HUFA76504DK8 Data Sheet 2.3A, 80V, 0.222 Ohm, Dual N-Channel, Logic Level UltraFET Power MOSFET [ /Title (HUF7 Packaging JEDEC MS-012AA 6400S BRANDING DASH K8) /Subject (60V, 0.072 1 2 Ohm, 3 4 4A, NChannel, Symbol Logic Level SOURCE1 (1) UltraFE GATE1 (2) Power MOSFET) /Author June 2001 Features • Ultra Low On-Resistance - rDS(ON) = 0.200Ω, VGS = 10V - rDS(ON) = 0.222Ω, VGS = 5V • Simulation Models - Temperature Compensated PSPICE™ and SABER Electrical Models - Spice and SABER Thermal Impedance Models - www.Fairchildsemi.com 5 • Internal RG = 50Ω • Peak Current vs Pulse Width Curve • UIS Rating Curve DRAIN 1 (8) • Transient Thermal Impedance Curve vs Board Mounting Area DRAIN 1 (7) Ordering Information DRAIN 2 (6) SOURCE2 (3) GATE2 (4) DRAIN 2 (5) PART NUMBER HUFA76504DK8 BRAND 76504DK8 NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUFA76504DK8T. /KeyAbsolute Maximum Ratings TA = 25oC, Unless Otherwise Specified words (Harris Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS SemiDrain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR conduc- Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Current tor, N- Drain Continuous (TA= 25oC, VGS = 5V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID ChanContinuous (TA= 25oC, VGS = 10V) (Figure 2) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID nel, Continuous (TA= 100oC, VGS = 4.5V) (Figure 2) (Note 3). . . . . . . . . . . . . . . . . . . . . . . . ID Logic Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Level Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD UltraFE Power Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power MOS- PACKAGE MS-012AA Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg NOTES: 1. TJ = 25oC to 125oC. 2. 50oC/W measured using FR-4 board with 0.76 in2 (490.3 mm2) copper pad at 1 second. 3. 228oC/W measured using FR-4 board with 0.006 in2 (3.87 mm2) copper pad at 1000 seconds. HUFA76504DK8 80 80 ±16 UNITS V V V 2.3 2.5 1.1 1.1 Figure 4 Figures 6, 17, 18 2.5 20 -55 to 150 A A A A W mW/oC oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.mtp.intersil.com/automotive.html. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2001 Fairchild Semiconductor Corporation Rev. A, June 4, 2001 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFET® is a registered trademark of Fairchild Corporation. PSPICE® is a registered trademark of Cadence Corporation. SABER© is a registered trademark of Avanti corporation. HUFA76504DK8 Electrical Specifications TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS V OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ID = 250µA, VGS = 0V (Figure 12) 80 - - ID = 250µA, VGS = 0V , TA = -40oC (Figure 12) 70 - - V - - 1 µA VDS = 75V, VGS = 0V VDS = 70V, VGS = 0V, TA = 150oC - - 250 µA VGS = ±16V - - ±100 nA VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) Drain to Source On Resistance rDS(ON) ID = 2.5A, VGS = 10V (Figures 9, 10) - 0.173 0.200 Ω ID = 1.1A, VGS = 5V (Figure 9) - 0.193 0.222 Ω ID = 1.1A, VGS = 4.5V (Figure 9) - 0.200 0.230 Ω THERMAL SPECIFICATIONS Thermal Resistance Junction to Lead Thermal Resistance Junction to Ambient - - 25 oC/W Pad Area = 0.50 in2 (323 mm2) (Note 2) Pad Area = 0.027 in2 (17.4 mm2) (Figure 23) Pad Area = 0.006 in2 (3.87 mm2) (Figure 23) - - 50 oC/W - - 191 oC/W - - 228 oC/W VDD = 40V, ID = 1.1A VGS = 4.5V, RGS = 43Ω (Figures 15, 21, 22) - - 100 ns - 27 - ns tr - 40 - ns td(OFF) - 73 - ns tf - 31 - ns tOFF - - 160 ns - - 41 ns - 10 - ns - 18 - ns td(OFF) - 115 - ns tf - 36 - ns tOFF - - 230 ns - 6.6 10 nC - 3.4 5.4 nC RθJL RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time tON td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time tON td(ON) tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 40V, ID = 2.5A VGS = 10V, RGS = 47Ω (Figures 16, 21, 22) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge VDD = 40V, ID = 1.1A, Ig(REF) = 1.0mA - 0.3 0.5 nC Gate to Source Gate Charge Qgs - 0.8 - nC Gate to Drain “Miller” Charge Qgd - 1.4 - nC - 270 - pF - 62 - pF - 11 - pF MIN TYP MAX UNITS ISD =1.1A - - 1.25 V ISD = 0.7A - - 1.00 V trr ISD = 5.0A, dISD/dt = 100A/µs - - 62 ns QRR ISD = 5.0A, dISD/dt = 100A/µs - - 115 nC (Figures 14, 19, 20) CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ©2001 Fairchild Semiconductor Corporation SYMBOL VSD TEST CONDITIONS Rev. A, June 4, 2001 HUFA76504DK8 1.2 3.0 1.0 2.5 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER Typical Performance Curves 0.8 0.6 0.4 0.2 VGS = 10V, RθJA = 50oC/W 2.0 1.5 1.0 0.5 0 0 25 50 75 100 0 150 125 VGS = 4.5V, RθJA = 228oC/W 25 50 75 100 125 TA, AMBIENT TEMPERATURE (oC) TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE 150 FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE 2 ZθJA, NORMALIZED THERMAL IMPEDANCE 1 0.1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 RθJA = 228oC/W PDM t1 0.01 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 0.001 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 200 100 IDM, PEAK CURRENT (A) RθJA = 228oC/W TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: VGS = 10V I = I25 150 - TA 125 10 1 VGS = 4.5V 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY ©2001 Fairchild Semiconductor Corporation Rev. A, June 4, 2001 HUFA76504DK8 Typical Performance Curves 20 200 IAS, AVALANCHE CURRENT (A) SINGLE PULSE TJ = MAX RATED TA = 25oC 100 ID, DRAIN CURRENT (A) (Continued) 10 100µs OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1ms 0.1 1 STARTING TJ = 25oC STARTING TJ = 150oC 10 100 VDS, DRAIN TO SOURCE VOLTAGE (V) 1 0.01 1 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 10 10 ID, DRAIN CURRENT (A) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 8 6 4 TJ = 25oC 2 TJ = 150oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25oC 8 VGS = 4.5V 6 VGS = 10V VGS = 3.5V 4 VGS = 3V 2 TJ = -55oC 0 0 2.5 3.0 3.5 4.0 VGS, GATE TO SOURCE VOLTAGE (V) 2.0 0 4.5 FIGURE 7. TRANSFER CHARACTERISTICS 300 ID = 2.5A 250 ID = 1.1A 200 150 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT ©2001 Fairchild Semiconductor Corporation NORMALIZED DRAIN TO SOURCE ON RESISTANCE 2.5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 2 1 2 VDS, DRAIN TO SOURCE VOLTAGE (V) 3 FIGURE 8. SATURATION CHARACTERISTICS 350 rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 0.1 200 FIGURE 5. FORWARD BIAS SAFE OPERATING AREA ID, DRAIN CURRENT (A) 10 10ms RθJA = 228oC/W IfSTARTING R=0 TJ = 150oC tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 2.5A 2.0 1.5 1.0 0.5 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 160 FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE Rev. A, June 4, 2001 HUFA76504DK8 Typical Performance Curves (Continued) 1.2 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.0 0.8 0.6 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 1.0 -40 0 40 80 120 TJ , JUNCTION TEMPERATURE (oC) FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE VGS , GATE TO SOURCE VOLTAGE (V) CISS = CGS + CGD 100 COSS ≅ CDS + CGD CRSS = CGD 10 VGS = 0V, f = 1MHz 0.1 VDD = 40V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 2.5A ID = 1.1A 2 0 3 0 80 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 