V
2.5
4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000
3
VS = ±5 V
100
1200
Gain = 1
RL = 499 Ω
PIN = −1 dBm
VS = ±5 V
Power-down Quiescent Current − µ A
I IB − Input Bias Current − µ A
1
Figure 30.
7
Single-Ended Output Voltage − V
VS = ±5 V
2
Input Common-Mode Range − V
VS = ±5 V
14
VS = 5 V
3
Figure 29.
8
5
4
10
1
0.1
0.01
0.001
100 k
1M
10 M
100 M
f − Frequency − Hz
Figure 36.
Submit Documentation Feedback
1G
TA = 85°C
1000
TA = 25°C
800
TA = −40°C
600
400
200
0
2.5
3
3.5
4
4.5
5
VS − Supply Voltage − ±V
Figure 37.
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
TYPICAL CHARACTERISTICS: ±5 V (continued)
POWER-DOWN OUTPUT
IMPEDANCE
vs
FREQUENCY
Power-down Output Impedance − Ω
1M
Gain = 1
RL = 150 Ω
VIN = 1 dBm
VS = ±5 V
100 k
10 k
100
1
100 k
1M
10 M
100 M
f − Frequency − Hz
1G
Figure 38.
TYPICAL CHARACTERISTICS: 5 V
SMALL-SIGNAL UNIT GAIN
FREQUENCY RESPONSE
SMALL-SIGNAL UNIT GAIN
FREQUENCY RESPONSE
20
0
−1
−2
−3
−4
100 k
1M
0.1
Gain = 10
18
10 M
100 M
1G
16
Gain = 5
14
RL = 499 Ω
Rf = 249 Ω
VO = 100 mVPP
VS = 5 V
12
10
8
6
Gain = 2
4
2
0
Gain = −1
−2
−4
100 k
1M
10 G
f − Frequency − Hz
−0.3
−0.4
−0.5
−0.6
Gain = 1
RL = 150 Ω
VO = 100 mVPP
VS = 5 V
−0.7
−0.8
−0.9
10 M
100 M
f − Frequency − Hz
−1
100 k
1G
1M
10 M
100 M
LARGE-SIGNAL FREQUENCY
RESPONSE
SLEW RATE
vs
FREQUENCY
HARMONIC DISTORTION
DISTORTION
vs
FREQUENCY
1000
14
12
10
SR − Slew Rate − V/ µ s
16
Gain = 1
RL = 499 Ω
Rf = 249 Ω
VS = 5 V
900
Gain = 5
RL = 499 Ω
Rf = 249 Ω
VO = 1 VPP
VS = 5 V
6
Gain = 2
700
600
Fall
Rise
500
400
300
200
Gain = 1
VO = 1 VPP
RL = 150 Ω
VS = 5 V
−60
−70
−80
HD3
HD2
−90
100
2
0
100 k
800
−50
Harmonic Distortion − dBc
Gain = 10
1G
f − Frequency − Hz
Figure 42.
18
Large Signal Gain − dB
−0.2
Figure 41.
20
4
0
−0.1
Figure 40.
22
8
Small Signal Gain − dB
Gain = 1
RL = 150 Ω
VO = 100 mVPP
VS = 5 V
Small Signal Gain − dB
Small Signal Gain − dB
1
0.2
22
3
2
0.1-dB GAIN FLTANESS
FREQUENCY RESPONSE
−100
0
1M
10 M
100 M
1G
f − Frequency − Hz
Figure 43.
0
0.5
1
1.5
2
VO − Output Voltage −V
Figure 44.
2.5
1
10
Figure 45.
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
100
f − Frequency − MHz
15
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
TYPICAL CHARACTERISTICS: 5 V (continued)
HARMONIC DISTORTION
vs
FREQUENCY
HARMONIC DISTORTION
vs
FREQUENCY
−50
−20
−30
Harmonic Distortion − dBc
Gain = 1
VO = 2 VPP
RL = 150 Ω
VS = 5 V
−40
−50
HD3
−60
−70
HD2
−80
0
Gain = 2
Rf = 249 Ω
RL = 249 Ω
VO = 1 VPP
VS = 5 V
−60
−70
−80
HD3
−90
HD2
1
10
−100
−30
−40
−50
HD2
−60
−70
HD3
−80
100
−100
1
f − Frequency − MHz
10
f − Frequency − MHz
1
100
10
100
f − Frequency − MHz
Figure 46.
Figure 47.
Figure 48.
HARMONIC DISTORTION
vs
OUTPUT VOLTAGE SWING
HARMONIC DISTORTION
vs
OUTPUT VOLTAGE SWING
HARMONIC DISTORTION
vs
OUTPUT VOLTAGE SWING
−50
−40
Gain = 1
f= 8 MHz
VS = 5 V
−50
Harmonic Distortion − dBc
−60
HD3,
RL = 499Ω
−70
HD3,
RL = 150Ω
−80
HD2, RL
= 499Ω
−90
Gain = 1
f= 32 MHz
VS = 5 V
HD2, RL = 150Ω
−60
HD3,
RL = 499Ω
Harmonic Distortion − dBc
−50
Harmonic Distortion − dBc
−20
−90
−90
−100
Gain = 2
Rf = 249 Ω
RL = 150 Ω
VO = 2 VPP
VS = 5 V
−10
Harmonic Distortion − dBc
0
−10
Harmonic Distortion − dBc
HARMONIC DISTORTION
vs
FREQUENCY
HD3,
RL = 150Ω
−70
HD2, RL = 150Ω
−80
HD2, RL = 499Ω
Gain = 2
Rf = 249 Ω
f = 8 MHz
VS = 5 V
−60
HD3, RL = 150Ω
HD2, RL = 150Ω
−70
−80
HD2, RL = 499Ω
−90
−90
HD3, RL = 499Ω
−100
0
0.5
1
1.5
2
−100
−100
2.5
0
VO − Output Voltage Swing − V
0.5
1
1.5
2
VO − Output Voltage Swing − V
2.5
Figure 50.
Figure 51.
HARMONIC DISTORTION
vs
OUTPUT VOLTAGE SWING
THIRD-ORDER INTERMODULATION
DISTORTION
vs
FREQUENCY
THIRD-ORDER OUTPUT INTERCEPT
POINT
vs
FREQUENCY
HD3, RL = 150Ω
HD2, RL = 150Ω
−60
HD3,
RL = 499Ω
−70
HD2, RL = 499Ω
−80
−90
−100
0
0.5
1
1.5
2
VO − Output Voltage Swing − V
Figure 52.
2.5
45
−40
Third-Order Output Intersept Point − dBm
−50
Third-Order Intermodulation Distortion − dBc
Gain = 2
Rf = 249 Ω
f = 32 MHz
VS = 5 V
−40
Harmonic Distortion − dBc
0
2.5
Figure 49.
−30
16
0.5
1
1.5
2
VO − Output Voltage Swing − V
Gain = 1
RL = 150 Ω
VO = 1 VPP
VS = 5 V
200 kHz Tone
Spacing
−50
−60
−70
−80
−90
−100
10
100
40
35
30
Gain = 1
RL = 150 Ω
VO = 1 VPP
VS = 5 V
200 kHz Tone Spacing
25
20
0
20
40
60
f − Frequency − MHz
f − Frequency − MHz
Figure 53.
Figure 54.
