HUF76407DK8 Data Sheet October 1999 File Number 4712.4 3.5A, 60V, 0.105 Ohm, Dual N-Channel, Logic Level UltraFET Power MOSFET Packaging Features JEDEC MS-012AA BRANDING DASH 5 1 2 3 4 • Ultra Low On-Resistance - rDS(ON) = 0.090Ω, VGS = 10V - rDS(ON) = 0.105Ω, VGS = 5V • Simulation Models - Temperature Compensated PSPICE® and SABER© Electrical Models - Spice and SABER Thermal Impedance Models - www.semi.Intersil.com • Peak Current vs Pulse Width Curve • UIS Rating Curve Symbol • Transient Thermal Impedance Curve vs Board Mounting Area SOURCE1 (1) DRAIN 1 (8) GATE1 (2) DRAIN 1 (7) SOURCE2 (3) DRAIN 2 (6) GATE2 (4) DRAIN 2 (5) • Switching Time vs RGS Curves Ordering Information PART NUMBER HUF76407DK8 PACKAGE MS-012AA BRAND 76407DK8 NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76407DK8T. Absolute Maximum Ratings TA = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TA= 25oC, VGS = 5V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 25oC, VGS = 10V) (Figure 2) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 4.5V) (Figure 2) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg NOTES: HUF76407DK8 60 60 ±16 UNITS V V V 3.5 3.8 1.0 1.0 Figure 4 Figures 6, 17, 18 2.5 20 -55 to 150 A A A A W mW/oC oC 300 260 oC oC 1. TJ = 25oC to 125oC. 2. 50oC/W measured using FR-4 board with 0.76 in2 (490.3 mm2) copper pad at 1 second. 3. 228oC/W measured using FR-4 board with 0.006 in2 (3.87 mm2) copper pad at 1000 seconds. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation. SABER is a Copyright of Analogy, Inc. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 HUF76407DK8 TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS ID = 250µA, VGS = 0V (Figure 12) 60 - - V ID = 250µA, VGS = 0V , TA = -40oC (Figure 12) 55 - - V OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS Gate to Source Leakage Current IGSS VDS = 55V, VGS = 0V - - 1 µA VDS = 50V, VGS = 0V, TA = 150oC - - 250 µA VGS = ±16V - - ±100 nA ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 3.8A, VGS = 10V (Figures 9, 10) - 0.075 0.090 Ω ID = 1.0A, VGS = 5V (Figure 9) - 0.088 0.105 Ω ID = 1.0A, VGS = 4.5V (Figure 9) - 0.092 0.110 Ω Pad Area = 0.76 in2 (490.3 mm2) (Note 2) - - 50 oC/W Pad Area = 0.027 in2 (17.4 mm2) (Figure 23) - - 191 oC/W Pad Area = 0.006 in2 (3.87 mm2) (Figure 23) - - 228 oC/W VDD = 30V, ID = 1.0A VGS = 4.5V, RGS = 27Ω (Figures 15, 21, 22) - - 57 ns THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time tON Turn-On Delay Time td(ON) - 8 - ns tr - 30 - ns td(OFF) - 25 - ns tf - 25 - ns tOFF - - 75 ns - - 24 ns - 5 - ns Rise Time Turn-Off Delay Time Fall Time Turn-Off Time SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 30V, ID = 3.8A VGS = 10V, RGS = 30Ω (Figures 16, 21, 22) - 11 - ns td(OFF) - 46 - ns tf - 31 - ns tOFF - - 116 ns - 9.4 11.2 nC GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 5V Threshold Gate Charge Qg(TOT) VGS = 0V to 10V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V VDD = 30V, ID = 1.0A, Ig(REF) = 1.0mA (Figures 14, 19, 20) - 5.3 6.4 nC - 0.42 0.5 nC Gate to Source Gate Charge Qgs - 1.05 - nC Reverse Transfer Capacitance Qgd - 2.4 - nC - 330 - pF - 100 - pF - 18 - pF MIN TYP MAX UNITS ISD = 3.8A - - 1.25 V ISD = 1.0A - - 1.00 V trr ISD = 1.0A, dISD/dt = 100A/µs - - 48 ns QRR ISD = 1.0A, dISD/dt = 100A/µs - - 89 nC CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge 2 TEST CONDITIONS HUF76407DK8 Typical Performance Curves 4 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 VGS = 10V, RθJA = 50oC/W 3 2 1 VGS = 4.5V, RθJA = 228oC/W 0.2 0 0 0 25 50 75 100 125 25 150 50 TA , AMBIENT TEMPERATURE (oC) 75 100 125 150 TA, AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE 2 ZθJA, NORMALIZED THERMAL IMPEDANCE 