2 4 Qg, GATE CHARGE (nC) 6 8 NOTE: Refer to Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 120 80 VGS = 10V, VDD = 40V, ID = 2.5A VGS = 4.5V, VDD = 40V, ID = 1.1A td(OFF) 60 tr 40 tf td(ON) 20 SWITCHING TIME (ns) td(OFF) SWITCHING TIME (ns) 160 10 1000 C, CAPACITANCE (pF) 1.1 0.9 -80 160 FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE ID = 250µA 80 40 tf tr 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE ©2001 Fairchild Semiconductor Corporation 50 td(ON) 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) 50 FIGURE 16. SWITCHING TIME vs GATE RESISTANCE Rev. A, June 4, 2001 HUFA76504DK8 Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT ©2001 Fairchild Semiconductor Corporation 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM Rev. A, June 4, 2001 HUFA76504DK8 Thermal Resistance vs. Mounting Pad Area The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. P RθJA = 103.2 - 24.3 250 Rθβ, RθJA (oC/W) (T –T ) JM A = ------------------------------DM R θJA 300 228 oC/W - 0.006in2 200 191 oC/W - 0.027in2 150 100 (EQ. 1) 50 Rθβ = 46.4 - 21.7 * ln(AREA) In using surface mount devices such as the SOP-8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of P DM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 0 0.001 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 23 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. Thermal resistances corresponding to other copper areas can be obtained from Figure 23 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a cofficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. ln ( Area ) ©2001 Fairchild Semiconductor Corporation (EQ. 2) 0.01 0.1 1 AREA, TOP COPPER AREA (in2) PER DIE FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA While Equation 2 describes the thermal resistance of a single die, several of the new UltraFET™s are offered with two die in the SOP-8 package. The dual die SOP-8 package introduces an additional thermal component, thermal coupling resistance, Rθβ. Equation 3 describes Rθβ as a function of the top copper mounting pad area. R θβ 3. The use of external heat sinks. R θJA = 103.2 – 24.3 × * ln(AREA) = 46.4 – 21.7 × ln ( Area ) (EQ. 3) The thermal coupling resistance vs. copper area is also graphically depicted in Figure 23. It is important to note the thermal resistance (RθJA) and thermal coupling resistance (Rθβ) are equivalent for both die. For example at 0.1 square inches of copper: RθJA1 = RθJA2 = 159°C/W Rθβ1 = Rθβ2 = 97°C/W TJ1 and TJ2 define the junction temerature of the respective die. Similarly, P1 and P2 define the power dissipated in each die. The steady state junction temperature can be calculated using Equation 4 for die 1and Equation 5 for die 2. Example: To calculate the junction temperature of each die when die 2 is dissipating 0.5 Watts and die 1 is dissipating 0 Watts. The ambient temperature is 70°C and the package is mounted to a top copper area of 0.1 square inches per die. Use Equation 4 to calulate TJ1 and and Equation 5 to calulate TJ2. . T J1 = P 1 R θJA + P 2 R θβ + T A (EQ. 4) TJ1 = (0 Watts)(159°C/W) + (0.5 Watts)(97°C/W) + 70°C TJ1 = 119°C T J2 = P 2 R θJA + P 1 R θβ + T A (EQ. 5) TJ2 = (0.5 Watts)(159°C/W) + (0 Watts)(97°C/W) + 70°C TJ2 = 150°C Rev. A, June 4, 2001 HUFA76504DK8 The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 24 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. ZθJA, THERMAL IMPEDANCE (oC/W) 160 120 Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. COPPER BOARD AREA - DESCENDING ORDER 0.020 in2 0.140 in2 0.257 in2 0.380 