ITF86182SK8T Data Sheet 11A, 30V, 0.0115 Ohm, P-Channel, Logic Level, Power MOSFET January 2000 File Number 4797.2 Features • Ultra Low On-Resistance [ /Title - rDS(ON) = 0.0115Ω, VGS = −10V Packaging (ITF86 - rDS(ON) = 0.016Ω, VGS = −4.5V SO8 (JEDEC MS-012AA) - rDS(ON) = 0.0175Ω, VGS = −4V 182SK BRANDING DASH 8T) • Gate to Source Protection Diode /Sub• Simulation Models ject - Temperature Compensated PSPICE™ and SABER 5 (11A, Electrical Models 30V, Spice and SABER Thermal Impedance Models 1 2 - www.intersil.com 0.0115 3 4 Ohm, • Peak Current vs Pulse Width Curve P• Transient Thermal Impedance Curve vs Board Mounting ChanArea Symbol nel, • Switching Time vs RGS Curves Logic SOURCE(1) DRAIN(8) Level, Ordering Information Power SOURCE(2) DRAIN(7) PART NUMBER PACKAGE BRAND MOSITF86182SK8T SO8 86182 FET) NOTE: When ordering, use the entire part number. ITF86182SK8T SOURCE(3) DRAIN(6) /Author is available only in tape and reel. DRAIN(5) () GATE(4) /Keywords (InterITF86182SK8T UNITS sil, Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS -30 V SemiDrain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR -30 V conduc- Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V tor, PDrain Current Continuous (TA= 25oC, VGS = 10V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID -11.0 A ChanContinuous (TA= 25oC, VGS = 4.5V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID -9.0 A nel, Continuous (TA= 100oC, VGS = 4.5V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID -6.0 A Logic Continuous (TA= 100oC, VGS = 4.0V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID -6.0 A Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Figure 4 Level 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD 2.5 W Power Power Dissipation (Note Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mW/oC MOSoC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 150 FET, Maximum Temperature for Soldering oC SO8) Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL 300 Package Body for 10s, See Tech brief TB370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 260 oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. TJ = 25oC to 125oC. 2. 50oC/W measured using FR-4 board with 0.76 in2 (490.3 mm2) copper pad at 10 second. 1 CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. SABER© is a Copyright of Analogy Inc.http://www.intersil.com or 321-727-9207 | Copyright © Intersil Corporation 2000 ITF86182SK8T TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS ITF86182SK8TOFF STATE SPECIFICATIONS -30 - - V Zero Gate Voltage Drain Current IDSS VDS = -30V, VGS = 0V - - -1 µA Gate to Source Leakage Current IGSS VGS = ±20V - - ±10 uA Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V Figure 11 ITF86182SK8TON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA Figure 10 -1.0 - -2.5 V Drain to Source On Resistance rDS(ON) ID = -11.0A, VGS = -10V Figures 8, 9 - 0.0085 0.0115 Ω ID = -6.0A, VGS = -4.5V Figure 8 - 0.011 0.016 Ω ID = -6.0A, VGS = -4.0V Figure 8 - 0.012 0.0175 Ω Pad Area = 0.76 in2 (490.3 mm2) (Note 2) - - 50 oC/W Pad Area = 0.054 in2 (34.8 mm2) Figure 20 - - 152 oC/W Pad Area = 0.0115 in2 (7.42 mm2) Figure 20 - - 189 oC/W - 20 - ns - 80 - ns - 70 - ns - 80 - ns - 16 - ns - 85 - ns - 100 - ns - 105 - ns - 67 - nC - 37 - nC - 3.4 - nC