1 0.1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 RθJA = 228oC/W PDM t1 0.01 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 0.001 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 200 RθJA = 228oC/W TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: IDM, PEAK CURRENT (A) 100 I = I25 VGS = 5V 150 - TA 125 10 1 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-5 10-4 10-3 10-2 10-1 100 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 3 101 102 103 HUF76407DK8 Typical Performance Curves 50 500 100 IAS, AVALANCHE CURRENT (A) SINGLE PULSE TJ = MAX RATED TA = 25oC RθJA = 228oC/W ID, DRAIN CURRENT (A) (Continued) 100µs 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1ms 10ms If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 10 STARTING TJ = 25oC STARTING TJ = 150oC 1 0.1 1 10 100 0.01 200 0.1 1 10 tAV, TIME IN AVALANCHE (ms) VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 20 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 15 VGS = 10V VGS = 4.5V VGS = 5V TJ = 25oC ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 20 TJ = -55oC TJ = 150oC 10 5 15 VGS = 4V 10 VGS = 3.5V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 5 TA = 25oC 2.0 2.5 3.0 3.5 4.5 4.0 VGS, GATE TO SOURCE VOLTAGE (V) 0 5.0 FIGURE 7. TRANSFER CHARACTERISTICS 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) 4 FIGURE 8. SATURATION CHARACTERISTICS PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX ID = 3.8A 120 ID = 1A 90 2.0 NORMALIZED DRAIN TO SOURCE ON RESISTANCE 150 rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) VGS = 3V 0 0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 3.8A 1.5 1.0 0.5 60 2 3 4 6 8 5 7 VGS, GATE TO SOURCE VOLTAGE (V) 9 10 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 4 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 160 HUF76407DK8 Typical Performance Curves (Continued) 1.2 1.2 ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.0 0.8 1.1 1.0 0.6 0.9 -80 -40 0 40 80 120 160 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE VGS , GATE TO SOURCE VOLTAGE (V) 10 1000 C, CAPACITANCE (pF) CISS = CGS + CGD 100 COSS ≅ CDS + CGD CRSS = CGD 10 VDD = 30V 8 6 4 0 VGS = 0V, f = 1MHz 0 5 0.1 1.0 10 60 VDS , DRAIN TO SOURCE VOLTAGE (V) 2 4 6 Qg, GATE CHARGE (nC) 8 10 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 50 80 VGS = 4.5V, VDD = 30V, ID = 1.0A VGS = 10V, VDD = 30V, ID = 3.8A tr 40 SWITCHING TIME (ns) SWITCHING TIME (ns) WAVEFORMS IN DESCENDING ORDER: ID = 3.8A ID = 1.0A 2 tf 30 td(OFF) 20 td(ON) td(OFF) 60 tf 40 20 tr 10 td(ON) 0 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE 5 50 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 16. SWITCHING TIME vs GATE RESISTANCE 50 HUF76407DK8 Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS VDD - 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT 6 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM HUF76407DK8 Thermal Resistance vs. Mounting Pad Area The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. RθJA = 103.2 - 24.3 250 Rθβ, RθJA (oC/W) ( T JM – T A ) P DM = ------------------------------R θJA 300 228 oC/W - 0.006in2 200 191 oC/W - 0.027in2 150 100 (EQ. 1) 50 Rθβ = 46.4 - 21.7 * ln(AREA) In using surface mount devices such as the SOP-8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 0 0.001 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Intersil provides thermal information to assist the designer’s preliminary application evaluation. Figure 23 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. Thermal resistances corresponding to other copper areas can be obtained from Figure 23 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a cofficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. ln ( Area ) 7 (EQ. 2) 0.1 1 FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA While Equation 2 describes the thermal resistance of a single die, several of the new UltraFET™s are offered with two die in the SOP-8 package. The dual die SOP-8 package introduces an additional thermal component, thermal coupling resistance, Rθβ. Equation 3 describes Rθβ as a function of the top copper mounting pad area. Rθβ 4. The use of thermal vias. 0.01 AREA, TOP COPPER AREA (in2) PER DIE 3. The use of external heat sinks. R θJA = 103.2 – 24.3 × * ln(AREA) = 46.4 – 21.7 × ln ( Area ) (EQ. 3) The thermal coupling resistance vs. copper area is also graphically depicted in Figure 23. It is important to note the thermal resistance (RθJA) and thermal coupling resistance (Rθβ) are equivalent for both die. For example at 0.1 square inches of copper: RθJA1 = RθJA2 = 159˚C/W Rθβ1 = Rθβ2 = 97˚C/W TJ1 and TJ2 define the junction temerature of the respective die. Similarly, P1 and P2 define the power dissipated in each die. The steady state junction temperature can be calculated using Equation 4 for die 1and Equation 5 for die 2. Example: To calculate the junction temperature of each die when die 2 is dissipating 0.5 Watts and die 1 is dissipating 0 Watts. The ambient temperature is 70˚C and the package is mounted to a top copper area of 0.1 square inches per die. Use Equation 4 to calulate TJ1 and and Equation 5 to calulate TJ2. . T J1 = P 1 R θJA + P 2 R θβ + T A (EQ. 4) TJ1 = (0 Watts)(159˚C/W) + (0.5 Watts)(97˚C/W) + 70˚C TJ1 = 119˚C T J2 = P 2 R θJA + P 1 R θβ + T A (EQ. 5) TJ2 = (0.5 Watts)(159˚C/W) + (0 Watts)(97˚C/W) + 70˚C TJ2 = 150˚C HUF76407DK8 The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 24 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. ZθJA, THERMAL IMPEDANCE (oC/W) 160 120 Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. COPPER BOARD AREA - DESCENDING ORDER 0.020 in2 0.140 in2 0.257 in2 0.380 in2 0.493 in2 80 40 0 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 24. THERMAL RESISTANCE vs MOUNTING PAD AREA 8 102 103 HUF76407DK8 PSPICE Electrical Model .SUBCKT HUF76407DK8 2 1 3 ; REV 28 May 1999 CA 12 8 4.55e-10 CB 15 14 5.20e-10 CIN 6 8 3.11e-10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP DRAIN 2 5 10 5 51 ESLC 11 - RDRAIN 6 8 EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD + 17 EBREAK 18 50 ESG LSOURCE CIN 8 SOURCE 3 7 RSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 3.00e-2 RGATE 9 20 3.37 RLDRAIN 2 5 10 RLGATE 1 9 15 RLSOURCE 3 7 4.86 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 3.80e-2 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 IT 8 17 1 LDRAIN 2 5 1.0e-9 LGATE 1 9 1.5e-9 LSOURCE 3 7 4.86e-10 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 67.8 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLSOURCE S1A 12 S2A 13 8 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 VBAT 5 8 EDS - - IT 14 + + 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD RBREAK 15 14 13 - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*105),2))} .MODEL DBODYMOD D (IS = 3.17e-13 RS = 2.21e-2 TRS1 = 6.25e-4 TRS2 = -1.11e-6 CJO = 6.82e-10 TT = 7.98e-8 M = 0.65) .MODEL DBREAKMOD D (RS = 3.36e-1 TRS1 = 1.25e-4 TRS2 = 1.34e-6) .MODEL DPLCAPMOD D (CJO = 2.91e-10 IS = 1e-30 M = 0.85) .MODEL MMEDMOD NMOS (VTO = 2.00 KP = 1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.37) .MODEL MSTROMOD NMOS (VTO = 2.33 KP = 19 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.71 KP = 0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 33.7 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.06e-3 TC2 = 0) .MODEL RDRAINMOD RES (TC1 = 1.23e-2 TC2 = 2.58e-5) .MODEL RSLCMOD