Submit Documentation Feedback
80
100
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
TYPICAL CHARACTERISTICS: 5 V (continued)
THIRD-ORDER OUTPUT INTERCEPT
POINT
vs
FREQUENCY
−70
−80
−90
−100
10
40
35
30
0
20
40
80
100
Hz
1k
10 k
100 k
1M
10 M
1
100 M
f − Frequency − Hz
f − Frequency − MHz
Figure 55.
Figure 56.
Figure 57.
SETTLING TIME
QUIESCENT CURRENT
vs
SUPPLY VOLTAGE
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
30
1.5
2
TA = 85°C
Rising Edge
1.5
25
1
0
−0.5
Falling Edge
VO − Output Voltage − V
Gain = −1
RL = 499 Ω
Rf = 249 Ω
f= 1 MHz
VS = 5 V
0.5
TA = 25°C
Quiescent Current − mA
20
TA = −40°C
15
10
−1
5
−1.5
0
1
VS = 5 V
TA = −40 to 85°C
0.5
0
−0.5
−1
−1.5
0 2
4
6
8
10 12 14 16 18 20 22 24
−2
2
2.5
3
3.5
4
4.5
VS − Supply Voltage − ±V
t − Time − ns
Figure 59.
Figure 60.
FREQUENCY RESPONSE
vs
CAPACITIVE LOAD
OPEN-LOOP GAIN AND PHASE
vs
FREQUENCY
OPEN-LOOP GAIN
vs
CASE TEMPERATURE
80
−1
R(ISO) = 15 Ω, CL = 50 pF
−1.5
R(ISO) = 10 Ω, CL = 100 pF
−2
RL = 499 Ω
VS = 5 V
−3
10
100
Capacitive Load − MHz
Figure 61.
50
60
40
80
30
100
20
Phase
120
10
140
0
160
−10
10 k
180
100 k
1M
10 M
80
TA = −40°C
TA = 25°C
40
100 M
1G
f − Frequency − Hz
Figure 62.
Open-Loop Gain − dB
R(ISO) = 25 Ω, CL = 10 pF
Open-Loop Gain − dB
−0.5
20
Gain
60
75
70
TA = 85°C
65
60
55
50
2.5
3
3.5
4
4.5
Product Folder Link(s): THS4271-EP
5
Case Temperature − °C
Figure 63.
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
10 k
85
0
VS = 5 V
70
0
1
100
1k
RL − Load Resistance − Ω
Figure 58.
0.5
−2.5
10
5
Phase − °
VO − Output Voltage − V
60
10
In
1
100
25
100
Vn
10
I n − Current Noise − pA/
−60
100
Hz
−50
100
Gain = 2
RL = 150 Ω
VO = 2 VPP
VS = 5 V
200 kHz Tone Spacing
Vn − Voltage Noise − nV/
Gain = 2
RL = 150 Ω
VO = 2 VPP
VS = 5 V
200 kHz Tone Spacing
f − Frequency − MHz
Frequency Response − dB
VOLTAGE AND CURRENT NOISE
vs
FREQUENCY
45
−40
Third-Order Output Intersept Point − dBm
Third-Order Intermodulation Distortion − dBc
THIRD-ORDER INTERMODULATION
DISTORTION
vs
FREQUENCY
17
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
TYPICAL CHARACTERISTICS: 5 V (continued)
REJECTION RATIOS
vs
CASE TEMPERATURE
100
120
VS = 5 V
90
PSRR+
70
PSRR−
60
CMRR
50
PSRR+
100
PSRR−
Rejection Ratios − dB
40
30
80
60
CMMR
40
20
20
VS = 5 V
10
0
10 k
100 k
1M
10 M
f − Frequency − Hz
0
−40−30−20−100 10 20 30 40 50 60 70 80 90
100 M
80
70
60
50
40
30
20
10
0
0
1
2
3
4
5
Input Common-Mode Voltage Range − V
Figure 65.
Figure 66.
INPUT OFFSET VOLTAGE
vs
CASE TEMPERATURE
INPUT BIAS AND OFFSET
CURRENT vs
CASE TEMPERATURE
SMALL-SIGNAL TRANSIENT
RESPONSE
8
2
1
5
1.14
4
1.13
IIB+
3
1.12
2
1.11
1
1.1
Figure 67.
LARGE-SIGNAL TRANSIENT
RESPONSE
1.5
Single-Ended Output Voltage − V
Gain = −1
RL = 499 Ω
Rf = 249 Ω
tr/tf = 300 ps
VS = 5 V
−0.5
−1
0
1
2
3 4
5
6
7
8 9
10 11
t − Time − ns
Figure 70.
Gain = −1
RL = 499 Ω
Rf = 249 Ω
tr/tf = 300 ps
VS = 5 V
−0.1
−0.2
−0.3
0
4
6
8
10
12
14
16
t − Time − ns
OVERDRIVE RECOVERY
CLOSED-LOOP OUTPUT
IMPEDANCE vs
FREQUENCY
1000
1.5
VS = 5 V
2
1
1
0.5
0
0
−1
−0.5
−2
−1
−1.5
0
2
Figure 69.
−3
−1.5
0
Figure 68.
3
0
0.1
TC − Case Temperature − °C
TC − Case Temperature − °C
0.5
0.2
1.09
0
−40−30−20−10 0 10 20 30 40 50 60 70 80 90
0
−40−30−20−10 0 10 20 30 40 50 60 70 80 90
1
1.15
VO − Output Voltage − V
VS = ±5 V
6
IOS
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t − Time − µs
Figure 71.
Submit Documentation Feedback
Closed-Loop Output Impedance − Ω
VS = 5 V
3
1.16
IIB−
I OS − Input Offset Current − µ A
I IB − Input Bias Current − µ A
7
4
0.3
1.17
VS = 5 V
VOS − Input Offset Voltage − mV
VS = 5 V
90
Figure 64.
5
VO − Output Voltage − V
100
Case Temperature − °C
VI − Input Voltage − V
Rejection Ratios − dB
80
18
COMMON-MODE REJECTION RATIO
vs
INPUT COMMON-MODE RANGE
CMRR − Common-Mode Rejection Ratio − dB
REJECTION RATIOS
vs
FREQUENCY
100
Gain = 1
RL = 499 Ω
VIN = 1 dBm
VS = 5 V
10
1
0.1
0.01
0.001
100 k
1M
10 M
100 M
1G
f − Frequency − Hz
Figure 72.
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
TYPICAL CHARACTERISTICS: 5 V (continued)
POWER-DOWN OUTPUT
IMPEDANCE vs
FREQUENCY
1M
TA = 85°C
1000
TA = 25°C
800
TA = −40°C
600
400
200
0
2.5
3
3.5
4
4.5
5
VS − Supply Voltage − ±V
Figure 73.
6.5
45
Input
Gain = 1
RL = 150 Ω
PIN = −1 dBm
VS = 5 V
I O− Output Current Level − mV
Power-down Output Impedance − Ω
Power-down Quiescent Current − µ A
1200
TURN-ON AND TURN-OFF TIME vs
DELAY TIME
10 k
100
40
5
35
3.5
30
2
25
0.5
20
−1
15
10
0.5
Gain = −1
RL = 150 Ω
VS = 5 V
0
1
100 k
0
10 M
100 M
1M
f − Frequency − Hz
1G
Figure 74.
10
20
30
40
50
60
Product Folder Link(s): THS4271-EP
70
t − Time − µs
Figure 75.