in2 0.493 in2 80 40 0 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 24. THERMAL RESISTANCE vs MOUNTING PAD AREA ©2001 Fairchild Semiconductor Corporation Rev. A, June 4, 2001 HUFA76504DK8 PSPICE Electrical Model .SUBCKT HUFA76504DK8 2 1 3 ; REV 18 January 2001 CA 12 8 2.5e-10 CB 15 14 3e-10 CIN 6 8 2.6e-10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP DRAIN 2 5 10 5 51 ESLC 11 - RDRAIN 6 8 EVTHRES + 19 8 + LGATE GATE 1 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD + 50 ESG EVTEMP RGATE + 18 22 9 20 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1.1e-1 RGATE 9 20 5.74e1 RLDRAIN 2 5 10 RLGATE 1 9 42.1 RLSOURCE 3 7 12.8 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 5.72e-2 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 IT 8 17 1 LDRAIN 2 5 1.0e-9 LGATE 1 9 4.21e-10 LSOURCE 3 7 1.28e-10 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 100.6 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD RBREAK 15 VBAT 5 8 EDS - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*12),3.7))} .MODEL DBODYMOD D (IS = 3.1e-13 N = 1.03 RS = 4.2e-2 TRS1 = 3e-4 TRS2 = 1.3e-6 CJO = 6.82e-10 TT = 3.3e-8 M = 0.8 XTI = 4) .MODEL DBREAKMOD D (RS = 1.65 TRS1 = 1e-3 TRS2 = -9e-6) .MODEL DPLCAPMOD D (CJO = 1.7e-10 IS = 1e-30 M = 0.85) .MODEL MMEDMOD NMOS (VTO = 2.2 KP = 1.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 5.74e1) .MODEL MSTROMOD NMOS (VTO = 2.56 KP = 18 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.94 KP = 0.04 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 5.74e2 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.12e-3 TC2 = -3e-7) .MODEL RDRAINMOD RES (TC1 = 9e-3 TC2 = 2e-5) .MODEL RSLCMOD RES (TC1 = 2.8e-3 TC2 = 1.9e-5) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -2e-3 TC2 = -3e-6) .MODEL RVTEMPMOD RES (TC1 = -1.5e-3 TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4 VOFF= -1) VON = -1 VOFF= -4) VON = -0.5 VOFF= 0.5) VON = 0.5 VOFF= -0.5) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2001 Fairchild Semiconductor Corporation Rev. A, June 4, 2001 HUFA76504DK8 SABER Electrical Model REV 18 January 2001 template HUFA76504dk8 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (is = 3.1e-13, n1 = 1.03, rs = 4.2e-2, trs1 = 3e-4, trs2 = 1.3e-6, cjo = 6.82e-10, tt = 3.38e-8, m = 0.8, xti = 4) dp..model dbreakmod = (rs = 1.65, trs1 = 1e-3, trs2 = -9e-6) dp..model dplcapmod = (cjo = 1.7e-10, isl = 10e-30, n1 = 10, m = 0.85) m..model mmedmod = (type=_n, vto = 2.2, kp = 1.1, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.56, kp = 18, is = 1e-30, tox = 1) LDRAIN m..model mweakmod = (type=_n, vto = 1.94, kp = 0.04, is = 1e-30, tox = 1, rs = .1) DPLCAP 5 sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4, voff = -1) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1, voff = -4) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.5) RLDRAIN RSLC1 sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -0.5) RDBREAK 51 RSLC2 c.ca n12 n8 = 2.5e-10 c.cb n15 n14 = 3e-10 c.cin n6 n8 = 2.6e-10 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 DBODY EBREAK + 17 18 MSTRO - 8 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A res.rbreak n17 n18 = 1, tc1 = 1.12e-3, tc2 = -3e-7 res.rdrain n50 n16 = 1.1e-1, tc1 = 9e-3, tc2 = 2e-5 res.rgate n9 n20 = 5.74e1 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 42.1 res.rlsource n3 n7 = 12.8 res.rslc1 n5 n51 = 1e-6, tc1 = 2.8e-3, tc2 = 1.9e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 5.72e-2, tc1 = 1e-3, tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.5e-3, tc2 = 1e-6 