HUF75321D3ST Data Sheet 20A, 55V, 0.036 Ohm, N-Channel UltraFET Power MOSFETs These N-Channel power MOSFETs are manufactured using the innovative UltraFET® process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable and battery-operated products. November 2010 Features • 20A, 55V • Simulation Models - Temperature Compensating PSPICE® and SABER™ Models - Thermal Impedance SPICE and SABER Models Available on the web at: www.fairchildsemi.com • Peak Current vs Pulse Width Curve • UIS Rating Curve • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Formerly developmental type TA75321. Symbol Packaging D JEDEC TO-252AA G DRAIN (FLANGE) S GATE SOURCE Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html For severe environments, see our Automotive HUFA series. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2010 Fairchild Semiconductor Corporation HUF75321D3ST Rev. C HUF75321D3ST Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified UNITS V V V 55 55 ±20 Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . .TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . Tpkg 20 Figure 4 Figures 6, 14, 15 93 0.625 -55 to 175 A W W/oC oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 55 - - V VDS = 50V, VGS = 0V - - 1 µA VDS = 45V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±20V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ID = 250µA, VGS = 0V (Figure 11) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V Drain to Source On Resistance rDS(ON) ID = 20A, VGS = 10V (Figure 9) - 0.030 0.036 Ω THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC (Figure 3) - - 1.6 oC/W Thermal Resistance Junction to Ambient RθJA TO-251, TO-252 - - 100 oC/W VDD = 30V, ID ≅ 20A, RL = 1.5Ω, VGS = 10V, RGS = 25Ω - - 100 ns - 11 - ns tr - 55 - ns td(OFF) - 47 - ns tf - 66 - ns tOFF - - 170 ns - 36 44 nC - 21 26 nC - 1.3 1.6 nC - 3 - nC - 9 - nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time tON td(ON) GATE CHARGE SPECIFICATIONS Qg(TOT) VGS = 0V to 20V Gate Charge at 10V Qg(10) VGS = 0V to 10V Threshold Gate Charge Qg(TH) VGS = 0V to 2V Total Gate Charge Gate to Source Gate Charge Qgs Reverse Transfer Capacitance Qgd ©2010 Fairchild Semiconductor Corporation VDD = 30V, ID ≅ 20A, RL = 1.5Ω Ig(REF) = 1.0mA (Figure 13) HUF75321D3ST Rev. C HUF75321D3ST TC = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS - 680 - pF - 270 - pF - 60 - pF CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage MIN TYP MAX UNITS ISD = 20A - - 1.25 V trr ISD = 20A, dISD/dt = 100A/µs - - 59 ns QRR ISD = 20A, dISD/dt = 100A/µs - - 82 nC VSD Reverse Recovery Time Reverse Recovered Charge TEST CONDITIONS Typical Performance Curves 25 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 20 15 10 5 0 175 25 50 FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 75 100 125 150 175 TC, CASE TEMPERATURE (oC) TC , CASE TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 -5 10 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE ©2010 Fairchild Semiconductor Corporation HUF75321D3ST Rev. C HUF75321D3ST Typical Performance Curves (Continued) IDM, PEAK CURRENT (A) 500 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 - TC I = I25 100 150 VGS = 20V VGS = 10V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY ID, DRAIN CURRENT (A) T J = MAX RATED T C = 25 oC 100 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) IAS, AVALANCHE CURRENT (A) 300 300 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BV DSS - VDD) +1] 100 STARTING TJ = 25oC 10 STARTING TJ = 150oC 10ms VDSS(MAX) = 55V 1 0.01 1 1 10 100 200 10 1 0.1 tAV, TIME IN AVALANCHE (ms) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 75 VGS = 20V VGS = 10V VGS = 8V VGS = 7V 60 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 