CXA1166K 8-bit 250 MSPS Flash A/D Converter Description The CXA1166K is an 8-bit ultrahigh-speed flash A/D converter IC capable of digitizing analog signals at a maximum rate of 250 MSPS. The digital I/O level of this A/D converter is compatible with the ECL 100K/10KH/10K. This IC is pin-compatible with the conventional CXA1076AK/CXA1176K/CXA1176AK, and can replace the conventional models easily. Compared with the conventional models, the CXA1166K has a greatly improved performance because of the new circuit design and carefully considered layout. Features • Differential linearity error: ±0.5 LSB or less • Integral linearity error: ±0.5 LSB or less • Built-in integral linearity compensation circuit • Ultrahigh-speed operation with maximum conversion rate of 250 MSPS • Low input capacitance: 18pF • Wide analog input bandwidth: 250MHz (full-scale input, standard) • Single power supply: –5.2V • Low power consumption: 1.4W (Typ.) • Low error rate • Good temperature characteristics • Capable of driving 50Ω loads 68 pin LCC (Ceramic) Structure Bipolar silicon monolithic IC Applications • Digital oscilloscopes • Other apparatus requiring ultrahigh-speed A/D conversion AGND VIN1 VIN1 AGND VRM AGND VIN2 VIN2 AGND 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 AVEE Pin Configuration (Top View) Pins without name are NC pins (not connected internally). AGND AVEE VRT VRTS AVEE AVEE 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 AGND AVEE VRB VRBS AVEE AVEE CLK CLK MINV D7 D7 D6 D6 DVEE D2 D2 D3 D3 DGND2 DGND2 DGND1 D4 D4 D5 D5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 LINV OR OR D0 D0 D1 D1 DVEE 61 62 63 64 65 66 67 68 1 2 3 4 5 6 7 8 9 Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E90406-ST CXA1166K Absolute Maximum Ratings (Ta = 25°C) • Supply voltage AVEE, DVEE • Analog input voltage VIN • Reference input voltage VRT, VRB, VRM | VRT – VRB | • Digital input voltage MINV, LINV, CLK, CLK | CLK – CLK | • VRM pin input current IVRM • Digital output current ID0 to ID7, IOR, ID0 to ID7, IOR • Storage temperature Tstg Operating Conditions • Supply voltage • Reference input voltage • Analog input voltage • Operating temperature AVEE, DVEE AVEE – DVEE AGND – DGND VRT VRB VIN Tc Min. –5.5 –0.05 –0.05 –0.1 –2.2 VRB –20 –2– –7 to +0.5 –2.7 to +0.5 –2.7 to +0.5 2.5 –4 to +0.5 2.7 –3 to +3 –30 to 0 –65 to +150 Typ. –5.2 0 0 0 –2.0 Max. –4.95 0.05 0.05 0.1 –1.8 VRT 100 V V V V V V mA mA °C Unit V V V V V °C CXA1166K Block Diagram MINV 33 r1 VRT 64 r/2 Comparator r2 VRTS 65 r r 0 2 OR 1 3 OR r VIN1 54 r 2 • • • 63 31 D7 (MSB) 32 D7 29 D6 64 55 30 D6 r r3 r VRM 52 r r r 127 128 22 D5 OUTPUT r 21 D5 ENCODE LOGIC r 65 • • • 126 r r4 VRBS 39 r5 r r/2 13 D2 129 • • • 191 6 D1 7 D1 4 D0 (LSB) 5 D0 193 • • • 254 255 VRB 40 CLK 35 CLK 34 14 D3 12 D2 r 50 20 D4 15 D3 192 VIN2 49 19 D4 CLOCK DRIVER 1 LINV –3– CXA1166K Pin Description Pin No. Symbol I/O Standard voltage level Equivalent circuit Description DGND1 Polarity selection other than MSB and overrange. (Refer to the table of input voltage vs. Digital output) Low level is maintained with left open. 18 1 LINV I ECL r LINV r 1 r or 33 MINV 33 MINV I –1.3V DVEE ECL r 8 28 64 VRT I 0V VRT 64 Reference voltage (Top) (0V typ.) r1 r2 Polarity selection for MSB (Refer to the table of input voltage vs. Digital output) Low level is maintained with left open. VRTS 65 r⁄2 65 VRTS O 0V 52 VRM I VRB/2 39 VRBS O –2V Reference voltage sense (Top) r r3 r VRM 25 To Comparator Reference voltage sense (Bottom) r r4 Reference voltage mid-point. Can be used for linearity compensation. r ⁄2 VRBS 39 40 VRB I –2V r5 43, 48, 51, 53, 56, 61 AGND VIN1 54 55 54 VIN1 I 49 50 VIN2 35 CLK Reference voltage (Bottom) VRB 