RES (TC1 = 1.0e-3 TC2 = 1.0e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.19e-3 TC2 = -4.97e-6) .MODEL RVTEMPMOD RES (TC1 = -1.11e-3 TC2 = 0) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -7.0 VOFF= -2.5) VON = -2.5 VOFF= -7.0) VON = -1.0 VOFF= 0) VON = 0 VOFF= -1.0) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 9 HUF76407DK8 SABER Electrical Model REV 28May 1999 template huf76407dk8 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 3.17e-13, cjo = 6.82e-10, tt = 7.98e-8, m = 0.65) d..model dbreakmod = () d..model dplcapmod = (cjo = 2.91e-10, is = 1e-30, m = 0.85) m..model mmedmod = (type=_n, vto = 2.00, kp = 1, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.33, kp = 19, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.71, kp = 0.02, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -7, voff = -2.5) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.5, voff = -7) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0, voff = -1) LDRAIN DPLCAP DRAIN 2 5 10 RSLC1 51 RLDRAIN RDBREAK RSLC2 c.ca n12 n8 = 4.55e-10 c.cb n15 n14 = 5.20e-10 c.cin n6 n8 = 3.11e-10 72 ISCL EVTHRES + 19 8 + LGATE i.it n8 n17 = 1 GATE 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 1.5e-9 l.lsource n3 n7 = 4.86e-10 RDRAIN 6 8 ESG EVTEMP RGATE + 18 22 9 20 21 DBODY EBREAK + 17 18 MSTRO - 8 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u LSOURCE 7 RSOURCE RLSOURCE S1A 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/105))** 2)) } } - IT 14 + + spe.ebreak n11 n7 n17 n18 = 67.8 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 10 MWEAK MMED CIN 71 11 16 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 1.06e-3, tc2 = 0 res.rdbody n71 n5 = 2.21e-2, tc1 = -6.25e-4, tc2 = -1.11e-6 res.rdbreak n72 n5 = 3.36e-1, tc1 = 1.25e-4, tc2 = 1.34e-6 res.rdrain n50 n16 = 3.00e-2, tc1 = 1.23e-2, tc2 = 2.58e-5 res.rgate n9 n20 = 3.37 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 15 res.rlsource n3 n7 = 4.86 res.rslc1 n5 n51 = 1e-6, tc1 = 1e-3, tc2 = 1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.80e-2, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.11e-3, tc2 = 0 res.rvthres n22 n8 = 1, tc1 = -2.19e-3, tc2 = -4.97e-6 DBREAK 50 - d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod RDBODY VBAT 5 8 EDS - + 8 22 RVTHRES SOURCE 3 HUF76407DK8 SPICE Thermal Model REV 1June 1999 HUF76407DK8 Copper Area = 0.02 in2 CTHERM1 th 8 8.5e-4 CTHERM2 8 7 1.8e-3 CTHERM3 7 6 5.0e-3 CTHERM4 6 5 1.3e-2 CTHERM5 5 4 4.0e-2 CTHERM6 4 3 9.0e-2 CTHERM7 3 2 4.0e-1 CTHERM8 2 tl 1.4 th JUNCTION CTHERM1 RTHERM1 8 CTHERM2 RTHERM2 RTHERM1 th 8 3.5e-2 RTHERM2 8 7 6.0e-1 RTHERM3 7 6 2 RTHERM4 6 5 8 RTHERM5 5 4 18 RTHERM6 4 3 39 RTHERM7 3 2 42 RTHERM8 2 tl 48 7 CTHERM3 RTHERM3 6 RTHERM4 SABER Thermal Model CTHERM4 5 Copper Area = 0.02 in2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 8.5e-4 ctherm.ctherm2 8 7 = 1.8e-3 ctherm.ctherm3 7 6 = 5.0e-3 ctherm.ctherm4 6 5 = 1.3e-2 ctherm.ctherm5 5 4 = 4.0e-2 ctherm.ctherm6 4 3 = 9.0e-2 ctherm.ctherm7 3 2 = 4.0e-1 ctherm.ctherm8 2 tl = 1.4 CTHERM5 RTHERM5 4 RTHERM6 CTHERM6 3 CTHERM7 RTHERM7 rtherm.rtherm1 th 8 = 3.5e-2 rtherm.rtherm2 8 7 = 6.0e-1 rtherm.rtherm3 7 6 = 2 rtherm.rtherm4 6 5 = 8 rtherm.rtherm5 5 4 = 18 rtherm.rtherm6 4 3 = 39 rtherm.rtherm7 3 2 = 42 rtherm.rtherm8 2 tl = 48 } 2 CTHERM8 RTHERM8 tl AMBIENT TABLE 1. Thermal Models 0.02 in2 0.14 in2 0.257 in2 0.38 in2 0.493 in2 CTHERM6 9.0e-2 1.3e-1 1.5e-1 1.5e-1 1.5e-1 CTHERM7 4.0e-1 6.0e-1 4.5e-1 6.5e-1 7.5e-1 CTHERM8 1.4 2.5 2.2 3 3 RTHERM6 39 26 20 20 20 RTHERM7 42 32 31 29 23 RTHERM8 48 35 38 31 25 COMPONANT 11 HUF76407DK8 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 12 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029