ITF86182SK8TTHERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient RθJA ITF86182SK8TSWITCHING SPECIFICATIONS (VGS = -4.5V) Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time td(OFF) Fall Time VDD = -15V, ID = -6.0A VGS = -4.5V, RGS = 4.9Ω Figures 14, 18, 19 tf ITF86182SK8TSWITCHING SPECIFICATIONS (VGS = -10V) Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time td(OFF) Fall Time VDD = -15V, ID = -11.0A VGS = -10V, RGS = 4.9Ω Figures 15, 18, 19 tf ITF86182SK8TGATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to -10V Gate Charge at -5V Qg(-5) VGS = 0V to -5V Threshold Gate Charge Qg(TH) VGS = 0V to -1V VDD = -15V, ID = -6.0A, Ig(REF) = -1.0mA Figures 13, 16, 17 Gate to Source Gate Charge Qgs - 8 - nC Gate to Drain “Miller” Charge Qgd - 13.5 - nC - 3375 - pF - 790 - pF - 375 - pF MIN TYP MAX UNITS ITF86182SK8TCAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = -25V, VGS = 0V, f = 1MHz Figure 12 Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge 2 TEST CONDITIONS ISD = -6.0A - -0.8 - V trr ISD = -6.0A, dISD/dt = 100A/µs - 33 - ns QRR ISD = -6.0A, dISD/dt = 100A/µs - 20 - nC ITF86182SK8T Typical Performance Curves -12 VGS = -10V, RθJA = 50oC/W ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 -9 -6 -3 VGS = -4.0V, RθJA = 189oC/W 0.2 0 0 0 25 50 75 100 125 25 150 50 TA , AMBIENT TEMPERATURE (oC) 3 THERMAL IMPEDANCE ZθJA, NORMALIZED 1 75 100 120 150 TA, AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 RθJA = 50oC/W 0.1 PDM t1 0.01 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 0.001 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE -1000 IDM, PEAK CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 RθJA = 50oC/W TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 -100 125 VGS = -4.5V -10 150 - TA TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION -5 10-5 10-4 10-3 10-2 10-1 100 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 3 101 102 103 ITF86182SK8T Typical Performance Curves -300 -40 ID, DRAIN CURRENT (A) SINGLE PULSE TJ = MAX RATED TA = 25oC -100 ID, DRAIN CURRENT (A) (Continued) RθJA = 50oC/W 100µs -10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V -30 -20 TJ = 150oC -10 TJ = 25oC -1 0 -1 -10 -100 -1 -1.5 -2.0 -2.5 VGS, GATE TO SOURCE VOLTAGE (V) VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 25 rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) VGS = -10V VGS = -5V -30 VGS = -4.5V VGS = -3.5V -20 VGS = -3V -10 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25oC 0 0 -0.2 -0.4 -0.6 -0.8 VDS, DRAIN TO SOURCE VOLTAGE (V) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX ID = -11A 20 15 ID = -2A 10 5 -2 -1 -4 -6 -8 -10 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 7. SATURATION CHARACTERISTICS FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 1.6 1.2 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = VDS, ID = -250µA 1.4 1.2 VGS = -10V, ID = -11A 1.0 NORMALIZED GATE THRESHOLD VOLTAGE ID, DRAIN CURRENT (A) -3.0 FIGURE 6. TRANSFER CHARACTERISTICS -40 NORMALIZED DRAIN TO SOURCE ON RESISTANCE TJ = -55oC 10ms 1.0 0.8 0.6 0.8 0.4 0.6 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 4 160 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE ITF86182SK8T (Continued) 1.10 5000 CISS = CGS + CGD ID = -250µA C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE Typical Performance Curves 1.05 1.0 0.95 COSS ≅ CDS + CGD 1000 300 -80 -40 0 40 80 120 160 -0.1 -1 TJ , JUNCTION TEMPERATURE (oC) -10 -30 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE -10 400 VDD = -15V VGS = -4.5V, VDD = -15V, ID = -6A tr -8 SWITCHING TIME (ns) VGS , GATE TO SOURCE VOLTAGE (V) CRSS = CGD VGS = 0V, f = 1MHz 0.90 -6 -4 WAVEFORMS IN DESCENDING ORDER: ID = -11A ID = -2A -2 0 0 15 30 45 60 300 tf 200 td(OFF) 100 td(ON) 0 0 75 10 Qg, GATE CHARGE (nC) 20 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. 500 SWITCHING TIME (ns) VGS = -10V, VDD = -15V, ID = -11A td(OFF) 400 tf 300 200 tr 100 td(ON) 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (W) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE 5 40 FIGURE 14. SWITCHING TIME vs GATE RESISTANCE FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 0 30 RGS, GATE TO SOURCE RESISTANCE (Ω) 50 50 ITF86182SK8T Test Circuits and Waveforms Qgs VDS RL Qgd VDS Qg(TH) 0 VGS= -1V VGS VGS= -5V -VGS VDD Qg(-5) + VGS= -10V VDD DUT Ig(REF) Qg(TOT) 0 Ig(REF) FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS tON tOFF td(OFF) td(ON) RL VDS - 10% 10% + VGS VDS 0V DUT RGS tf tr 0 0 90% 90% 10% -VGS 50% VGS FIGURE 18. SWITCHING TIME TEST CIRCUIT 50% PULSE WIDTH 90% FIGURE 19. SWITCHING TIME WAVEFORM Thermal Resistance vs. Mounting Pad Area The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. ( T JM – T A ) P DM = ------------------------------R θJA (EQ. 1) dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. In using surface mount devices such as the SO8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power 6 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. ITF86182SK8T Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. Thermal resistances corresponding to other copper areas can be obtained from Figure 20 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. R θJA = 83.2 – 23.6 × ln ( Area ) (EQ. 2) 240 RθJA = 83.2 - 23.6*ln(AREA) 200 RθJA (oC/W) Intersil provides thermal information to assist the designer’s preliminary application evaluation. Figure 20 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. 189oC/W - 0.0115in2 152oC/W - 0.054in2 160 120 80 0.01 0.1 1.0 AREA, TOP COPPER AREA (in2) FIGURE 20. THERMAL RESISTANCE vs MOUNTING PAD AREA The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 21 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. 150 ZθJA, THERMAL IMPEDANCE (oC/W) 120 90 COPPER BOARD AREA - DESCENDING ORDER 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.00 in2 60 30 0 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 21. THERMAL RESISTANCE vs MOUNTING PAD AREA 7 102 103 ITF86182SK8T PSPICE Electrical Model .SUBCKT ITF86182SK8 2 1 3 ; REV Nov 1999 CA 12 8 2.2e-9 CB 15 14 2.6e-9 CIN 6 8 2.9e-9 LDRAIN ESG DBODY 5 7 DBODYMOD DBREAK 7 11 DBREAKMOD DESD1 91 9 DESD1MOD DESD2 91 7 DESD2MOD DPLCAP 10 6 DPLCAPMOD DRAIN 2 5 + 8 6 RLDRAIN RSLC1 51 + RSLC2 5 51 EBREAK 5 11 17 18 -36.2 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 5 10 8 6 1 EVTHRES 6 21 19 8 1 EVTEMP 6 20 18 22 1 EBREAK - ESLC 9 - 20 DBODY RDRAIN EVTHRES + 19 8 EVTEMP RGATE GATE 1 21 16 MWEAK 6 18 + 22 DBREAK MSTRO DESD1 91 DESD2 11 MMED RLGATE LDRAIN 2 5 1.0e-9 LGATE 1 9 1.04e-9 LSOURCE 3 7 1.29e-10 LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2.3e-3 