40 VRTS to VRBS 55 To Comp 0 to 127 49 128 to 255 50 VIN2 Analog input. Pins 49, 50 and Pins 54, 55 should be connected externally. DGND1 I ECL CLK input 18 r r r CLK 35 r CLK 34 34 CLK I ECL DVEE 8 r r 28 –4– Complementary CLK input. ECL threshold potential (–1.3V) is maintained with left open. The complementary input is recommended for stable operation at high speed though the operation only with the CLK input is possible when the CLK input is left open. CXA1166K Pin No. Symbol I/O Standard voltage level Equivalent circuit Description MSB and complementary MSB output 31 32 D7 D7 O 29 30 D6 D6 O 21 22 D5 D5 O 17 19 20 D4 D4 O Di 14 15 D3 D3 O Di 12 13 D2 D2 O 6 7 D1 D1 O 4 5 D0 D0 O LSB and complementary LSB output O Overrange output; Low level for overrange. Overrange complementary output; High level for overrange. 2 3 OR OR DGND2 16 D1 to D6: Output D1 to D6: Complementary output ECL 8 DVEE 28 AGND 37, 38, 42, 58, AVEE∗ 62, 66, 67 –5.2V 43, 48, 51, 53, AGND∗ 56, 61 0V 61 48 53 DGND1 43 51 56 18 Internal Analog Circuit 8 28 DVEE∗ 18 DGND1 0V 62 38 66 16 17 DGND2∗ 0V AVEE DGND2 16 17 Analog ground. Separated from DGND. Internal Digital Circuit –5.2V 4 to 6Ω 42 37 58 67 8 28 DVEE Analog supply. Internally connected with DVEE (resistance: 4 to 6Ω). Di Di Digital supply. Internally connected with AVEE (resistance: 4 to 6Ω). Digital ground Digital ground for output drive 41, 44, 45, 46, 47, 57, NC 59, 60, 63 — No connected. It is recommended to connect these pins to AGND. 9, 10, 11, 23, 24, 25, NC 26, 27, 36, 68 — No connected. It is recommended to connect these pins to DGND. ∗ For stable operation, all of these pins must be connected on the corresponding PCB pattern. –5– CXA1166K Electrical Characteristics Item (AVEE = DVEE = –5.2V, VRT, VRTS = 0V, VRB, VRBS = –2V, Ta = 25°C) Symbol Condition Min. Resolution EIL EDL Analog input Analog input capacitance Analog input resistance Input bias current CIN RIN IIN Reference inputs Reference resistance Residual resistance∗1 r1 r2 r3 r4 r5 RREF r1 r2 r3 r4 r5 VIH VIL IIH IIL Fc Taj Tds Tdo TPW1 TPW0 Digital output Logic High level Logic Low level Output rise time Output fall time VOH VOL Tr Tf Dynamic characteristics Input bandwidth SNR SNR Error rate Power supply Supply current Power consumption∗3 ∗1 See Block Diagram. ∗2 TPS: Times Per Sample 2 ∗3 Pd = IEE • VEE + (VRT – VRB) RREF VIN = –1V + 0.07Vrms VIN = –1V VIN = –1V 50 20 83 0.1 300 0.5 300 0.1 ±0.5 ±0.5 LSB LSB 450 pF kΩ µA 182 2.0 700 5.0 700 2.0 Ω Ω Ω Ω Ω Ω –1.50 70 50 V V µA µA pF 9 1.4 2.5 2.4 3.2 MSPS ps ns ns ns ns 0.6 0.6 –1.60 1.5 1.5 18 120 125 0.6 500 2.0 500 0.6 –1.13 VIH = –0.8V VIL = –1.6V 0 –50 250 RL = 50Ω to –2V }T PW1 + TPW0 = 4.0ns RL = 50Ω to –2V RL = 50Ω to –2V RL = 50Ω to –2V RL = 50Ω to –2V VIN=2Vp-p Input = 1kHz, FS Clock = 250MHz Input = 62.499MHz, FS Clock = 250MHz Input = 49.999MHz, FS Error > 16LSB Clock = 200MHz Input = 62.499MHz, FS Error > 16LSB Clock = 250MHz NTSC 40IRE mod. ramp, Fc = 250MSPS { { 0.4 1.8 1.8 1.8 –1.00 46 MHz dB 30 35 dB 10–8 –360 –6– 10–9 TPS∗2 10–6 TPS∗2 1.0 0.5 } IEE Pd V V ns ns 200 44 { { DG DP Unit bits 4 Switching characteristics Maximum conversion rate Aperture jitter Sampling delay Output delay Clock High pulse width Clock Low pulse width Differential gain error Differential phase error Max. 8 DC characteristics Integral linearity error Differential linearity error Digital inputs Logic High level Logic Low level Logic High current Logic Low current Input capacitance Typ. –270 1.4 % deg 1.9 mA W CXA1166K Input Voltage vs. Digital Output VIN∗ MINV LINV Step 1 1 OR D7 1 0 D0 OR D7 0 0 D0 OR D7 D0 OR D7 D0 0 0 0 0 …… 0 0 0 1 0 0 …… 0 0 0 0 1 1 …… 1 1 0 1 1 1 …… 1 1 0 1 1 1 1 1 1 1 : : 1 