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
V I − Input Voltage Level − V
POWER-DOWN QUIESCENT
CURRENT vs
SUPPLY VOLTAGE
19
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
APPLICATION INFORMATION
Die Temperature = PDISS × qJA + TA
MAXIMUM DIE TEMPERATURE TO PREVENT
OSCILLATION
The THS4271 may have low-level oscillation when
the die temperature (also called junction temperature)
exceeds +60°C and is not recommended for new
designs.
The oscillation is a result of the internal design of the
bias circuit, and external configuration is not expected
to mitigate or reduce the problem. This problem
occurs randomly because of normal process
variations and normal testing cannot identify problem
units.
The die temperature depends on the power
dissipation and the thermal resistance of the device.
Where:
PDISS = (VS+– VS–) × (IQ + ILOAD) – (VOUT × ILOAD)
Table 1 shows the estimated the maximum ambient
temperature (TA max) in degrees Celsius for each
package option of the THS4271 using the thermal
dissipation rating given in the Dissipation Ratings
table for a JEDEC standard High-K test PCB. For
each case shown, RL = 499 Ω to ground and the
quiescent current = 27 mA (the maximum over the
0°C to +70°C temperature range). The last entry for
each package option (shaded cells) lists the
worst-case scenario where the power supply is
single-supply 10 V and ground and the output voltage
is 5 V DC.
space
The die temperature can be approximated with the
following formula:
Table 1. Estimated Maximum Ambient Temperature Per Package Option
PACKAGE
DEVICE
VS+
VS–
PowerPad™ MSOP
Worst Case
20
qJA
0V
THS4271DGN
THS4271DGNR
VOUT
44.2°C
2 VPP
5V
10 V
–5 V
0V
4 VPP
TA max
43.5°C
58.4°C/W
42.8°C
6 VPP
42.3°C
8 VPP
41.9°C
5 DC
41.3°C
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
HIGH-SPEED OPERATIONAL AMPLIFIERS
WIDEBAND, NONINVERTING OPERATION
The THS4271 operational amplifier sets new
performance levels, combining low distortion, high
slew rates, low noise, and a unity-gain bandwidth in
excess of 1 GHz. To achieve the full performance of
the amplifier, careful attention must be paid to
printed-circuit board (PCB) layout and component
selection.
The THS4271 is a unity gain stable, 1.4-GHz
voltage-feedback operational amplifier, with and
without power-down capability, designed to operate
from a single 5-V to 15-V power supply.
Applications Section Contents
• Wideband, Noninverting Operation
• Wideband, Inverting Gain Operation
• Single-Supply Operation
• Saving Power with Power-Down Functionality and
Setting Threshold Levels with the Reference Pin
• Power Supply Decoupling Techniques and
Recommendations
• Using the THS4271 as a DAC Output Buffer
• Driving an ADC With the THS4271
• Active Filtering With the THS4271
• Building a Low-Noise Receiver with the THS4271
• Linearity:
Definitions,
Terminology,
Circuit
Techniques and Design Tradeoffs
• An Abbreviated Analysis of Noise in Amplifiers
• Driving Capacitive Loads
• Printed Circuit Board Layout Techniques for
Optimal Performance
• Power Dissipation and Thermal Considerations
• Performance vs Package Options
• Evaluation
Fixtures,
Spice
Models,
and
Applications Support
• Additional Reference Material
• Mechanical Package Drawings
space
Figure 76 is the noninverting gain configuration of
2 V/V used to demonstrate the typical performance
curves. Most of the curves were characterized using
signal sources with 50-Ω source impedance, and with
measurement equipment presenting a 50-Ω load
impedance. In Figure 76, the 49.9-Ω shunt resistor at
the VIN terminal matches the source impedance of the
test generator. The total 499-Ω load at the output,
combined with the 498-Ω total feedback network load,
presents the THS4271 with an effective output load of
249 Ω for the circuit of Figure 76.
Voltage feedback amplifiers, unlike current feedback
designs, can use a wide range of resistors values to
set their gain with minimal impact on their stability
and frequency response. Larger-valued resistors
decrease the loading effect of the feedback network
on the output of the amplifier, but this enhancement
comes at the expense of additional noise and
potentially lower bandwidth. Feedback resistor values
between 249 Ω and 1 kΩ are recommended for most
situations.
5 V +V
S
+
100 pF
50 Ω Source
0.1 µF 6.8 µF
+
VI
VO
THS4271
49.9 Ω
_
Rf
249 Ω
499 Ω
249 Ω
Rg
0.1 µF 6.8 µF
space
100 pF
space
space
−5 V
+
−VS
Figure 76. Wideband, Noninverting
Gain Configuration
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
21
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
WIDEBAND, INVERTING GAIN OPERATION
Since the THS4271 is a general-purpose, wideband
voltage-feedback
amplifiers,
several
familiar
operational amplifier applications circuits are
available to the designer. Figure 77 shows a typical
inverting configuration where the input and output
impedances and noise gain from Figure 76 are
retained in an inverting circuit configuration. Inverting
operation is one of the more common requirements
and offers several performance benefits. The
inverting configuration shows improved slew rates
and distortion due to the pseudo-static voltage
maintained on the inverting input.
5 V +V
S
+
100 pF
0.1 µF
6.8 µF
+
RT
130 Ω
CT
0.1 µF
VO
THS4271
_
499 Ω
50 Ω Source
VI
Rg
Rf
249 Ω
RM
61.9 Ω
249 Ω
0.1 µF
100 pF
−5 V
6.8 µF
+
−VS
Figure 77. Wideband, Inverting Gain
Configuration
In the inverting configuration, some key design
considerations must be noted. One is that the gain
resistor (Rg) becomes part of the signal channel input
impedance. If the input impedance matching is
desired (which is beneficial whenever the signal is
coupled through a cable, twisted pair, long PCB
trace, or other transmission line conductors), Rg may
be set equal to the required termination value and Rf
adjusted to give the desired gain. However, care
22
must be taken when dealing with low inverting gains,
as the resulting feedback resistor value can present a
significant load to the amplifier output. For an
inverting gain of 2, setting Rg to 49.9 Ω for input
matching eliminates the need for RM but requires a
100-Ω feedback resistor. This has an advantage of
the noise gain becoming equal to 2 for a 50-Ω source
impedance—the same as the noninverting circuit in
Figure 76. However, the amplifier output now sees
the 100-Ω feedback resistor in parallel with the
external load. To eliminate this excessive loading, it is
preferable to increase both Rg and Rf, values, as
shown in Figure 77, and then achieve the input
matching impedance with a third resistor (RM) to
ground. The total input impedance becomes the
parallel combination of Rg and RM.
The next major consideration is that the signal source
impedance becomes part of the noise gain equation
and hence influences the bandwidth. For example,
the RM value combines in parallel with the external
50-Ω source impedance (at high frequencies),
yielding an effective source impedance of 50 Ω ||
61.9Ω = 27.7 Ω. This impedance is then added in
series with Rg for calculating the noise gain. The
result is 1.9 for Figure 77, as opposed to the 1.8 if RM
is eliminated. The bandwidth is lower for the gain of
–2 circuit, Figure 77 (NG = +1.9), than for the gain of
+2 circuit in Figure 76.