75 FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY VGS = 6V 45 30 VGS = 5V 15 0 1.5 3.0 4.5 6.0 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. SATURATION CHARACTERISTICS ©2010 Fairchild Semiconductor Corporation 60 175 oC 45 30 15 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 0 -55oC 25oC 7.5 0 0 VDD = 15V 1.5 3.0 4.5 6.0 VGS, GATE TO SOURCE VOLTAGE (V) 7.5 FIGURE 8. TRANSFER CHARACTERISTICS HUF75321D3ST Rev. C HUF75321D3ST Typical Performance Curves 1.2 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 20A NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE 2.5 (Continued) 2.0 1.5 1.0 0.5 -80 -40 0 40 80 120 160 VGS = VDS, ID = 250µA 1.0 0.8 0.6 -80 200 -40 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 40 80 120 160 200 FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 1000 1.2 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD ID = 250µA 800 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 0 TJ, JUNCTION TEMPERATURE (oC) 1.1 1.0 CISS 600 400 COSS 200 CRSS 0.9 -80 -40 0 40 80 120 160 0 200 0 10 TJ , JUNCTION TEMPERATURE (oC) 20 30 40 50 60 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE VGS , GATE TO SOURCE VOLTAGE (V) 10 8 6 4 2 VDD = 30V 0 0 5 10 WAVEFORMS IN DESCENDING ORDER: ID = 20A ID = 10A ID = 5A 15 20 25 Qg, GATE CHARGE (nC) NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT ©2010 Fairchild Semiconductor Corporation HUF75321D3ST Rev. C HUF75321D3ST Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS IAS + RG VDS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + VDD VGS = 10V VGS DUT VGS = 2V IG(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS - VDD 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT ©2010 Fairchild Semiconductor Corporation 10% 50% 50% PULSE WIDTH FIGURE 19. RESISTIVE SWITCHING WAVEFORMS HUF75321D3ST Rev. C HUF75321D3ST PSPICE Electrical Model .SUBCKT HUF75321D 2 1 3 ; rev 4/29/98 CA 12 8 9.96e-10 CB 15 14 9.83e-10 CIN 6 8 6.18e-10 LDRAIN DPLCAP DRAIN 2 5 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD ESLC 11 - EBREAK 11 7 17 18 59.54 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 + 50 - LDRAIN 2 5 1e-9 LGATE 1 9 3.57e-9 LSOURCE 3 7 4.25e-9 EVTEMP RGATE + 18 22 9 20 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 5.50e-3 RGATE 9 20 2.25 RLDRAIN 2 5 10 RLGATE 1 9 35.7 RLSOURCE 3 7 42.5 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 16.30e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 5 51 IT 8 17 1 RLDRAIN RSLC1 51 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*101),2.5))} .MODEL DBODYMOD D (IS = 7.47e-13 RS = 6.45e-3 TRS1 = 2.01e-3 TRS2 = 1.21e-6 CJO = 1.02e-9 TT = 3.21e-8 M = 0.50) .MODEL DBREAKMOD D (RS = 2.01e- 1TRS1 = 3.62e- 3TRS2 = 6.01e-7) .MODEL DPLCAPMOD D (CJO = 9.0e-1 0IS = 1e-3 0N = 10 M = 0.85) .MODEL MMEDMOD NMOS (VTO = 3.25 KP = 1.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.25) .MODEL MSTROMOD NMOS (VTO = 3.65 KP = 32.00 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.91 KP = 0.07 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 22.5 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.05e- 3TC2 = 1.21e-7) .MODEL RDRAINMOD RES (TC1 = 2.40e-2 TC2 = 1.02e-6) .MODEL RSLCMOD RES (TC1 = 2.07e-4 TC2 = 4.67e-5) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 =0) .MODEL RVTHRESMOD RES (TC = -3.01e-3 TC2 = -8.85e-6) .MODEL RVTEMPMOD RES (TC1 = -1.96e- 3TC2 = 1.39e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -7.85 VOFF= -4.85) VON = -4.85 VOFF= -7.85) VON = 0.00 VOFF= 3.00) VON = 3.00 VOFF= 0.00) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2010 Fairchild Semiconductor Corporation HUF75321D3ST Rev. C HUF75321D3ST SABER Electrical Model REV April 1998 template huf75321d