1 1 1 : : 1 1 0 1 1 …… 1 1 0 1 1 …… 1 0 : : 0 0 0 …… 0 0 1 1 1 …… 1 1 : : 1 0 0 …… 0 1 1 0 0 …… 0 0 1 1 1 1 : : 1 1 1 0 0 …… 0 0 1 0 0 …… 0 1 : : 1 1 1 …… 1 1 0 0 0 …… 0 0 : : 0 1 1 …… 1 0 0 1 1 …… 1 1 1 1 127 128 0 0 0 …… 0 0 0 0 0 …… 0 1 : : 0 1 1 …… 1 1 1 0 0 …… 0 0 : : 1 1 1 …… 1 0 1 1 1 …… 1 1 1 1 : : 1 1 1 1 1 …… 1 1 1 1 1 …… 1 0 : : 1 0 0 …… 0 0 0 1 1 …… 1 1 : : 0 0 0 …… 0 1 0 0 0 …… 0 0 1 1 1 1 …… 1 1 1 0 1 1 …… 1 1 1 1 0 0 …… 0 0 1 0 0 0 …… 0 0 0V –1V 0 1 254 255 –2V ∗ VRT = VRTS = 0V, VRM = –1V or Open, VRB = VRBS = –2V Timing Diagram Tds N N+1 Analog input N+2 Tpw1 Tpw0 CLK CLK N–1 Digital output 20% Td 80% Tr –7– N 80% N+1 20% Tf CXA1166K Electrical Characteristics Measurement Circuit Integral Linearity Error Measurement Circuit Differential Linearity Error Measurement Circuit +V S2 S1 S1:ON when A<B S2: ON when A>B –V A<B A>B Comparator VIN DUT CXA1166K 8 A8 to A1 B8 to B1 A0 B0 “0” 8 Buffer “1 ” DVM 000•••00 to 111•••10 Controller Sampling Delay Measurement circuit Aperture Jitter Measurement circuit Aperture Jitter Measurement Method 0V VIN –1V –2V 60MHz Amp CLK OSC1 φ:Variable VIN fr 8 CXA1166K ∆υ ∆t Logic Analizer VIN CLK 1024 samples OSC2 CLK ECL Buffer 60MHz t 129 128 127 126 125 σ (LSB) Sampling timing fluctuation ( = aperture jitter) When the distribution of the output codes is σ (unit: LSB) If the maximum slew rate point is sampled with the clock signal having the same frequency as that of the analog input signal, Aperture jitter (Taj) is defined as follows: Taj = σ/ –8– 256 ∆υ = σ/ ( × 2πf ) ∆t 2 CXA1166K Error Rate Measurement Circuit Vin Signal Source fCLK – 1kHz 4 2Vp – p Sine Wave CXA1166K CLK 8 A ECL Latch B CLK Comparator A<B Pulse Counter ECL Latch + DATA 16 Signal Source 1⁄16 fCLK Differential Gain Error Measurement Circuit Differential Phase Error Measurement Circuit (CX20202A – 1) NTSC Signal Source DUT CXA1166K Amp CLK 8 ECL Latch 8 10bit D⁄A CLK SG (CW) Vector Scope Decimator 50 VBB Power Supply Current Measurement Circuit Analog Input Bias Current Measurement Circuit IIN A 60 61 – 1V 44 43 – 2V 1 9 CXA1166K 27 26 10 A IEE – 5.2V –9– CXA1166K Notes on Operation • The CXA1166K is an ultra-high speed A/D converter featuring ECL level of input/output for the logic block. In order to derive the most from its high-speed performance, the characteristic impedance should be matched properly. • The outputs are designed to drive a load terminated to –2V at 50Ω. An excellent transmission characteristic can be yielded by designing the printed circuit board with a 50Ω characteristic impedance. Yielding its top performance is difficult on the printed circuit board with a characteristic impedance of 100Ω or more. • The power supply and ground pattern greatly affect the characteristics of the converter. The higher the frequency, the more important these connections become. The general precautions are as follows. – Make the pattern of the power supply and ground as wide as possible. Using a ground plane inner layer by using a multilayer printed circuit board is recommended. – lsolate the AGND, DGND pins and the AVEE, DVEE from one another on the pattern in order to safeguard against interaction. Connect the AGND and DGND pins at one place using a ferrite-bead filter to prevent DC offset. The same processing is requited for the AVEE and DVEE pins. • When mounting the A/D converter on the socket, use the one of shortest leads. The QFP socket, the type name IC61-0684-048, manufactured by YAMAICHI ELECTRONICS CO., LTD. is recommended. • The VIN analog input pins have somewhat large input capacitance (approximately 18pF) for high-frequency circuits. In order to drive them with an excellent frequency response, it is necessary