The last major consideration in inverting amplifier
design is setting the bias current cancellation resistor
on the noninverting input. If the resistance is set
equal to the total dc resistance looking out of the
inverting terminal, the output dc error, due to the input
bias currents, is reduced to (input offset current)
multiplied by Rf in Figure 77, the dc source
impedance looking out of the inverting terminal is
249 Ω || (249Ω + 27.7 Ω) = 130 Ω. To reduce the
additional high-frequency noise introduced by the
resistor at the noninverting input, and power-supply
feedback, RT is bypassed with a capacitor to ground.
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
SINGLE-SUPPLY OPERATION
5V
The THS4271 is designed to operate from a single
5-V to 15-V power supply. When operating from a
single power supply, care must be taken to ensure
the input signal and amplifier are biased appropriately
to allow for the maximum output voltage swing. The
circuits shown in Figure 78 demonstrate methods to
configure an amplifier in a manner conducive for
single-supply operation.
+
VCM
THS4271
_
50 Ω
(1:4 Ω)
Source 1:2
100 Ω
-5 V
249 Ω
24.9 Ω
ADS5422
22 pF
14-Bit, 62 Msps
22 pF
+VS
100 Ω
24.9 Ω
50 Ω Source
249 Ω
+
VI
49.9 Ω
RT
THS4271
_
VO
_
499 Ω
+VS
2
THS4271
Rg
249 Ω
+VS
2
249 Ω
Figure 79. A Linear, Low-Noise, High-Gain
ADC Preamplifier
Rf
249 Ω
VS
50 Ω Source
Rg
VI
61.9 Ω
+VS
2
249 Ω
RT
_
THS4271
+
+
VCM
Rf
VO
499 Ω
+VS
2
The second circuit depicts single-ended ADC drive.
While not recommended for optimum performance
using converters with differential inputs, satisfactory
performance can sometimes be achieved with
single-ended input drive. An example circuit is shown
here for reference.
50 Ω
Source
+5 V
+
VI
Figure 78. DC-Coupled Single-Supply Operation
49.9 Ω
RT
_
-5 V
APPLICATION CIRCUITS
RISO
0.1 µF
THS4271
16.5 Ω
68 pf
12-Bit,
Rf
The THS4271 can be used to drive high-performance
analog-to-digital converters. Two example circuits are
presented below.
The first circuit uses a wideband transformer to
convert a single-ended input signal into a differential
signal. The differential signal is then amplified and
filtered by two THS4271 amplifiers. This circuit
provides low intermodulation distortion, suppressed
even-order distortion, 14 dB of voltage gain, a 50-Ω
input impedance, and a single-pole filter at 100 MHz.
For applications without signal content at dc, this
method of driving ADCs can be very useful. Where dc
information content is required, the THS4500 family
of fully differential amplifiers may be applicable.
249 Ω
Rg
ADS807
CM 53 Msps
IN
1.82 kΩ
Driving an Analog-to-Digital Converter With the
THS4271
IN
0.1 µF
249 Ω
For best performance, high-speed ADCs should be driven
differentially. See the THS4500 family of devices for more
information.
Figure 80. Driving an ADC With a
Single-Ended Input
Using the THS4271 as a DAC Output Buffer
Two example circuits are presented here showing the
THS4271 buffering the output of a digital-to-analog
converter. The first circuit performs a differential to
single-ended
conversion
with
the
THS4271
configured as a difference amplifier. The difference
amplifier can double as the termination mechanism
for the DAC outputs as well.
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
23
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
Active Filtering With the THS4271
3.3 V 3.3 V
100 Ω
249 Ω
100 Ω
+5 V
249 Ω
DAC5675
14-Bit,
400 MSps
_
124 Ω
49.9 Ω
RF
THS4271
+
249 Ω
High-frequency active filtering with the THS4271 is
achievable due to the amplifier high slew-rate, wide
bandwidth, and voltage-feedback architecture.
Several options are available for high-pass, low-pass,
bandpass, and bandstop filters of varying orders. A
simple two-pole low pass filter is presented here as
an example, with two poles at 100 MHz.
LO
-5 V
249 Ω
6.8
pF
50 Ω Source
249 Ω
Figure 81. Differential to Single-Ended
Conversion of a High-Speed DAC Output
VI
249 Ω
61.9 Ω
5V
_
THS4271
For cases where a differential signaling path is
desirable, a pair of THS4271 amplifiers can be used
as output buffers. The circuit depicts differential drive
into a mixer IF inputs, coupled with additional signal
gain and filtering.
+
49.9 Ω
VO
33 pF
−5 V
Figure 83. A Two-Pole Active Filter With Two
Poles Between 90 MHz and 100 MHz
THS4271
+
3.3 V 3.3 V
_
100 Ω
100 Ω
CF
1 nF
1 nF
IF+
DAC5675
14-Bit,
400 MSps
249 Ω
100 Ω
249 Ω
249 Ω
49.9 Ω
249 Ω
49.9 Ω
RF(out)
IF1 nF
1 nF
_
CF
+
THS4271
Figure 82. Differential Mixer Drive Circuit
Using the DAC5675 and the THS4271
24
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
A Low-Noise Receiver With the THS4271
space
A combination of two THS4271 amplifiers can create
a high-speed, low-distortion, low-noise differential
receiver circuit as depicted in Figure 84. With both
amplifiers operating in the noninverting mode of
operation, the circuit presents a high load impedance
to the source. The designer has the option of
controlling the impedance through termination
resistors if a matched termination impedance is
desired.
100 Ω
VI+
+
49.9 Ω
VO+
_
249 Ω
499 Ω
100 Ω
249 Ω
_
VI−
49.9 Ω
+
Figure 84. A High Input Impedance, Low-Noise,
Differential Receiver
A modification on this circuit to include a difference
amplifier turns this circuit into a high-speed
instrumentation amplifier, as shown in Figure 85.
Equation 1 calculates the output voltage for this
circuit.
100 Ω
+
VI-
Rg2
Distortion Performance
The
THS4271
provides
excellent
distortion
performance into a 150-Ω load. Relative to alternative
solutions, it provides exceptional performance into
lighter loads, as well as exceptional performance on a
single 5-V supply. Generally, until the fundamental
signal reaches very high frequency or power levels,
the second harmonic dominates the total harmonic
distortion with a negligible third harmonic component.
Focusing then on the second harmonic, increasing
the load impedance improves distortion directly. The
total load includes the feedback network; in the
noninverting configuration (Figure 76) this is the sum
of Rf and Rg, while in the inverting configuration
(Figure 77), only Rf needs to be included in parallel
with the actual load.
LINEARITY: DEFINITIONS, TERMINOLOGY,
CIRCUIT TECHNIQUES, AND DESIGN
TRADEOFFS
VO−
100 Ω
THEORY AND GUIDELINES
Rf2
THS4271
_
The
THS4271
features
excellent
distortion
performance for monolithic operational amplifiers.
This section focuses on the fundamentals of
distortion, circuit techniques for reducing nonlinearity,
and methods for equating distortion of operational
amplifiers to desired linearity specifications in RF
receiver chains.
Amplifiers are generally thought of as linear devices.
The output of an amplifier is a linearly-scaled version
of the input signal applied to it. However, amplifier
transfer functions are nonlinear. Minimizing amplifier
nonlinearity is a primary design goal in many
applications.
