PD - 94625A IRGP50B60PD1 SMPS IGBT WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE VCES = 600V VCE(on) typ. = 2.00V @ VGE = 15V IC = 33A C Applications • • • • Telecom and Server SMPS PFC and ZVS SMPS Circuits Uninterruptable Power Supplies Consumer Electronics Power Supplies E Features • • • • • • • Equivalent MOSFET Parameters RCE(on) typ. = 61mΩ ID (FET equivalent) = 50A G NPT Technology, Positive Temperature Coefficient Lower VCE(SAT) Lower Parasitic Capacitances Minimal Tail Current HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode Tighter Distribution of Parameters Higher Reliability n-channel G Benefits • Parallel Operation for Higher Current Applications • Lower Conduction Losses and Switching Losses • Higher Switching Frequency up to 150kHz C E TO-247AC Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 75 IC @ TC = 100°C Continuous Collector Current 45 ICM 150 ILM Pulse Collector Current (Ref. Fig. C.T.4) Clamped Inductive Load Current 150 IF @ TC = 25°C Diode Continous Forward Current 40 IF @ TC = 100°C IFRM Diode Continous Forward Current Maximum Repetitive Forward Current VGE Gate-to-Emitter Voltage ±20 V PD @ TC = 25°C Maximum Power Dissipation 390 W PD @ TC = 100°C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range d A 15 e 60 156 -55 to +150 Soldering Temperature for 10 sec. °C 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Min. Typ. Max. Units RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 0.32 °C/W RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 1.7 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.50 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 40 Weight ––– 6.0 (0.21) ––– 1 g (oz) www.irf.com 6/7/04 IRGP50B60PD1 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. 600 — Temperature Coeff. of Breakdown Voltage — 0.31 — Internal Gate Resistance — 1.7 — — 2.00 2.35 Collector-to-Emitter Saturation Voltage — 2.45 2.85 V(BR)CES Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ RG VCE(on) Max. Units — V Conditions Ref.Fig VGE = 0V, IC = 500µA V/°C VGE = 0V, IC = 1mA (25°C-125°C) Ω 1MHz, Open Collector IC = 33A, VGE = 15V V IC = 50A, VGE = 15V — 2.60 2.95 IC = 33A, VGE = 15V, TJ = 125°C — 3.20 3.60 IC = 50A, VGE = 15V, TJ = 125°C IC = 250µA V mV/°C VCE = VGE, IC = 1.0mA S VCE = 50V, IC = 33A, PW = 80µs 4, 5,6,8,9 VGE(th) Gate Threshold Voltage 3.0 4.0 5.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -10 — gfe ICES Forward Transconductance — 41 — Collector-to-Emitter Leakage Current — 5.0 500 µA VGE = 0V, VCE = 600V — 1.0 — mA VGE = 0V, VCE = 600V, TJ = 125°C — 1.30 1.70 V — 1.20 1.60 — — ±100 VFM IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current 7,8,9 IF = 15A, VGE = 0V 10 IF = 15A, VGE = 0V, TJ = 125°C nA VGE = ±20V, VCE = 0V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. — 205 Qg Qgc Total Gate Charge (turn-on) Gate-to-Collector Charge (turn-on) — Qge Gate-to-Emitter Charge (turn-on) — Max. Units Conditions 308 IC = 33A 70 105 VCC = 400V 30 45 nC Ref.Fig 17 CT1 VGE = 15V IC = 33A, VCC = 390V Eon Turn-On Switching Loss — 255 305 Eoff Turn-Off Switching Loss — 375 445 Etotal Total Switching Loss — 630 750 VGE = +15V, RG = 3.3Ω, L = 200µH TJ = 25°C td(on) Turn-On delay time — 30 40 IC = 33A, VCC = 390V tr Rise time — 10 15 td(off) Turn-Off delay time — 130 150 tf Fall time — 11 15 Eon Turn-On Switching Loss — 580 700 Eoff Turn-Off Switching Loss — 480 550 Etotal Total Switching Loss — 1060 1250 td(on) Turn-On delay time — 26 35 tr Rise time — 13 20 td(off) Turn-Off delay time — 146 165 tf Fall time — 15 20 Cies Input Capacitance — 3648 — VGE = 0V Coes Output Capacitance — 322 — VCC = 30V Cres Coes eff. Reverse Transfer Capacitance Effective Output Capacitance (Time Related) Coes eff. (ER) Effective Output Capacitance (Energy Related) RBSOA Reverse Bias Safe Operating Area g g — 56 — — 215 — — 163 — µJ ns CT3 f CT3 VGE = +15V, RG = 3.3Ω, L = 200µH TJ = 25°C f IC = 33A, VCC = 390V µJ CT3 VGE = +15V, RG = 3.3Ω, L = 200µH TJ = 125°C f WF1,WF2 IC = 33A, VCC = 390V ns CT3 VGE = +15V, RG = 3.3Ω, L = 200µH f TJ = 125°C pF FULL SQUARE 11,13 12,14 WF1,WF2 16 f = 1Mhz VGE = 0V, VCE = 0V to 480V 15 TJ = 150°C, IC = 150A 3 VCC = 480V, Vp =600V CT2 Rg = 22Ω, VGE = +15V to 0V trr Diode Reverse Recovery Time Qrr Diode Reverse Recovery Charge Irr Peak Reverse Recovery Current — 42 60 — 74 120 — 80 180 — 220 600 — 4.0 6.0 — 6.5 10 ns nC TJ = 25°C IF = 15A, VR = 200V, 19 TJ = 125°C di/dt = 200A/µs IF = 15A, VR = 200V, 21 TJ = 25°C di/dt = 200A/µs IF = 15A, VR = 200V, 19,20,21,22 TJ = 125°C di/dt = 200A/µs TJ = 25°C TJ = 125°C A CT5 Notes: RCE(on) typ. = equivalent on-resistance = VCE(on) typ./ IC, where VCE(on) typ.= 2.00V and IC =33A. ID (FET Equivalent) is the equivalent MOSFET ID rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions. VCC = 80% (VCES), VGE = 20V, L = 28 µH, RG = 22 Ω. Pulse width limited by max. junction temperature. Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06. Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES. Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES. 2 www.irf.com IRGP50B60PD1 450 80 400 70 350 60 300 Ptot (W) 90 IC (A) 50 40 250 200 30 150 20 100 10 50 0 0 0 20 40 60 80 100 120 140 160 0 20 40 60 80 T C (°C) 100 120 140 160 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 200 1000 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 180 160 140 IC A) ICE (A) 100 10 120 100 80 60 40 20 0 1 10 100 0 1000 1 2 3 4 Fig. 3 - Reverse Bias SOA TJ = 150°C; VGE =15V 7 8 9 10 200 160 140 160 140 ICE (A) 120 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 180 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 180 ICE (A) 6 Fig. 4 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 200 100 80 120 100 80 60 60 40 40 20 20 0 0 0 1 2 3 4 5 6 7 8 9 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs www.irf.com 5 VCE (V) VCE (V) 10 0 1 2 3 4 5 6 7 8 9 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs 3 IRGP50B60PD1 900 10 800 T J = 25°C 9 700 T J = 125°C 8 7 VCE (V) ICE (A) 600 500 400 300 ICE = 15A 6 ICE = 33A 5 ICE = 50A 4 200 T J = 125°C 3 T J = 25°C 100 2 0 1 0 5 10 15 20 0 5 10 VGE (V) 15 20 VGE (V) Fig. 7 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs Fig. 8 - Typical VCE vs. VGE TJ = 25°C 10 100 Instantane ou sF orw a rdC urrent -I (A ) 9 F 8 VCE (V) 7 ICE = 15A 6 ICE = 33A 5 ICE = 50A 4 3 10 TJ = 150°C TJ = 125°C TJ = 25°C 2 1 1 0 5 10 15 0.8 20 1.2 1.6 2.0 2.4 Forward Voltage Drop - V FM (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 125°C Fig. 10 - Maximum. Diode Forward Characteristics tp = 80µs 1200 1000 Swiching Time (ns) 1000 Energy (µJ) 800 EON 600 EOFF 400 tdOFF 100 tF tdON 200 tR 0 10 0 10 20 30 40 50 60 IC (A) Fig. 11 - Typ. Energy Loss vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V. Diode clamp used: 30ETH06 (See C.T.3) 4 0 10 20 30 40 50 60 IC (A) Fig. 12 - Typ. Switching Time vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V. Diode clamp used: 30ETH06 (See C.T.3) www.irf.com IRGP50B60PD1 1000 1000 900 EON 700 EOFF 600 tdOFF Swiching Time (ns) Energy (µJ) 800 500 100 tdON tF tR 400 10 300 0 5 10 15 20 0 25 5 10 15 20 25 RG (Ω) RG (Ω) Fig. 13 - Typ. Energy Loss vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 33A; VGE = 15V Diode clamp used: 30ETH06 (See C.T.3) Fig. 14 - Typ. Switching Time vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 33A; VGE = 15V Diode clamp used: 30ETH06 (See C.T.3) 40 10000 Cies Capacitance (pF) Eoes (µJ) 30 20 1000 Coes 100 Cres 10 0 10 0 100 200 300 400 500 600 700 0 20 VCE (V) 40 60 80 100 VCE (V) Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 15- Typ. Output Capacitance Stored Energy vs. VCE 16 1.4 14 Normalized V CE(on) (V) 400V 12 VGE (V) 10 8 6 4 1.2 1.0 2 0 0.8 0 50 100 150 200 250 Q G , Total Gate Charge (nC) Fig. 17 - Typical Gate Charge vs. VGE ICE = 33A www.irf.com -50 0 50 100 150 200 T J (°C) Fig. 18 - Normalized Typ. VCE(on) vs. Junction Temperature IC = 33A, VGE= 15V 5 IRGP50B60PD1 100 100 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 80 I IRRM - (A) t rr - (ns) I F = 30A I F = 30A 60 I F = 15A IF = 15A 10 I F = 5.0A 40 I F = 5.0A 20 100 di f /dt - (A/µs) 1 100 1000 Fig. 19 - Typical Reverse Recovery vs. dif/dt 1000 di f /dt - (A/µs) Fig. 20 - Typical Recovery Current vs. dif/dt 800 1000 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C di(rec)M/dt - (A/µs) 600 Q RR - (nC) IF = 30A 400 I F = 15A IF = 5.0A I F = 5.0A I F = 15A I F = 30A 200 0 100 di f /dt - (A/µs) 1000 Fig. 21 - Typical Stored Charge vs. dif/dt 6 100 100 1000 di f /dt - (A/µs) Fig. 22 - Typical di(rec)M/dt vs. dif/dt, www.irf.com IRGP50B60PD1 Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 R1 R1 0.05 0.01 τJ 0.01 0.02 τJ τ1 τ2 τ1 τC τ Ri (°C/W) τi (sec) 0.157 0.000346 0.163 τ2 4.28 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R2 R2 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 τJ 0.01 0.02 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 Ci= τi/Ri Ci τi/Ri 0.01 τC τ τ3 Ri (°C/W) τi (sec) 0.363 0.000112 0.864 0.001184 0.473 0.032264 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) IC, Collector-to-Emitter Current (A) 1000 100 100µsec 10 1 0.1 0.01 1msec Tc = 25°C Tj = 150°C Single Pulse 1 10 10msec 100 1000 10000 VCE , Collector-to-Emitter Voltage (V) www.irf.com Fig. 25 - Forward SOA, TC = 25°C; TJ ≤ 150°C 7 IRGP50B60PD1 L L VCC DUT 0 80 V DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) L PFC diode R= DUT / DRIVER VCC DUT Rg VCC ICM VCC Rg Fig.C.T.4 - Resistive Load Circuit Fig.C.T.3 - Switching Loss Circuit REVERSE RECOVERY CIRCUIT VR = 200V 0.01 Ω L = 70µH D.U.T. dif/dt ADJUST D G IRFP250 S Fig. C.T.5 - Reverse Recovery Parameter Test Circuit 8 www.irf.com IRGP50B60PD1 60 550 500 50 90 400 80 90% ICE 350 450 40 90% ICE 300 30 250 200 20 5% V CE 150 100 -100 -0.20 Eoff 0.00 60 40 30 5% V CE 100 10% ICE 20 10 0 0 Eon Loss -10 0.40 0.20 70 50 150 0 -50 TEST CURRENT 200 50 0 tr 250 10 5% ICE 50 300 VCE (V) tf 350 ICE (A) 400 VCE (V) 450 I CE (A) 600 -50 -0.10 0.00 Time (µs) 0.10 -10 0.20 Time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 25°C using Fig. CT.3 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 25°C using Fig. CT.3 3 trr IF tb ta 0 2 Q rr I RRM 4 0.5 I RRM di(rec)M/dt 5 0.75 I RRM 1 di f /dt 1. dif/dt - Rate of change of current through zero crossing 2. IRRM - Peak reverse recovery current 3. trr - Reverse recovery time measured from zero crossing point of negative going IF to point where a line passing through 0.75 IRRM and 0.50 IRRM extrapolated to zero current 4. Qrr - Area under curve defined by trr and IRRM trr X IRRM Qrr = 2 5. di(rec)M/dt - Peak rate of change of current during tb portion of trr Fig. WF3 - Reverse Recovery Waveform and Definitions www.irf.com 9 IRGP50B60PD1 TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC package is not recommended for Surface Mount Application. TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WITH AS SEMBLY LOT CODE 5657 AS SEMBLED ON WW 35, 2000 IN THE AS SEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER IRFPE30 56 035H 57 DATE CODE YEAR 0 = 2000 WEEK 35 LINE H Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/04 10 www.irf.com