to safeguard against any deterioration in performance resulting from parasitic capacitance and parasitic inductance by using a highcapacity drive circuit, keeping the wiring as short as possible, and using chip parts as resistors and capacitors, for instance. The drive circuit shown in the Application Circuit has a virtually flat frequency response up to approximately 170MHz. C89, R11 and C15 have been inserted mainly to expand the bandwidth, while R10 has been inserted mainly to suppress operational amplifier oscillation and block peaking of the frequency response. Since the optimal values of these elements differ depending on the printed circuit board pattern and mounting condition of the A/D converter socket used, they must be determined on the basis of experimentation. • Connect all four VIN pins directly and as short as possible. Unlike the CXA1176, it is not necessary to insert resistance of several ohms for each pin. • The voltage at the VRT and VRB reference voltage pins and the reference voltage inside these pins differ slightly due to residual resistance. VRTS and VRBS are provided to detect the reference voltage inside the pins. The overrange reference voltage is 1/2 LSB down from VRTS; the lowest input voltage at which the output code changes is 1/2 LSB up from VRBS. • Provide adequate by-pass capacitors for VRT and VRB to protect them from high-frequency noise. Normally, VRT is connected to AGND of an inner layer of the printed circuit board. Using a chip capacitor (approximately 0.1µF), make the by-pass from VRB to AGND as short as possible. C22 (1µF), in the Application Circuit is for suppressing the oscillation of the reference voltage generation circuit. – 10 – CXA1166K • Unlike the CXA1176, VRTS and VRBS are connected to the reference resistors via resistors of approximately 500Ω. Since these resistors may be eliminated in the future improved versions of this converter, use a reference voltage generation circuit which is adaptable to their elimination. The reference voltage generation circuit (the section composed of IC12_2, etc.) in the Application Circuit is recommended. • Although VRM is provided to compensate for the integral linearity error, there is no need for such compensation. It is recommended that it is kept open. • OR and OR are output pins for indicating that the input is over range. They are not inverted by MINV or LINV. • Noise in MINV and LINV results in misoperation, the cause of which is extremely difficult to track down. Keep these pins open in cases where low level setting voltage alone is sufficient. When high level voltage input is required, provide the shortest possible by-pass from them to DGND using chip capacitors (approximately 0.1µF). Input voltages of –0.5V to –1.0V for high level and –1.6V to –2.5V for low level are recommend. Do not make the direct connection to DGND when high level voltage is input. • Inputting differential signals is recommended for the CLK and CLK clock input pins. Although operation is possible by driving only the CLK pin, doing so involves the risk that the characteristics may become unstable near the maximum speed. This is because the internal operation of the A/D converter depends on both clock rise and fall. • When the CLK pin is not used, by-pass it to DGND using a capacitor (approximately 0.1µF). At this time, approximately –1.3V voltage will be generated at this pin. However, the driving capacity is too weak for this to be used as the VBB threshold voltage. It cannot drive even one ECL input load. • This converter is designed to be used at the clock duty cycle of 50%. The deviation from this condition will subtly affect the performance of the A/D converter but