Rf1
Rg1
_
100 Ω
_
Rf1
THS4271
+
49.9 Ω
VO
THS4271
Rg2
+
49.9 Ω
Rf2
VI+
Figure 85. A High-Speed Instrumentation
Amplifier
ǒ
Ǔ
ǒ Ǔ
2R f1
ǒV i)–V i–Ǔ R f2
VO + 1 1 )
2
Rg1
Rg2
(1)
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
25
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
Intercept points are specifications long used as key
design criteria in the RF communications world as a
metric for the intermodulation distortion performance
of a device in the signal chain (e.g., amplifiers,
mixers, etc.). Use of the intercept point, rather than
strictly the intermodulation distortion, allows simpler
system-level calculations. Intercept points, like noise
figures, can be easily cascaded back and forth
through a signal chain to determine the overall
receiver chain intermodulation distortion performance.
The relationship between intermodulation distortion
and intercept point is depicted in Figure 86 and
Figure 87.
PO
PO
Power
∆fc = fc - f1
∆fc = f2 - fc
IMD3 = PS - PO
PS
fc - 3∆f
f2
However, with an operational amplifier, the output
does not require termination as an RF amplifier
would. Because closed-loop amplifiers deliver signals
to their outputs regardless of the impedance present,
it is important to comprehend this when evaluating
the intercept point of an operational amplifier. The
THS4271 yields optimum distortion performance
when loaded with 150 Ω to 1 kΩ, very similar to the
input impedance of an analog-to-digital converter
over its input frequency band.
As a result, terminating the input of the ADC to 50Ω
can actually be detrimental to systems performance.
The discontinuity between open-loop, class-A
amplifiers and closed-loop, class-AB amplifiers
becomes apparent when comparing the intercept
points of the two types of devices. Equation 2 and
Equation 3 give the definition of an intercept point,
relative to the intermodulation distortion.
ŤIMD 3Ť
OIP 3 + P O )
where
2
(2)
PS
f1 fc
Due to the intercept point ease of use in system level
calculations for receiver chains, it has become the
specification of choice for guiding distortion-related
design decisions. Traditionally, these systems use
primarily class-A, single-ended RF amplifiers as gain
blocks. These RF amplifiers are typically designed to
operate in a 50-Ω environment. Giving intercept
points in dBm, implies an associated impedance
(50 Ω).
fc + 3∆f
ǒ
f - Frequency - MHz
ǒ
Figure 86.
P O + 10 log
Ǔ
Ǔ
V 2P
2RL 0.001
NOTE: PO is the output power of a single tone, RL
is the load resistance, and VP is the peak
voltage for a single tone.
(3)
POUT
(dBm)
1X
NOISE ANALYSIS
OIP3
PO
IIP3
IMD3
3X
PIN
(dBm)
High slew rate, unity gain stable, voltage-feedback
operational amplifiers usually achieve the slew rate at
the expense of a higher input noise voltage. The
3-nV/√Hz input voltage noise for the THS4271 is,
however, much lower than comparable amplifiers.
The input-referred voltage noise, and the two
input-referred current noise terms (3 pA/√Hz),
combine to give low output noise under a wide variety
of operating conditions. Figure 88 shows the amplifier
noise analysis model with all the noise terms
included. In this model, all noise terms are taken to
be noise voltage or current density terms in either
nV/√Hz or pA/√Hz.
PS
Figure 87.
26
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
THS4271/THS4275
ENI
+
RS
IBN
ERS
EO
_
4kTRS
ERF
Rf
Rg
4kT
Rg
IBI
4kTRf
4kT = 1.6E-20J
at 290K
Figure 88. Noise Analysis Model
The total output spot noise voltage can be computed
as the square of all square output noise voltage
contributors. Equation 4 shows the general form for
the output noise voltage using the terms shown in
Figure 88:
EO +
Ǹǒ
2
Ǔ
2
ENI 2 ) ǒIBNRSǓ ) 4kTR S NG 2 ) ǒIBIRfǓ ) 4kTRfNG
(4)
Dividing this expression by the noise gain
[NG=(1+ Rf/Rg)] gives the equivalent input-referred
spot noise voltage at the noninverting input, as shown
in Equation 5:
EO +
Ǹ
E NI
2
2
ǒ Ǔ ) 4kTR
NG
2
I R
) ǒI BNRSǓ ) 4kTR S ) BI f
NG
f
additional pole in the signal path that can decrease
the phase margin. When the primary considerations
are frequency response flatness, pulse response
fidelity, or distortion, the simplest and most effective
solution is to isolate the capacitive load from the
feedback loop by inserting a series isolation resistor
between the amplifier output and the capacitive load.
This does not eliminate the pole from the loop
response, but rather shifts it and adds a zero at a
higher frequency. The additional zero acts to cancel
the phase lag from the capacitive load pole, thus
increasing the phase margin and improving stability.
The Typical Characteristics show the recommended
isolation resistor vs capacitive load and the resulting
frequency response at the load. Parasitic capacitive
loads greater than 2 pF can begin to degrade the
performance of the THS4271. Long PCB traces,
unmatched cables, and connections to multiple
devices can easily cause this value to be exceeded.
Always consider this effect carefully, and add the
recommended series resistor as close as possible to
the THS4271 output pin (see the Board Layout
Guidelines section).
The criterion for setting this R(ISO) resistor is a
maximum bandwidth, flat frequency response at the
load. For a gain of +2, the frequency response at the
output pin is already slightly peaked without the
capacitive load, requiring relatively high values of
R(ISO) to flatten the response at the load. Increasing
the noise gain also reduces the peaking.
FREQUENCY RESPONSE
vs
CAPACITIVE LOAD
(5)
Driving Capacitive Loads
One of the most demanding, and yet very common,
load conditions for an op amp is capacitive loading.
Often, the capacitive load is the input of an A/D
converter, including additional external capacitance,
which may be recommended to improve A/D linearity.
A high-speed, high open-loop gain amplifier like the
THS4271 can be very susceptible to decreased
stability and closed-loop response peaking when a
capacitive load is placed directly on the output pin.
When the amplifier open-loop output resistance is
considered, this capacitive load introduces an
0.5
0
Normalized Gain - dB
Evaluation of these two equations for the circuit and
component values shown in Figure 76 will give a total
output spot noise voltage of 12.2 nV/√Hz and a total
equivalent input spot noise voltage of 6.2 nV/√Hz.
This includes the noise added by the resistors. This
total input-referred spot noise voltage is not much
higher than the 3-nV/√Hz specification for the
amplifier voltage noise alone.
-0.5
-1
-1.5
R(ISO) = 25 Ω CL = 10 pF
R(ISO) = 15 Ω CL = 100 pF
R(ISO) = 10 Ω CL = 50 pF
-2
-2.5
-3
1M
RL = 499 Ω
VS =±5 V
10 M
100 M
f - Frequency - Hz
Figure 89. Isolation Resistor Diagram
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
27
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
BOARD LAYOUT GUIDELINES
Achieving
optimum
performance
with
a
high-frequency amplifier like the THS4271 requires
careful attention to board layout parasitics and
external component types.
Recommendations that optimize performance include:
1. Minimize parasitic capacitance to any ac
ground for all of the signal I/O pins. Parasitic
capacitance on the output and inverting input pins
can cause instability: on the noninverting input, it
can react with the source impedance to cause
unintentional band limiting. To reduce unwanted
capacitance, a window around the signal I/O pins
should be opened in all of the ground and power
planes around those pins. Otherwise, ground and
power planes should be unbroken elsewhere on
the board.