res.rvthres n22 n8 = 1, tc1 = -2e-3, tc2 = -3e-6 MWEAK MMED CIN 71 11 16 6 RLGATE RDBODY DBREAK 50 - i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 4.21e-10 l.lsource n3 n7 = 1.28e-10 72 ISCL dp.dbody n7 n71 = model=dbodymod dp.dbreak n72 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod DRAIN 2 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 100.6 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/12))** 3.7)) } } ©2001 Fairchild Semiconductor Corporation Rev. A, June 4, 2001 HUFA76504DK8 SPICE Thermal Model REV 18 January 2001 HUFA76504DK8 Copper Area = 0.38 in 2 th CTHERM1 th 8 8.5e-4 CTHERM2 8 7 1.8e-3 CTHERM3 7 6 5.0e-3 CTHERM4 6 5 1.3e-2 CTHERM5 5 4 4.0e-2 CTHERM6 4 3 1.5e-1 CTHERM7 3 2 6.5e-1 CTHERM8 2 tl 3.0 JUNCTION RTHERM1 CTHERM1 8 RTHERM2 RTHERM1 th 8 3.5e-2 RTHERM2 8 7 6.0e-1 RTHERM3 7 6 2 RTHERM4 6 5 8 RTHERM5 5 4 18 RTHERM6 4 3 20 RTHERM7 3 2 29 RTHERM8 2 tl 31 CTHERM2 7 RTHERM3 CTHERM3 6 CTHERM4 RTHERM4 SABER Thermal Model 5 Copper Area = 0.38 in 2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 8.5e-4 ctherm.ctherm2 8 7 = 1.8e-3 ctherm.ctherm3 7 6 = 5.0e-3 ctherm.ctherm4 6 5 = 1.3e-2 ctherm.ctherm5 5 4 = 4.0e-2 ctherm.ctherm6 4 3 = 1.5e-1 ctherm.ctherm7 3 2 = 6.5e-1 ctherm.ctherm8 2 tl = 3.0 RTHERM5 CTHERM5 4 RTHERM6 CTHERM6 3 RTHERM7 rtherm.rtherm1 th 8 = 3.5e-2 rtherm.rtherm2 8 7 = 6.0e-1 rtherm.rtherm3 7 6 = 2 rtherm.rtherm4 6 5 = 8 rtherm.rtherm5 5 4 = 18 rtherm.rtherm6 4 3 = 20 rtherm.rtherm7 3 2 = 29 rtherm.rtherm8 2 tl = 31 } CTHERM7 2 RTHERM8 CTHERM8 tl AMBIENT TABLE 1. Thermal Models 0.02 in2 0.14 in2 0.257 in2 0.38 in2 0.493 in2 CTHERM6 9.0e-2 1.3e-1 1.5e-1 1.5e-1 1.5e-1 CTHERM7 4.0e-1 6.0e-1 4.5e-1 6.5e-1 7.5e-1 CTHERM8 1.4 2.5 2.2 3 3 RTHERM6 39 26 20 20 20 RTHERM7 42 32 31 29 23 RTHERM8 48 35 38 31 25 COMPONANT ©2001 Fairchild Semiconductor Corporation Rev. A, June 4, 2001 HUFA76504DK8 MS-012AA 8 LEAD JEDEC MS-012AA SMALL OUTLINE PLASTIC PACKAGE E E1 INCHES A A1 1 e 2 6 D 5 b SYMBOL MIN c MIN MAX NOTES A 0.0532 0.0688 1.35 1.75 - A1 0.004 0.0098 0.10 0.25 - b 0.013 0.020 0.33 0.51 - c 0.0075 0.0098 0.19 0.25 - D 0.189 0.1968 4.80 5.00 2 E 0.2284 0.244 5.80 6.20 - E1 0.1497 0.1574 3.80 4.00 3 e h x 45o MILLIMETERS MAX 0.050 BSC 1.27 BSC - H 0.0099 0.0196 0.25 0.50 - L 0.016 0.050 0.40 1.27 4 NOTES: 0.004 IN 0.10 mm L 0o-8o 0.060 1.52 1. All dimensions are within allowable dimensions of Rev. C of JEDEC MS-012AA outline dated 5-90. 2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.006 inches (0.15mm) per side. 3. Dimension “E1” does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 0.010 inches (0.25mm) per side. 4. “L” is the length of terminal for soldering. 0.050 1.27 0.155 4.0 0.275 7.0 MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE-MOUNTED APPLICATIONS 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. Controlling dimension: Millimeter. 0.024 0.6 7. Revision 8 dated 5-99. 1.5mm DIA. HOLE 4.0mm 2.0mm USER DIRECTION OF FEED CL MS-012AA 12mm TAPE AND REEL 1.75mm 12mm 8.0mm 40mm MIN. ACCESS HOLE 18.4mm COVER TAPE 13mm 330mm GENERAL INFORMATION 1. 2500 PIECES PER REEL. 2. ORDER IN MULTIPLES OF FULL REELS ONLY. 3. MEETS EIA-481 REVISION “A” SPECIFICATIONS. ©2001 Fairchild Semiconductor Corporation 50mm 12.4mm Rev. A, June 4, 2001 TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOSTM EnSignaTM FACT™ FACT Quiet Series™ FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MICROWIRE™ OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET VCX™ STAR*POWER is used under license DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H3