the degree of the affection is not so great as to require adjustment. The “Error rate vs. Clock duty cycle characteristics” graph shows an example of these changes in the converter’s performance. • Increasing chip temperature will cause the supply current and also the error rate to rise. Adding to these reasons, in order to prolong the converter’s service life, provide an adequate means of cooling. See the “Maximum conversion frequency vs. Temperature characteristics” and “Supply current vs. Temperature characteristics” graphs. The reference data for thermal resistance is shown in the “Thermal resistance of the converter mounted on a board” graph. Note that the actual thermal resistance will differ greatly depending on the mounting conditions. • Since the CXA1166K is a high-speed IC, take adequate measures to prevent electrostatic breakdown. For further details on these measures, refer to “Precautions for IC Application” in Sony’s Data book. • Sony’s SPECL series is used as the logic ICs in the Application Circuit to investigate the maximum performance of the CXA1166K. For normal applications, lower speed logic ICs can be used according to the applied frequency. – 11 – CXA1166K Example of Representative Characteristics VIN pin input capacitance vs. Voltage characteristics Thermal resistance at on-board condition 25 Socket for YAMAICHI ELECTRONICS IC61-0684-048 Socket for AMP173061-5 (without heat sink) Socket for AMP173257-3 (with heat sink) 40 CIN — Input capacitance [pF] θ ja — Thermal resistance [°C/W] 50 30 0 1.0 2.0 20 15 10 3.0 –2 Air velocity [m/s] –1 –0.5 0 VIN — Input voltage [V] VIN pin input resistance vs. Voltage characteristics VIN pin input current vs. Voltage characteristics 200 150 125 IIN [µA] Analog input resistance [kΩ] –1.5 100 100 0 –2.0 –1.5 –1.0 –0.5 VIN — Input voltage [V] –2.0 –1.5 –1.0 –0.5 0 VIN — Input voltage [V] – 12 – 0 CXA1166K VIN pin input current vs. Temperature characteristics VIN — Input current [µA] 200 150 100 50 0 –50 0 50 100 150 Tc — Case temperature [°C] Resistor string current vs. Temperature characteristics –12 Resistor string current [mA] –14 –16 –18 –20 –22 –24 –50 0 50 100 150 Tc — Case temperature [°C] CLK open voltage vs. Temperature characteristics –1.25 CLK open voltage [V] –1.3 –1.35 –1.4 –1.45 –50 0 50 Tc — Case temperature [°C] – 13 – 100 150 CXA1166K VOH vs. Temperature characteristics –0.7 VOH [V] –0.8 –0.9 –1.0 –1.1 –50 50 0 100 150 Tc — Case temperature [°C] VOL vs. Temperature characteristics –1.7 VOL [V] –1.8 –1.9 –2.0 –2.1 –50 50 0 100 Tc — Case temperature [°C] SNR vs. Input frequency response characteristics 50 SNR [dB] 45 40 35 30 25 1 10 Input frequency [MHz] – 14 – 100 150 CXA1166K Harmonic distortion vs. Input frequency response characteristics Clock frequency : 250MHz –30 –40 –50 –60 –70 –80 0.1 10 1 100 Input frequency [MHz] Maximum conversion rate vs. Temperature characteristics 300 250 CLK [MHz] Harmonic distortion [dB] 2nd harmonic distortion 3rd harmonic distortion 200 150 Error rate = 10–8TPS Input frequency = CLK frequency/4 – 1kHz 16LSB or more error –25 25 75 125 Ta — Ambient temperature [°C] – 15 – 1000 CXA1166K Error rate vs. Conversion rate Error rate vs. Clock duty cycle Input frequency = CLK frequency/4–1kHz 16LSB or more error Error rate [TPS] 10–7 10–8 10–8 10–9 Input frequency = 125MHz, full-scale Clock frequency = 250MHz 16LSB or more error 10–10 250 200 300 10–9 CLK frequency [MHz] 25 30 35 40 45 50 55 CLK duty cycle [%] Supply current vs. Temperature characteristics –200 Supply current [mA] Error rate [TPS] 10–7 –250 –300 –350 –50 0 50 Tc — Case temperature [°C] – 16 – 100 150 60 65 70 CXA1166K 8-bit, 250 MSPS ADC Evaluation Board The CXA1166K PCB is