2. Minimize the distance (< 0.25”) from the
power supply pins to high frequency 0.1-mF
de-coupling capacitors. At the device pins, the
ground and power plane layout should not be in
close proximity to the signal I/O pins. Avoid
narrow power and ground traces to minimize
inductance between the pins and the decoupling
capacitors. The power supply connections should
always be decoupled with these capacitors.
Larger (2.2-mF to 6.8-mF) decoupling capacitors,
effective at lower frequency, should also be used
on the main supply pins. These may be placed
somewhat farther from the device and may be
shared among several devices in the same area
of the PCB.
3. Careful selection and placement of external
components preserves the high frequency
performance of the THS4271. Resistors should
be a very low reactance type. Surface-mount
resistors work best and allow a tighter overall
layout. Metal-film and carbon composition,
axially-leaded resistors can also provide good
high frequency performance. Again, keep their
leads and PC board trace length as short as
possible. Never use wire-wound type resistors in
a high frequency application. Since the output pin
and inverting input pin are the most sensitive to
parasitic capacitance, always position the
feedback and series output resistor, if any, as
close as possible to the output pin. Other network
components,
such
as
noninverting
input-termination resistors, should also be placed
close to the package. Where double-side
component mounting is allowed, place the
feedback resistor directly under the package on
the other side of the board between the output
and inverting input pins. Even with a low parasitic
capacitance shunting the external resistors,
excessively high resistor values can create
significant time constants that can degrade
28
performance.
Good
axial
metal-film
or
surface-mount resistors have approximately 0.2
pF in shunt with the resistor. For resistor values >
2 kΩ, this parasitic capacitance can add a pole
and/or a zero below 400-MHz that can effect
circuit operation. Keep resistor values as low as
possible,
consistent
with
load
driving
considerations. A good starting point for design is
to set the Rf to 249-Ω for low-gain, noninverting
applications. Doing this automatically keeps the
resistor noise terms low, and minimizes the effect
of their parasitic capacitance.
4. Connections to other wideband devices on
the board may be made with short direct
traces or through onboard transmission lines.
For short connections, consider the trace and the
input to the next device as a lumped capacitive
load. Relatively wide traces (50 mils to 100 mils)
should be used, preferably with ground and
power planes opened up around them. Estimate
the total capacitive load and set RISO from the
plot of recommended RISO vs capacitive load.
Low parasitic capacitive loads (<4 pF) may not
need an R(ISO), since the THS4271 is nominally
compensated to operate with a 2-pF parasitic
load. Higher parasitic capacitive loads without an
R(ISO) are allowed as the signal gain increases
(increasing the unloaded phase margin). If a long
trace is required, and the 6-dB signal loss
intrinsic to a doubly-terminated transmission line
is acceptable, implement a matched impedance
transmission line using microstrip or stripline
techniques (consult an ECL design handbook for
microstrip and stripline layout techniques). A
50-Ω environment is normally not necessary
onboard, and in fact, a higher impedance
environment improves distortion as shown in the
distortion versus load plots. With a characteristic
board trace impedance defined based on board
material and trace dimensions, a matching series
resistor into the trace from the output of the
THS4271 is used as well as a terminating shunt
resistor at the input of the destination device.
Remember also that the terminating impedance is
the parallel combination of the shunt resistor and
the input impedance of the destination device:
this total effective impedance should be set to
match the trace impedance. If the 6-dB
attenuation of a doubly terminated transmission
line is unacceptable, a long trace can be
series-terminated at the source end only. Treat
the trace as a capacitive load in this case and set
the series resistor value as shown in the plot of
R(ISO) vs capacitive load. This does not preserve
signal integrity or a doubly-terminated line. If the
input impedance of the destination device is low,
there is some signal attenuation due to the
voltage divider formed by the series output into
the terminating impedance.
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
5. Socketing a high speed part like the THS4271
is not recommended. The additional lead length
and pin-to-pin capacitance introduced by the
socket can create a troublesome parasitic
network which can make it almost impossible to
achieve a smooth, stable frequency response.
Best results are obtained by soldering the
THS4271 onto the board.
PowerPAD™ DESIGN CONSIDERATIONS
The THS4271 is available in a thermally-enhanced
PowerPAD family of packages. These packages are
constructed using a downset leadframe upon which
the die is mounted [see Figure 90(a) and
Figure 90(b)]. This arrangement results in the lead
frame being exposed as a thermal pad on the
underside of the package [see Figure 90(c)]. Because
this thermal pad has direct thermal contact with the
die, excellent thermal performance can be achieved
by providing a good thermal path away from the
thermal pad.
The PowerPAD package allows both assembly and
thermal management in one manufacturing operation.
During the surface-mount solder operation (when the
leads are being soldered), the thermal pad can also
be soldered to a copper area underneath the
package. Through the use of thermal paths within this
copper area, heat can be conducted away from the
package into either a ground plane or other heat
dissipating device.
The PowerPAD package represents a breakthrough
in combining the small area and ease of assembly of
surface mount with the heretofore awkward
mechanical methods of heatsinking.
DIE
Side View (a)
Thermal
Pad
DIE
End View (b)
Bottom View (c)
Figure 90. Views of Thermally
Enhanced Package
Although there are many ways to properly heatsink
the PowerPAD package, the following steps illustrate
the recommended approach.
space
space
space
space
PowerPAD PCB LAYOUT CONSIDERATIONS
1. Prepare the PCB with a top side etch pattern as
shown in Figure 91. There should be etch for the
leads as well as etch for the thermal pad.
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
Single or Dual
68 Mils x 70 Mils
(Via diameter = 13mils)
Figure 91. PowerPAD PCB Etch
and Via Pattern
2. Place five holes in the area of the thermal pad.
The holes should be 13 mils in diameter. Keep
them small so that solder wicking through the
holes is not a problem during reflow.
3. Additional vias may be placed anywhere along
the thermal plane outside of the thermal pad
area. They help dissipate the heat generated by
the THS4271 IC. These additional vias may be
larger than the 13-mil diameter vias directly under
the thermal pad. They can be larger because
they are not in the thermal pad area to be
soldered, so that wicking is not a problem.
4. Connect all holes to the internal ground plane.
5. When connecting these holes to the ground
plane, do not use the typical web or spoke via
connection methodology. Web connections have
a high thermal resistance connection that is
useful for slowing the heat transfer during
soldering operations. This resistance makes the
soldering of vias that have plane connections
easier. In this application, however, low thermal
resistance is desired for the most efficient heat
transfer. Therefore, the holes under the THS4271
PowerPAD
package
should
make
their
connection to the internal ground plane, with a
complete
connection
around
the
entire
circumference of the plated-through hole.
6. The top-side solder mask should leave the
terminals of the package and the thermal pad
area with its five holes exposed. The bottom-side
solder mask should cover the five holes of the
thermal pad area. This prevents solder from
being pulled away from the thermal pad area
during the reflow process.
7. Apply solder paste to the exposed thermal pad
area and all of the IC terminals.
8. With these preparatory steps in place, the IC is
simply placed in position and run through the
solder reflow operation as any standard
surface-mount component. This results in a part
that is properly installed.
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
29
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
where:
PD = Maximum power dissipation of THS4271 (watts)
TMAX = Absolute maximum junction temperature (150°C)
TA = Free-ambient temperature (°C)
θJA = θJC + θCA
θJC = Thermal coefficient from junction to the case
θCA = Thermal coefficient from the case to ambient air
(°C/W).