n2, n1, n3 electrical n2, n1, n3 { var i iscl d..model dbodymod = (is = 7.47e-13, cjo = 1.02e-9, tt = 3.21e-8, m = 0.5) d..model dbreakmod = () d..model dplcapmod = (cjo = 9e-10, is = 1e-30, n = 10, m = 0.85) m..model mmedmod = (type=_n, vto = 3.25, kp = 1.75, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.65, kp = 32, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.91, kp = 0.07, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -7.85, voff = -4.85) sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -4.85, voff = -7.85) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = 3.0) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 3.0, voff = 0) 10 RSLC1 51 i.it n8 n17 = 1 RDRAIN 6 8 EVTHRES + 19 8 EVTEMP RGATE + 18 22 9 20 21 MWEAK DBODY EBREAK + 17 18 MMED MSTRO CIN 71 11 16 6 - 8 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 =3.57e-9 l.lsource n3 n7 = 4.25e-9 RDBODY DBREAK 50 RLGATE LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A 12 m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = 1.21e-7 res.rdbody n71 n5 = 6.45e-3, tc1 = 2.01e-3, tc2 = 1.21e-6 res.rdbreak n72 n5 = 2.01e-1, tc1 = 3.62e-3, tc2 = 6.01e-7 res.rdrain n50 n16 = 5.5e-3, tc1 = 2.4e-2, tc2 = 1.02e-6 res.rgate n9 n20 = 2.25 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 35.7 res.rlsource n3 n7 = 42.5 res.rslc1 n5 n51 = 1e-6, tc1 = 2.07e-4, tc2 = 4.67e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 16.3e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.96e-3, tc2 = 1.39e-6 res.rvthres n22 n8 = 1, tc1 = -3.01e-3, tc2 = -8.85e-6 72 ISCL + GATE 1 RLDRAIN RDBREAK RSLC2 ESG LGATE DRAIN 2 5 - c.ca n12 n8 = 9.96e-10 c.cb n15 n14 = 9.83e-10 c.cin n6 n8 = 6.18e-10 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod LDRAIN DPLCAP S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 59.54 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc = 1 equations { i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/101))** 2.5)) } } ©2010 Fairchild Semiconductor Corporation HUF75321D3ST Rev. C HUF75321D3ST SPICE Thermal Model th REV 24 February 1999 JUNCTION HUF75321D CTHERM1 th 6 2.7e-3 CTHERM2 6 5 3.7e-3 CTHERM3 5 4 1.2e-2 CTHERM4 4 3 3.8e-3 CTHERM5 3 2 1.4e-2 CTHERM6 2 tl 10.55 RTHERM1 th 6 1.10e-2 RTHERM2 6 5 2.72e-2 RTHERM3 5 4 7.67e-2 RTHERM4 4 3 4.30e-1 RTHERM5 3 2 6.49e-1 RTHERM6 2 tl 8.61e-2 SABER Thermal Model RTHERM1 CTHERM1 6 RTHERM2 CTHERM2 5 RTHERM3 CTHERM3 SABER thermal model HUF75321D template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 2.7e-3 ctherm.ctherm2 6 5 = 3.7e-3 ctherm.ctherm3 5 4 = 1.2e-2 ctherm.ctherm4 4 3 = 3.8-3 ctherm.ctherm5 3 2 = 1.4e-2 ctherm.ctherm6 2 tl = 10.55 rtherm.rtherm1 th 6 = 1.10e-3 rtherm.rtherm2 6 5 = 2.72e-2 rtherm.rtherm3 5 4 = 7.67e-2 rtherm.rtherm4 4 3 = 4.30e-1 rtherm.rtherm5 3 2 = 6.49e-1 rtherm.rtherm6 2 tl = 8.61e-2 } 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2010 Fairchild Semiconductor Corporation CASE HUF75321D3ST Rev. C TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax™ ESBC™ F-PFS™ FRFET® SM Global Power Resource Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ OptoHiT™ OPTOLOGIC® OPTOPLANAR® ® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FlashWriter®* FPS™ ® PDP SPM™ Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ ™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™ ® * The Power Franchise® TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* μSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Advance Information Formative / In Design Preliminary First Production No Identification Needed Full Production Obsolete Not In Production Definition Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I48 © Fairchild Semiconductor Corporation www.fairchildsemi.com