a tool for customers to evaluate the performance of the CXA1166K (8-bit, 250MHz, high-speed A/D converter). In addition to indispensable features such as the reference voltage generator, this tool equips the input voltage offset generator, clock decimator, output date latches, 10-bit high-speed DAC, and 20-pin cable connector for digital outputs. This evaluation board is designed to facilitate evaluation. Features • Resolution: 8 bits • Maximum conversion rate: 250 MSPS • Supply voltage: –5.2V, –4.5V, –2.0V, +5.0V • Clock level converter: Sine wave to ECL level signal • Reference voltage adjustment circuit for A/D converter • Built-in clock frequency decimation circuit: 1/1 to 1/128 Fig. 1. Block Diagram VR2 (2k) VRB – 2V VR1 (2k) Vin OFFSET H VR3 (2k) SW4 VIN CXA1166K CLK X (– 2) 53 DIGITAL OUT (CONNECTOR) SW5 LINV MINV VRB J1 AMP.IN L 8 (D7 to D0) 8 (D7 to D0) DATA 8 (D7 to D0) LATCH CLK 2 (CLK.CLK) 8 (D7 to D0) SW2 DELAY SW1 D/A OUT D/A CONVERTER 0.1µ H DECIMATOR CLK CLK 51 SW3 + 5V (A) – 5.2V (A) INV L SW6 1/1 to 1/128 AGND DGND – 17 – – 5.2V (D) – 2V (D) – 4.5V (D) CXA1166K Supply Current Item Min. –5.2V +5.0V –4.5V –2.0 Typ. Max. Unit 0.65 17 0.9 0.7 0.9 40 1.1 0.9 A mA A A Typ. Max. Unit 0 V Ω Analog Input (AMP. IN) Item Min. Input voltage (AMP.IN) ∗ Input impedance –2.0 50 (∗ Adjustable with VR1) Clock input (CLK) Item Min. Input voltage (Peak to Peak) Input impedance Typ. Max. Unit 2.0 Vp-p 50 Ω Digital output (Digital OUT) ECL level Output Code Table VIN 1: ECL High level, 0: ECL Low level MINV (SW5) LINV (SW4) 0 0 0 1 1 0 1 1 0V : : : : : : : : –2V 1 1 1 …… 1 1 1 1 1 …… 1 0 : : 1 0 0 …… 0 0 0 1 1 …… 1 1 : : 0 0 0 …… 0 1 0 0 0 …… 0 0 1 0 0 …… 0 0 1 0 0 …… 0 1 : : 1 1 1 …… 1 1 0 0 0 …… 0 0 : : 0 1 1 …… 1 0 0 1 1 …… 1 1 0 1 1 …… 1 1 0 1 1 …… 1 0 : : 0 0 0 …… 0 0 1 1 1 …… 1 1 : : 1 0 0 …… 0 1 1 0 0 …… 0 0 0 0 0 …… 0 0 0 0 0 …… 0 1 : : 0 1 1 …… 1 1 1 0 0 …… 0 0 : : 1 1 1 …… 1 0 1 1 1 …… 1 1 – 18 – CXA1166K Fig. 2. Timing Diagram N A/D input pin (AMP. IN) Vin N+2 N+1 PCB input pin CLK CLK A/D clock CLK D7 to D0 A/D output N –1 N N –2 N –1 D7 to D0 PCB output pin (For 1/1 decimation) D7 to D0 N Tdh 1.8ns (Typ) CLKN PCB output pin (For 1/1 decimation) PCB output pin (For 1/2 decimation) CLK D7 to D0 N –4 N –2 N Tdh 1.8ns (Typ) CLKN PCB output pin (For 1/2 decimation) CLK Adjustment Methods and Notes on Operation 1) VIN Offset (VR1) The volume to adjust the AMP. IN signal range (0V center assumed) with the A/D converter input range. 2) A/D Full Scale (VR2) The volume to adjust A/D converter VRB voltage (–2V typ.). 3) Linearity (VR3) The volume to adjust the VRM (linearity) voltage by shorting the J1. – 19 – CXA1166K 4) D/A Full Scale (VR4) The volume to adjust the bottom of D/A output full scale voltage (–1V typ.) 5) SW1 and SW2 Selection switches to adjust the clock delay. These switches enable clock delay to be stepped to any one of 128 settings (binary code of “0000000” to “1111111”) through binary input. Approximately 163ps is delayed per one step. Normal evaluation requires the binary code of “0000000” (all of OFF), so that these switches are not mounted for shipment. 6) SW3 (Decimation) The switch to select clock frequency decimation. Selection settings are as follows. SW3 3 2 Decimation ratio 1 L L L 1/1 L L H 1/2 L H L 1/4 L H H 1/8 H L L 1/16 H L H 1/32 H H L 1/64 H H H 1/128 ∗ H = ECL High level ; L = ECL Low level 7) SW4 The switch for LINV High/Low. 8) SW5 The switch for MINV High/Low. 9) SW6 (D/A INV) The switch for D/A converter output inversion. – 20 – CXA1166K 10) The waveform monitoring pins P6 through P39 are designed to make connection to GND easily in order to reduce distortion when monitoring the waveform with an oscilloscope. As shown in the diagram below, the distance between the measuring point and GND is 300mil, and each is equipped with a through hole of 1.2mm. When a Tektronix ground chip (part No. 013-1185-00) is mounted on the tip of a probe, the signal – GND positions match. φ1.2mm GND Monitoring point Fig. 3. 11) D/A converter (IC9) input data (waveform monitoring pins P28 to P35) are the negative logic signals of the decimated A/D converter outputs. Those are inverted again in the D/A converter so that the direction (rise/fall) of reproduced waveform can agree with the A/D input signal's. 12) In order to maintain the accuracy of the reproduced waveform (waveform from A/D to D/A), set the decimator such that the clock frequency of the D/A converter (IC9: CX20201A-1) is less than 100MHz. 13) The input bandwidth weighs with the design of this PCB analog input circuit. Therefore, the SNR (signal-tonoise ratio) should be less significant. The input circuit example to improve the SNR is shown in Fig.4. See the measured data in Fig.s 6 to 8 for the SNR and the input circuit characteristics. 14) The part number of the digital output connector mounted on the PCB is KEL 8830E-020-170S. A corresponding connector and cable assembly is JUNKOSHA KB0020MCG50B1. – 21 – CXA1166K From offset circuit 5pF 560Ω VIN2 VIN2 240Ω 2 AMP. IN CLC409 3pF 30Ω 6 3 68Ω 120Ω VIN1 VIN1 AGND AGND VRB (– 2V) Fig. 4. Example of SNR Improvement Circuit – 22 – CLK AMP. IN 21 22 ∗ C4 0.1µ C5 0.1µ ∗ – 4.5V DGND (D) 10 IC5 CXB1103Q R6 1.3k 8 1 R8 51 17 18 15 IC1_2 16 7 IC1_1 1 – 2V (D) 8 2 R7 240 C9 0.1µ 4 8 Q1 2SA970 TL4558 IC12_2 7 2 3 6 ∗C12 0.1µ R11 10 GND J1 16 21 RBIAS ∗ C17 19 DOUTP 0.01µ 20 CBIAS IC3 CXB1159Q 12 13 14 15 26 27 11 10 31 ∗ C24 0.1µ 30 12 IC2 CXB1136Q 30 R23 ∗C26 51 0.1µ ∗ C25 0.1µ 28 29 32 11 10 – 5.2V (D) DGND 13 L1 FERRITE BEAD C27 0.1µ ∗ 32 31 CIMN 1 Q0 2 Q1 3 Q2 4 Q3 5 Q4 6 Q5 7 Q6 8 Q7 9 F2 1 F3 2 F4 3 F5 4 C0 5 C1 6 C2 7 C3 8 C4 9 DGND 28 29 DGND 15 14 26 27 16 P2 AGND – 2V GND – 4.5V DGND GND (D) (D) R22 51 25 D0 24 D1 23 D2 22 D3 21 D4 20 D5 19 D6 18 D7 17 NC 25 DINPB 24 DINP 23 SW 22 MR 60 NC IC6 CXA1166K 3 R28 51 5 ORN R27 P11 51 4 4 ∗ C70 0.1µ ∗C28 0.1µ 11 D4 19 D4N 20 D5 21 D5N 22 NC 23 NC 24 NC 26 NC 25 8 ∗ C36 0.1µ 26 DGND ∗ C29 0.1µ R26 51 25 DOA 24 DOB 23 DOC 22 DOD 21 DOE 20 DOF 19 DOG 18 DOH 17 MR 16 SW4 SW5 LINV MINV DGND 15 27 14 NORM INV 13 – 5.2V (D) P9 DGND ∗ C38 0.1µ DGND – 2V (D) 9 C37 1µ NC 10 NC 11 D2 12 D2N 13 D3 14 D3N 15 DGND2 16 DGND2 17 DGND1 18 R14 51 R15 51 R16 51 R17 51 R18 51 R19 51 R20 51 ∗C26 0.1µ ∗C35 0.1µ 7 R21 51 IC1_4 24 12 23 R25 51 ∗C30 0.1µ ∗C32 0.1µ – 2V GND (D) R24 51 5 6 3 IC1_3 DGND – 2V (D) DGND ∗ C33 0.1µ SW1 DELAY ADJ. 6 DGND SW2 DELAY ADJ. OR P10 2 DGND 61 62 63 64 65 66 67 68 1 ∗ C34 ∗ C19 0.1µ 0.1µ 18 DOUTPB 17 CAP 59 NC 58 AVEE 57 NC 56 AGND 55 VIN1 54 VIN1 53 AGND 52 VRM 51 AGND 50 VIN2 49 VIN2 48 AGND 47 NC 46 NC 45 NC C18 1µ FERRITE BEAD R12 51 GND – 2V (D) L2 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 C22 1µ ∗C23 0.1µ AGND AGND 44 NC ∗ C21 0.1µ P4 AVEE – 5.2V – 5.2V AGND (A) VRT P1 ∗ C16 1000p Linearity ∗C15 10p GND ∗C14 0.1µ – 5.2V AGND AGND (A) C13 1µ R10 4 CLC404AJP 24 IC11 7 R9 560 C11 1µ AGND VR3 1k + 5.2V (A) AGND AGND AGND C89 3P C8 3.3µ R8 1k AGND – 5.2V (A) AGND AGND ∗C7 0.1µ – 5.2V AGND R4 (A) 22k 4 TL4558 IC12_1 ∗ C1 0.1µ ∗ C2 0.1µ – 4.5V DGND (D) ∗ C3 0.1µ 21 22 10 9 9 IC1 CXB1103Q ∗: CHIP CAPACITOR DGND CXA1166K EVALUATION BOARD AGND R1 68 2 3 R2 11k AGND AGND R5 240 5 NC NC 6 CLK LINV Full Scale P7 MINV ORN VR2 2k P6 CLK CLKN R13 51 D6N D1 R3 510 ∗ C39 0.1µ D7 D0N Offset P5 VRBS D7N D0 IC13 TL431CP DIN D6 D1N VR1 2k DOUT DINB NC MR VCC VCC DGND CN VBB VBB GND VBB VEE VEE