(6)
The next consideration is the package constraints.
The two sources of heat within an amplifier are
quiescent power and output power. The designer
should never forget about the quiescent heat
generated within the device, especially multi-amplifier
devices. Because these devices have linear output
stages (Class AB), most of the heat dissipation is at
low output voltages with high output currents.
The other key factor when dealing with power
dissipation is how the devices are mounted on the
PCB. The PowerPAD devices are extremely useful
for heat dissipation. But, the device should always be
soldered to a copper plane to fully use the heat
dissipation properties of the PowerPAD. The SOIC
package, on the other hand, is highly dependent on
how it is mounted on the PCB. As more trace and
copper area is placed around the device,q JA
decreases and the heat dissipation capability
increases. For a single package, the sum of the RMS
output currents and voltages should be used to
choose the proper package.
THERMAL ANALYSIS
The THS4271 device does not incorporate automatic
thermal shutoff protection, so the designer must take
care to ensure that the design does not violate the
absolute maximum junction temperature of the
device. Failure may result if the absolute maximum
junction temperature of +150° C is exceeded.
The thermal characteristics of the device are dictated
by the package and the PCB. Maximum power
dissipation for a given package can be calculated
using the following formula.
Tmax–T A
P Dmax +
q JA
where:
PDmax is the maximum power dissipation in the amplifier (W).
Tmax is the absolute maximum junction temperature (°C).
TA is the ambient temperature (°C).
θJA = θJC + θCA
θJC is the thermal coefficient from the silicon junctions to the
case (°C/W).
θCA is the thermal coefficient from the case to ambient air
(°C/W).
(7)
For systems where heat dissipation is more critical,
the THS4271 is offered in an 8-pin MSOP with
PowerPAD. The thermal coefficient for the MSOP
PowerPAD package is substantially improved over
the traditional SOIC. Maximum power dissipation
levels are depicted in the graph for the two packages.
The data for the DGN package assumes a board
layout that follows the PowerPAD layout guidelines
referenced above and detailed in the PowerPAD
application notes in the Additional Reference Material
section at the end of the data sheet.
3.5
PD − Maximum Power Dissipation − W
For a given qJA, the maximum power dissipation is
shown in Figure 92 and is calculated by the
Equation 6:
Tmax * T A
PD +
q JA
8-Pin DGN Package
3
2.5
2
8-Pin D Package
1.5
1
0.5
0
−40
−20
0
20
40
60
TA − Ambient Temperature − °C
80
θJA = 170°C/W for 8-Pin SOIC (D)
θJA = 58.4°C/W for 8-Pin MSOP (DGN)
TJ = 150°C, No Airflow
Figure 92. Maximum Power Dissipation
vs Ambient Temperature
When determining whether or not the device satisfies
the maximum power dissipation requirement, it is
important to consider not only quiescent power
dissipation, but also dynamic power dissipation. Often
maximum power is difficult to quantify because the
signal pattern is inconsistent, but an estimate of the
RMS power dissipation can provide visibility into a
possible problem.
30
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
Performance vs Package Options
The THS4271 is offered in different package options.
However, performance may be limited due to
package parasitics and lead inductance in some
packages. In order to achieve maximum performance
of the THS4271, Texas Instruments recommends
using the leadless MSOP (DRB) or MSOP (DGN)
packages, in addition to proper high-speed PCB
layout. Figure 93 shows the unity gain frequency
response of the THS4271 using the leadless MSOP,
MSOP, and SOIC package for comparison. Using the
THS4271 in a unity gain with the SOIC package may
result in the device becoming unstable. In higher gain
configurations, this effect is mitigated by the reduced
bandwidth. As such, the SOIC is suitable for
application with gains equal to or higher than +2 V/V
or (–1 V/V).
20
18
_
Normalized Gain − dB
16
SOIC, Rf = 0 Ω
Rf
+
150 Ω
49.9 Ω
14
12
SOIC,
Rf = 100 Ω
The THS4271 EVM board shown in Figure 97
through Figure 100 is designed to accommodate
different gain configurations. Its default component
values are set to give a gain of 2. The EVM can be
configured in a gain of +1; however, it is strongly not
recommended. Evaluating the THS4271 in a gain of 1
using this EVM may cause the part to become
unstable. The stability of the device can be controlled
by adding a large resistor in the feedback path, the
performance is sacrificed. Figure 94 shows the
small-signal frequency response of the THS4271 with
different feedback resistors in the feedback path.
Figure 95 is the small frequency response of the
THS4271 using the gain of 1 EVM.
17
+
Rf = 50 Ω
Rf
150 Ω
49.9 Ω
Rf = 0 Ω
Rf = 100 Ω
7
Rf = 150 Ω
5
3
1
−1
VIN = 100 mVPP
VS = ±5 V
−5
10M
100M
f − Frequency − Hz
−3
SOIC, Rf = 200 Ω
8
4
_
13
9
10
6
15
11
Small Signal Gain − dB
DESIGN TOOLS
Leadless MSOP, &
MSOP Rf = 0 Ω
1G
2
0
−2
−4
Figure 94. Frequency Response vs Feedback
Resistor Using the EDGE #6439527 EVM
VIN = 100 mVPP
VS =±5 V
10 M
100 M
1G
f − Frequency − Hz
4
Evaluation Fixtures, Spice Models, and
Applications Support
Texas Instruments is committed to providing its
customers with the highest quality of applications
support. To support this goal, evaluation boards have
been developed for the THS4271 operational
amplifier. Three evaluation boards are available: one
THS4271, both are configurable for different gains,
and a third for a gain of +1. These boards are easy to
use, allowing for straightforward evaluation of the
device. These evaluation boards can be ordered
through the Texas Instruments web site, www.ti.com,
or through your local Texas Instruments sales
representative. Schematics for the evaluation boards
are shown below.
3
Small Signal Gain − dB
Figure 93. Effects of Unity Gain Frequency
Response for DIfferential Packages
_
+
2
150 Ω
49.9 Ω
1
0
−1
−2
−3
Gain = 1
RL = 150 Ω
VO = 100 mVPP
VS = ±5 V
−4
100 k
1M
10 M
100 M
f − Frequency − Hz
1G
10 G
Figure 95. Frequency Response
Using the EDGE #6443547 EVM
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
31
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
The peaking in the frequency response is due to the
lead inductance in the feedback path. Each pad and
trace on a PCB has an inductance associated with it,
which in conjunction with the inductance associated
with the package may cause peaking in the frequency
response, causing the device to become unstable.
In order to achieve the maximum performance of the
device, PCB layout is very critical. Texas Instruments
has developed an EVM for the evaluation of the
THS4271 in a gain of 1. The EVM is shown in
Figure 102 through Figure 105. This EVM is designed
to minimize peaking in the unity gain configuration.
Minimizing the inductance in the feedback path is
critical for reducing the peaking of the frequency
response in unity gain. The recommended maximum
inductance allowed in the feedback path is 4 nH. This
can be calculated by using Equation 8.
L(nH) + Kȏ ln 2ȏ ) 0.223 W ) T ) 0.5
ȏ
W)T
ƪ
R8
C8
R9
R5
Vs −
Vs+
7 8
2 _
R3
J1
Vin −
U1
R6
6
J4
Vout
3 +
R2
R7
4 1
Vs −
J2
Vin+
J8
Power Down Ref
C7
R1
R4
ƫ
where:
W = Width of trace in inches.