RGATE 9 20 4.3 RLDRAIN 2 5 10 RLGATE 1 9 10.4 RLSOURCE 3 7 1.29 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 4e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A 12 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD - IT 14 + + S1A S1B S2A S2B + 17 18 50 DPLCAP LGATE IT 8 17 1 - 10 VBAT 5 8 EDS - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*220),2.1))} .MODEL DBODYMOD D (IS = 1.1e-11 N = 1.03 RS = 5e-3 TRS1 = 1.75e-3 TRS2 = 5.08e-6 CJO = 2.17e-9 TT = 1e-10 M = 0.5) .MODEL DBREAKMOD D (RS = 1.9e-1 TRS1 = 1e-4 TRS2 = -1e-6) .MODEL DESD1MOD D (BV = 17.2 TBV1 = -2.5E-3 N = 21 RS = 500) .MODEL DESD2MOD D (BV = 17 TBV1 = -2.5E-3 N = 21 RS = 0) .MODEL DPLCAPMOD D (CJO = 1.6e-9 IS = 1e-30 N = 10 M = 0.37 VJ = 0.44) .MODEL MMEDMOD PMOS (VTO = -1.47 KP = 4 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 4.3) .MODEL MSTROMOD PMOS (VTO = -1.82 KP = 87 LAMBDA = 0.01 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD PMOS (VTO = -1.19 KP = 0.06 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 43 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 7.3e-4 TC2 = -8e-7) .MODEL RDRAINMOD RES (TC1 = 1e-2 TC2 = 1e-6) .MODEL RSLCMOD RES (TC1 = 2e-4 TC2 = -2e-5) .MODEL RSOURCEMOD RES (TC1 = 8e-4 TC2 = 1e-5) .MODEL RVTHRESMOD RES (TC1 = 1.5e-3 TC2 = 4.1e-6) .MODEL RVTEMPMOD RES (TC1 = -1.2e-3 TC2 = -1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = 2.5 VOFF= 1.5) VON = 1.5 VOFF= 2.5) VON = 0.75 VOFF= -0.5) VON = -0.5 VOFF= 0.75) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 8 ITF86182SK8T SABER Electrical Model REV Nov 1999 template itf86182sk8 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 1.1e-11, nl = 1.03, cjo = 2.17e-9, tt = 1e-10, m = 0.5, rs = 5e-3, trs1 = 1.75e-3, trs2 = 5.08e-6) dp..model dbreakmod = (rs = 1.9e-1, trs1 = 1e-4, trs2 = -1e-6) dp..model desd1mod = (bv = 17.2, nl = 21, rs = 500) dp..model desd2mod = (bv = 17, nl = 21, rs = 0) dp..model dplcapmod = (cjo = 1.6e-9, isl = 10e-30, nl = 10, m = 0.37, vj = 0.44) m..model mmedmod = (type=_p, vto = -1.47, kp = 4, is = 1e-30, tox = 1) m..model mstrongmod = (type=_p, vto = -1.82, kp = 87, lambda = 0.01, is = 1e-30, tox = 1) m..model mweakmod = (type=_p, vto = -1.19, kp = 0.06, is = 1e-30, tox = 1) ESG sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = 2.5, voff = 1.5) 5 - 8 + sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = 1.5, voff = 2.5) 6 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0.75, voff = -0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.75) + 10 RSLC1 51 c.ca n12 n8 = 2.2e-9 c.cb n15 n14 = 2.6e-9 c.cin n6 n8 = 2.9e-9 LDRAIN DRAIN 2 RLDRAIN EBREAK 17 18 RSLC2 - ISCL 11 dp.dbody n5 n7 = model=dbodymod dp.dbreak n7 n11 = model=dbreakmod dp.desd1 n91 n9 = model=desd1mod dp.desd2 n91 n7 = model=desd2mod dp.dplcap n10 n6 = model=dplcapmod DBREAK RDRAIN LGATE l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 1.04e-9 l.lsource n3 n7 = 1.29e-10 RLGATE EVTHRES + 19 8 EVTEMP RGATE GATE 1 i.it n8 n17 = 1 50 DPLCAP - 20 9 16 21 MWEAK 6 18 + 22 MSTRO DESD1 LSOURCE CIN 91 8 DESD2 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 7.3e-4, tc2 = -8e-7 res.rdrain n50 n16 = 2.3e-3, tc1 = 1e-2, tc2 = 1e-6 res.rgate n9 n20 = 4.3 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 10.4 res.rlsource n3 n7 = 1.29 res.rslc1 n5 n51 = 1e-6, tc1 = 2e-4, tc2 = -2e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 4e-3, tc1 = 8e-4, tc2 = 1e-5 res.rvtemp n18 n19 = 1, tc1 = -1.2e-3, tc2 = -1e-6 res.rvthres n22 n8 = 1, tc1 = 1.5e-3, tc2 = 4.1e-6 DBODY MMED 7 RSOURCE RLSOURCE S1A 12 CA S2A RBREAK 13 8 15 14 13 S1B 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n5 n11 n17 n18 = -36.2 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n5 n10 n8 n6 = 1 spe.evtemp n6 n20 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/220))** 2.1)) } } 9 SOURCE 3 ITF86182SK8T SPICE Thermal Model REV April 1999 ITF86182SK8 Copper Area = 0.76 in2 CTHERM1 th 8 2.0e-3 CTHERM2 8 7 5.0e-3 CTHERM3 7 6 1.0e-2 CTHERM4 6 5 4.0e-2 CTHERM5 5 4 9.0e-2 CTHERM6 4 3 2.0e-1 CTHERM7 3 2 1 CTHERM8 2 tl 3 th JUNCTION CTHERM1 RTHERM1 8 CTHERM2 RTHERM2 RTHERM1 th 8 0.1 RTHERM2 8 7 0.5 RTHERM3 7 6 1.0 RTHERM4 6 5 5.0 RTHERM5 5 4 8.0 RTHERM6 4 3 13 RTHERM7 3 2 19 RTHERM8 2 tl 29.7 7 CTHERM3 RTHERM3 6 RTHERM4 SABER Thermal Model CTHERM4 5 Copper Area = 0.76 in2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 2.0e-3 ctherm.ctherm2 8 7 = 5.0e-3 ctherm.ctherm3 7 6 = 1.0e-2 ctherm.ctherm4 6 5 = 4.0e-2 ctherm.ctherm5 5 4 = 9.0e-2 ctherm.ctherm6 4 3 = 2.0e-1 ctherm.ctherm7 3 2 = 1 ctherm.ctherm8 2 tl = 3 CTHERM5 RTHERM5 4 RTHERM6 CTHERM6 3 CTHERM7 RTHERM7 rtherm.rtherm1 th 8 = 0.1 rtherm.rtherm2 8 7 = 0.5 rtherm.rtherm3 7 6 = 1.0 rtherm.rtherm4 6 5 = 5.0 rtherm.rtherm5 5 4 = 8.0 rtherm.rtherm6 4 3 = 13 rtherm.rtherm7 3 2 = 19 rtherm.rtherm8 2 tl = 29.7 } 2 CTHERM8 RTHERM8 tl AMBIENT TABLE 1. Thermal Models 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.0 in2 CTHERM6 1.2e-1 1.5e-1 2.0e-1 2.0e-1 2.0e-1 CTHERM7 0.5 1.0 1.0 1.0 1.0 CTHERM8 1.3 2.8 3.0 3.0 3.0 RTHERM6 26 20 15 13 12 RTHERM7 39 24 21 19 18 RTHERM8 55 38.7 31.3 29.7 25 COMPONENT 10 ITF86182SK8T MS-012AA 8 LEAD JEDEC MS-012AA SMALL OUTLINE PLASTIC PACKAGE E E1 INCHES A A1 1 e 2 6 D 5 b SYMBOL c 0.004 IN 0.10 mm L 0o-8o 0.060 1.52 0.050 1.27 0.024 0.6 0.155 4.0 0.275 7.0 MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE-MOUNTED APPLICATIONS 1.5mm DIA. HOLE MILLIMETERS MAX MIN MAX NOTES A 0.0532 0.0688 1.35 1.75 - A1 0.004 0.0098 0.10 0.25 - b 0.013 0.020 0.33 0.51 - c 0.0075 0.0098 0.19 0.25 - D 0.189 0.1968 4.80 5.00 2 E 0.2284 0.244 5.80 6.20 - E1 0.1497 0.1574 3.80 4.00 3 e h x 45o MIN 0.050 BSC 1.27 BSC - H 0.0099 0.0196 0.25 0.50 - L 0.016 0.050 0.40 1.27 4 NOTES: 1. All dimensions are within allowable dimensions of Rev. C of JEDEC MS-012AA outline dated 5-90. 2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.006 inches (0.15mm) per side. 3. Dimension “E1” does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 0.010 inches (0.25mm) per side. 4. “L” is the length of terminal for soldering. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. Controlling dimension: Millimeter. 7. Revision 8 dated 5-99. 4.0mm 2.0mm USER DIRECTION OF FEED 1.75mm CL MS-012AA 12mm 12mm TAPE AND REEL 8.0mm 40mm MIN. ACCESS HOLE 18.4mm COVER TAPE 13mm 330mm GENERAL INFORMATION 1. 2500 PIECES PER REEL. 2. ORDER IN MULTIPLES OF FULL REELS ONLY. 3. MEETS EIA-481 REVISION “A” SPECIFICATIONS. 11 50mm 12.4mm ITF86182SK8T All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240 12 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029