NC NC VEE VCCA VCCA VCCA VRB C6 NC CLKN OR DVEE NC DVEE AVEE AGND AVEE GND VCC DOUTB VRBS VRTS VRT C5 COUT VREF AVEE F1 DVEE 30 31 32 ∗C31 0.1µ SW3 DECIMATION – 4.5V DGND (D) DIA 1 DIB 2 DIC 3 DID 4 DIE 5 DIF 6 DIG 7 9 LEN1 DIH 8 GND 12 11 10 IC4 CXB1144Q 28 29 P8 – 5.2V (D) 4 5 IC5_5 3 6 11 12 IC5_1 R53 51 R54 51 INV 20 19 18 17 SW6 CLK P36 C52 0.1µ ∗ D1 P14 P19 D3N P23 D5N DGND CLKA R57 R58 51 51 P15 D1N DGND 22 VCCA 11 NC 14 CLK 13 CLKN 12 NC 5 IC5_4 8 7 AGND DGND 6 – 5.2V (A) VR4 2k R63 1k ∗ C43 0.1µ – 5.2V (D) C54 1µ DGND DGND DGND ∗ C55 0.1µ Q3 8 VCC 9 Q3M 7 – 2V DGND (D) 4 Q2 12 Q2M 11 VCCA 10 ∗ C57 ∗ C58 C59 0.1µ 0.1µ 1µ ∗ C53 0.1µ DVEE 15 INV 16 DGND 17 AGND 18 NC 19 OUT 20 NC 21 NC 22 NC 23 NC 24 VREF 27 AGND 28 2 1 R60 51 ∗ C49 0.1µ 5 D5 9 D9 3 R44 51 IC8 CXB1109Q R42 R43 51 51 2 – 2V DGND (D) R41 51 1 24 MR 23 VBB ∗C42 0.1µ – 2V DGND (D) 6 13 NC 25 8 D8 5 14 21 VEE IC9 CXA20201 4 Q3M 7 Q3 8 VCC 9 VCCA 10 Q2M 11 Q2 12 13 16 15 AVEE 26 7 D7 3 R37 R38 R39 R40 51 51 51 51 3 D3 6 D6 IC7 CXB1109Q 14 17 20 CB R59 51 2 16 15 18 19 CA CLKB DGND 17 R33 R34 R35 R36 51 51 51 51 1 24 MR 23 VBB 22 VCCA 21 VEE ∗ C41 0.1µ P39 18 20 CB 19 CA ∗C40 0.1µ – 2V DGND (D) R29 R30 R31 R32 51 51 51 51 4 D4 2 D2 1 D1 10 LSB IC5_3 14 13 16 15 IC5_2 C60 0.1µ CLKN P37 NORM INV DGND – 2V DGND (D) R65 51 R66 51 DGND DGND ∗C51 0.1µ ∗C50 0.1µ – 2V (D) D7 P28 D6 P29 D5 P30 D4 P31 P18 D3 P22 D5 ∗C48 R55 R56 0.1µ 51 51 R45 51 R46 51 R47 51 R48 51 R49 51 R50 51 R51 51 R52 51 23 24 D3 P32 D2 P33 D0N P13 – 2V DGND (D) D1 P34 D0 P35 P17 P16 D0 D7N P27 R61 51 – 2V (D) ∗ C46 0.1µ – 4.5V DGND (D) ∗ C47 0.1µ D2N P21 P20 D2 D4N D4 P12 D7 P26 R62 P38 51 – 2V (D) ∗ C44 0.1µ – 4.5V DGND (D) ∗ C45 0.1µ D6N P25 D6 P24 D2N D3 AVEE COUTN D2 D3N ∗C10 0.1µ QON D1N Q4N – 5V (A) AGND QO S1 S0 F0 C QIN VEE VEE VCCA S2 VCCA VCCA VCC VEE D2 D3N D1 D4 AVEE S1 LEN2 NC Q1 Q4N Q1 Q4 AVEE S2 QI NC – 23 – VCCA D2N D3 D1N D4 Q1N Q4 D1 D4N Q1N D4N Fig. 5. Schematic Diagram TL431CP IC10 R64 270 AGND DGND DGND VTT P40 DVEE P41 ( – 4.5) + 5V P42 D4 9 AGND DGND DGND C61 33µ C62 33µ DGND DGND C63 33µ AGND C64 33µ AGND AGND C65 33µ CLKN DGND 19 DGND DGND CLK D7 15 DGND DGND DGND DGND DGND 17 D6 13 D5 D3 7 11 D2 5 DGND D1 3 Digital OUT D0 DGND (LSB) 1 DGND D/A OUT – 2V (D) – 4.5V (D) DGND – 5.2V (D) – 5.2V (A) AGND + 5V (A) 20 18 16 14 12 10 8 6 4 2 CXA1166K CXA1166K Characteristics Fig.6. Gain vs. Input frequency 2 0 Gain [dB] –2 –4 –6 –8 Fig.5. CXA1166K PCB Schematic Diagram Fig.4. Example of SNR Improvement Circuit – 10 – 12 5 10 100 300 Input frequency [MHz] Fig.7. SNR vs. Input frequency 50 SNR [dB] 45 40 35 Fig.5. CXA1166K PCB Schematic Diagram Fig.4. Example of SNR Improvement Circuit 30 25 1 10 100 200 Input frequency [MHz] 2nd, 3rd Harmonic distortion [dB] – 20 – 30 – 40 Fig.8. 2nd, 3rd Harmonic distortion vs. Input frequency Fig.5. Schematic Diagram (2nd Harmonic distortion) Fig.5. Schematic Diagram (3rd Harmonic distortion) Fig.4. Example of SNR Improvement Circuit (2nd Harmonic distortion) Fig.4. Example of SNR Improvement Circuit (3rd Harmonic distortion) – 50 – 60 – 70 – 80 1 10 Input frequency [MHz] – 24 – 100 200 CXA1166K Parts Layout Component side Soldering side – 25 – CXA1166K Printed Pattern Component side Soldering side – 26 – CXA1166K GND layer (inner layer) VEE layer (inner layer) – 27 – CXA1166K Unit: mm 68PIN LCC (CERAMIC) 1.27 ± 0.2 1.27 ± 0.1 C 1 1.9 ± 0.25 20.32 ± 0.1 21.59 ± 0.2 + 0.38 24.13 – 0.25 1.27 0.915 ± 0.07 1.65 ± 0.18 0.3 15.85 ± 0.2 1.95 ± 0.25 Package Outline R0.2 PIN NO.1 INDEX 2.16 ± 0.25 PACKAGE STRUCTURE PACKAGE MATERIAL CERAMIC SONY CODE LCC-68C-01 LEAD TREATMENT GOLD PLATING EIAJ CODE ∗QFN068-C-S950-A LEAD MATERIAL JEDEC CODE PACKAGE WEIGHT – 28 – 3.7g