ȏ = Length of the trace in inches.
T = Thickness of the trace in inches.
K = 5.08 for dimensions in inches, and K = 2 for dimensions
in cm.
(8)
space
Vs+
J9
Power Down
J7
VS−
J6
GND
J5
VS+
TP1
FB1
FB2
VS−
C5
C6
VS+
C1
C2
+
+
C3
C4
space
space
32
Figure 96. THS4271 EVM
Circuit Configuration
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
Figure 97. THS4271 EVM
Board Layout (Top Layer)
Figure 99. THS4271 EVM Board
Layout (Third Layer, Power)
Figure 98. THS4271 EVM Board Layout
(Second Layer, Ground)
Figure 100. THS4271 EVM Board
Layout (Bottom Layer)
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
33
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
Vs+
7 8
2 _
U1
R6
6
J4
Vout
3 +
R7
4 1
J2
Vin+
Vs −
R4
J7
VS−
J6
GND
J5
VS+
TP1
FB1
FB2
VS−
C5
C6
VS+
C1
C2
+
+
C3
C4
Figure 101. THS4271 Unity Gain EVM
Circuit Configuration
Figure 103. THS4271 Unity Gain EVM Board
Layout (Second Layer, Ground)
Figure 102. THS4271 Unity Gain EVM
Board Layout (Top Layer)
Figure 104. THS4271 Unity Gain EVM Board
Layout (Third Layer, Power)
34
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
THS4271-EP
www.ti.com
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
Computer simulation of circuit performance using
SPICE is often useful when analyzing the
performance of analog circuits and systems. This is
particularly true for video and RF amplifier circuits
where parasitic capacitance and inductance can have
a major effect on circuit performance. A SPICE model
for the THS4271 is available through either the Texas
Instruments web site (www.ti.com) or as one model
on a disk from the Texas Instruments Product
Information Center (1-800-548-6132). The PIC is also
available for design assistance and detailed product
information at this number. These models do a good
job of predicting small-signal ac and transient
performance under a wide variety of operating
conditions. They are not intended to model the
distortion characteristics of the amplifier, nor do they
attempt to distinguish between the package types in
their
small-signal
ac
performance.
Detailed
information about what is and is not modeled is
contained in the model file itself.
ADDITIONAL REFERENCE MATERIALS
•
Figure 105. THS4271 Unity Gain
EVM Board Layout
•
PowerPAD Made Easy, application brief
(SLMA004)
PowerPAD
Thermally
Enhanced
Package,
technical brief (SLMA002)
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
35
THS4271-EP
SGLS270C – DECEMBER 2004 – REVISED APRIL 2010
www.ti.com
REVISION HISTORY
SCOPE: Update specs to document device oscillation characteristics as the temperature exceeds 60°C. This
documents the effort to reduce supply voltage range and reduce maximum junction temperature.
Changes from Revision B (July 2008) to Revision C
Page
•
Deleted THS4275-EP device ................................................................................................................................................ 1
•
Deleted D-8 package graphic ............................................................................................................................................... 1
•
Deleted "Power Down Functionality (THS4275)" and "Supply Voltage +12 V, +15 V" from FEATURES section ............... 1
•
Added "The THS4271 may…" paragraph to describe the device ocsilation characteristics and updated "THS4271
are low noise,…" to remove information pertaining to the THS4275 device within the DESCRIPTION section .................. 1
•
Deleted THS4275 devices, THS4271 D package devices and footnote (2) "Product Preview" from
PACKAGING/ORDERING INFORMATION .......................................................................................................................... 2
•
Added Maximum junction temperature to prevent oscillation to ABSOLUTE MAXIMUM RATINGS table .......................... 3
•
Deleted D (8 pin) package information and footnote (2) due to THS4275 reference from PACKAGE DISSIPATION
RATINGS section .................................................................................................................................................................. 3
•
Deleted operating free air temperature specifications in RECOMMENDED OPERATING CONDITIONS table ................. 4
•
Changed MAX specification vlaues in RECOMMENDED OPERATING CONDITIONS table ............................................. 4
•
Deleted THS4275 device and D package designator for THS4271 device in PIN ASSIGNMENTS section ....................... 4
•
Added footnote (1) "See application section…" to ELECTRICAL CHARACTERISTICS: VS = ±5 V section ....................... 5
•
Deleted Power Down Characteristics (THS4275 only) specifications to ELECTRICAL CHARACTERISTICS: VS = ±5
V section ............................................................................................................................................................................... 5
•
Added footnote (1) "See application section…" to ELECTRICAL CHARACTERISTICS: VS = 5 V section ......................... 7
•
Deleted Power Down Characteristics (THS4275 only) specifications to ELECTRICAL CHARACTERISTICS: VS = 5
V section ............................................................................................................................................................................... 7
•
Added MAXIMUM DIE TEMPERATURE TO PREVENT OSCILLATION section .............................................................. 20
•
Deleted all THS4275 references from HIGH-SPEED OPERATIONAL AMPLIFIERS section ........................................... 21
•
Deleted Saving Power With Power-Down Functionality… section due to THS4275 reference ......................................... 23
•
Deleted POWER DOWN REFERENCE PIN OPERATION section due to THS4275 reference ........................................ 23
•
Deleted POWER SUPPLY DECOUPLING TECHNIQUE AND RECOMMENDATION section due to THS4275
reference ............................................................................................................................................................................. 23
•
Deleted THS4275 reference from NOISE ANALYSIS section ........................................................................................... 26
•
Deleted THS4275 reference from PowerPAD™ DESIGN CONSIDERATIONS section .................................................... 29
•
Deleted THS4275 reference from DESIGN TOOLS section .............................................................................................. 31
•
Deleted THS4275 reference ............................................................................................................................................... 32
•
Deleted THS4275 reference from Figure 97 ...................................................................................................................... 33
•
Deleted THS4275 reference from Figure 98 ...................................................................................................................... 33
•
Deleted THS4275 reference from Figure 99 ...................................................................................................................... 33
•
Deleted THS4275 reference from Figure 100 .................................................................................................................... 33
36
Submit Documentation Feedback
Copyright © 2004–2010, Texas Instruments Incorporated
Product Folder Link(s): THS4271-EP
PACKAGE OPTION ADDENDUM
www.ti.com
3-Feb-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
THS4271MDGNREP
ACTIVE
MSOPPowerPAD
DGN
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAGLevel-1-260C-UNLIM
V62/05610-01YE
ACTIVE
MSOPPowerPAD
DGN
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAGLevel-1-260C-UNLIM
(3)
Samples
(Requires Login)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF THS4271-EP :
• Catalog: THS4271
NOTE: Qualified Version Definitions:
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
3-Feb-2012
• Catalog - TI's standard catalog product
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
17-Feb-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
THS4271MDGNREP
Package Package Pins
Type Drawing
MSOPPower
PAD
DGN
8
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
2500
330.0
12.4
Pack Materials-Page 1
5.3
B0
(mm)
K0
(mm)
P1
(mm)
3.4
1.4
8.0
W
Pin1
(mm) Quadrant
12.0
Q1
PACKAGE MATERIALS INFORMATION
www.ti.com
17-Feb-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
THS4271MDGNREP
MSOP-PowerPAD
DGN
8
2500
358.0
335.0
35.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
Wireless Connectivity
www.ti.com/wirelessconnectivity
TI E2E Community Home Page
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated