Application Note Usage and Applications of 6-Pin Super Mini-Mold Silicon Medium-Power High-Frequency Amplifier MMIC µPC2708TB/2709TB/2710TB µPC2762TB/2763TB µPC2771TB/2776TB Document No. P13252EJ2V0AN00 (2nd edition) Date Published May 1999 N CP(K) 1998, 1999 © Printed in Japan [MEMO] 2 Application Note P13252EJ2V0AN00 The information in this document will be updated without notice. This document introduces general applications of the products in this series. The application circuits and circuit constants in this document are examples and not intended for use in actual mass production design. In addition, please take note that restrictions of the application circuit or standardization of the application circuit characteristics are not intended. Especially, characteristics of high-frequency ICs change depending on the external components and mounting pattern. Therefore, the external circuit constants should be determined based on the required characteristics on your planned system referring to this document and characteristics should be checked before using these ICs. • The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. • NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. • Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. • While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. • NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. M7 98. 8 Application Note P13252EJ2V0AN00 3 [MEMO] 4 Application Note P13252EJ2V0AN00 CONTENTS 1. INTRODUCTION............................................................................................................................... 7 2. PRODUCT LINEUP ......................................................................................................................... 7 2.1 Characteristics ....................................................................................................................................... 7 2.2 Test Circuit ............................................................................................................................................. 9 APPLICATION CHARACTERISTIC EXAMPLE ............................................................................ 10 3.1 µPC2708TB, µPC2709TB, µPC2710TB.................................................................................................. 11 3.2 µPC2762TB, µPC2763TB, µPC2771TB.................................................................................................. 17 3.3 µPC2776TB ............................................................................................................................................. 31 CONCLUSION .................................................................................................................................. 32 APPENDIX S PARAMETER REFERENCE VALUES (TA = +25°C) .................................................... 33 3. 4. Precautions for design-ins (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference. (3) The bypass capacitor should be attached to the VCC pin. (4) The inductor must be attached between VCC pin and output pin. The inductance value should be determined in accordance with desired frequency. (5) The DC cut capacitor must be each attached to the input and output pins. (6) Apply voltage only to VCC pin and output pin. Do not apply voltage to input pin nor regulate input pin voltage (e.g. direct DC pull-down). (7) External components cannot modify the IC’s internal circuit feedback. Application Note P13252EJ2V0AN00 5 [MEMO] 6 Application Note P13252EJ2V0AN00 1. INTRODUCTION The application for high-frequency devices has grown to include not only TV/VCR tuners and cable TV converters but also, more recently, DBS, cellular phones, pagers, and GPS. In addition, since the systems are shrinking in size, the ICs used must also become more compact. NEC has been selling the silicon medium-power high-frequency amplifier ICs µPC2708 to 2710T, µPC2762/63T, and µPC2771/76T, which are 6-pin mini-mold products (size 2915). Now, a new lineup of 6-pin super mini-mold products, which are even smaller, has been released. This application note introduce application characteristics for the 6-pin super mini-mold silicon medium-power high-frequency amplifier ICs. See the data sheet for each product for details of the product’s ratings, specifications, and use conditions. 2. PRODUCT LINEUP 2.1 Characteristics Table 2-1 shows the lineup of silicon medium-power high-frequency amplifiers, which are the super mini-mold (size 2012) versions of the existing products, which employ package size 2915. Table 2-1. 6-Pin Super Mini-Mold Silicon Medium-Power High-Frequency Amplifier MMIC Product Lineup (TA = +25°C, VCC = Vout = 5.0 V or 3.0 V, ZL = ZS = 50 Ω ) Part Number (discrete part number) VCC (V) fu (GHz) PO (1dB) (dBm) PO (sat) (dBm) GP (dB) NF (dB) ICC (mA) Marking µPC2708TB 4.5 to 5.5 2.9 − +10.0 15 6.5 26 C1D µPC2709TB 2.3 +9.0 +11.5 23 5.0 25 C1E µPC2710TB 1.0 − +13.5 33 3.5 22 C1F µPC2776TB 2.7 +6.5 +8.5 23 6.0 25 C2L 2.9 +8.0 +9.0 13 6.5 26.5 C1Z µPC2763TB 2.7 +9.5 +11.0 20 5.5 27 C2A µPC2771TB 2.2 +11.5 +12.5 21 6.0 36 C2H µPC2762TB Remark 2.7 to 3.3 The above values are typical values for major characteristics. See each product’s data sheet for detailed ratings, characteristic, etc. The same part number is used for the product name. However, “TB” is assigned as the package code for the super mini-mold model, while “T” is assigned for the conventional mini-mold model. The same chip is used for products having the same part number, but the lead frame and package size have been changed to smaller one. Therefore, even though there may be a slight shift in the characteristics due to differences in the lead inductance or package capacitance, the characteristics obtained for the super mini-mold products are practically equivalent to those of the conventional mini-mold products since the same chips are used. The super mini-mold product weighs approximately half as much as the mini-mold product. The weight of the mini-mold product is 13 mg, while the super mini-mold version is only 7 mg. The markings on the super mini-mold products use the same symbols as the conventional mini-mold products having the same part numbers, but the products can be distinguished by their package sizes. Figure 2-1 shows the external view of the 6-pin super minimold package, and Figure 2-2 shows the appearance of the product markings. Application Note P13252EJ2V0AN00 7 Since the theoretical descriptions for the 6-pin super mini-mold products and the 6-pin mini-mold products are the same because the same chips are used, refer to the Application Note Usage and Application of Silicon MediumPower High-Frequency Amplifier MMIC µPC1677 to 1679, µPC2708 to 2710, µPC2762/2763, µPC2771/2776 (Document No.: P12152E) describing the 6-pin mini-mold products. Figure 2-1. Package Drawing of the 6-Pin Super Mini-Mold Silicon Medium-Power High-Frequency Amplifier MMIC 0.15 +0.1 –0 2.1 ± 0.1 1.25 ± 0.1 0.1 MIN. 0.2 +0.1 –0 0 to 0.1 0.65 0.65 0.7 1.3 0.9 ± 0.1 2.0 ± 0.2 (Unit: mm) Figure 2-2. Marking Example 3 2 1 Remark 8 C1E (Top View) (Bottom View) 4 4 3 5 5 2 6 6 1 The marking example shown in the above figure corresponds to µPC2709TB. Application Note P13252EJ2V0AN00 2.2 Test Circuit The 6-pin super mini-mold products use the same test circuit, in which a bias-tee is used on the output side, as is used for the conventional 6-pin mini-mold products. Since the package width and pin pitch are smaller, the test board that is used has smaller mount pads. Figure 2-3 shows the layout of the test board AMP2, which is used for the 6-pin super mini-mold products. Figure 2-3. 6-Pin Super Mini-Mold Common Test Board (AMP2) AMP-2 3 Top view (marking surface) 1 2 IN OUT 6 5 4 C 1E → IC orientation (Marking example: µ PC2709TB) VCC Notes on printed board • Board material... Loss can be reduced depending on the material of PCB. A polyamide double-sided PCB is used to maximize the performance of the IC itself. • Back side .......... Whole surface is ground pattern. Through holes keep the ground characteristics of the IC mounting side. • Specifications .... AMP2 board dimensions: 30 × 30 × 0.4 (mm), with 35-µm thick copper patterning on both sides Application Note P13252EJ2V0AN00 9 3. APPLICATION CHARACTERISTIC EXAMPLE The characteristics of the 6-pin super mini-mold products’ test circuit, in which a bias-tee is used, are described in the data sheet. This document introduces the results of evaluating whether or not similar characteristics are obtained as were obtained for the conventional 6-pin mini-mold product, when configuring the application circuit on the AMP2 board using similar inductor parts. As the size of these super mini-mold products is smaller, they are expected to be increasingly used in cellular phones. Substantial evaluation data is provided of adjacent channel interference power when inputting PDC, PHS, or GSM modulated signals. Figure 3-1 shows the application circuit configuration, and Table 3-1 summarizes specifications of the external inductors used for measurements of the application characteristic example. Figure 3-1. Application Circuit Configuration AMP-2 C: 1000 pF 3 Top view (marking surface) 1 2 IN OUT C C 6 L 5 4 C 1E → IC orientation (Marking example: µ PC2709TB) VCC C Table 3-1. Summary of Specifications of the External Inductors Used For Measurements of the Application Characteristic Example Form Manufacturer Name Wire-wound chip TOKO inductor 10 Product Name Inductance FSLU2520-*** 10-nH to 300-nH Q DC Resistance Self-Resonance Frequency Allowable Current 15 to 30 MIN. 0.15 to 0.42 Ω 360 to 2300 MHz 380 to 790 mA Application Note P13252EJ2V0AN00 3.1 µPC2708TB, µPC2709TB, µPC2710TB The external inductor values vs. gain frequency characteristics of the µPC2708TB, µPC2709TB, and µPC2710TB were measured using similar wire-wound chip inductors as were externally attached to the µPC2708T, µPC2709T, and µPC2710T. Figures 3-2, 3-3, and 3-4 show those characteristics. Since the µPC2708TB, µPC2709TB, and µPC2710TB have a circuit in which the output pin and the input-state/output-state peaking capacitance are linked, the peaking frequency is easily shifted to a higher frequency according to the external inductor value at the output pin. When a 10-nH inductor was used in this evaluation, a gain of approximately 22 dB was ensured at 2.7 GHz. Next, the 10-nH inductor was used to evaluate the characteristics of when these ICs are used in a frequency band of 1 GHz or more. Figures 3-5, 3-6, and 3-7 show those characteristics. Figure 3-2. µPC2708TB Power Gain vs. Frequency Characteristics External Inductor Value Dependencies (Conditions: TA = +25°C, VCC = Vout = 5.0 V, ZS = ZL = 50 Ω ) 16 L = 100 nH 3 14 MARKER 1 MARKER 2 MARKER 3 MARKER 4 MARKER 5 2 1 L = 10 nH L = 10 nH 100 MHz 1000 MHz 2000 MHz 2500 MHz 3000 MHz Power gain GP (dB) L = 33 nH 12 4 L = 100 nH 10 L = 33 nH 5 8 6 0.1 1.0 1.9 START 0.100000000 GHz STOP 3.100000000 GHz 2.5 3.1 Frequency f (GHz) Application Note P13252EJ2V0AN00 11 Figure 3-3. µPC2709TB Power Gain vs. Frequency Characteristic External Inductor Value Dependencies (Conditions: TA = +25°C, VCC = Vout = 5.0 V, ZS = ZL = 50 Ω ) 26 MARKER 1 MARKER 2 MARKER 3 MARKER 4 MARKER 5 24 L = 33 nH 100 MHz 1000 MHz 2000 MHz 2500 MHz 3000 MHz Power gain GP (dB) L = 10 nH 22 3 2 L = 22 nH 4 L = 33 nH 20 L = 10 nH L = 22 nH 18 1 16 5 0.1 1.0 1.9 2.5 3.1 START 0.100000000 GHz STOP 3.100000000 GHz Frequency f (GHz) Figure 3-4. µPC2710TB Power Gain vs. Frequency Characteristics External Inductor Value Dependencies (Conditions: TA = +25°°C, VCC = Vout = 5.0 V, ZS = ZL = 50 Ω ) 34 L = 330 nH 2 MARKER 1 100 MHz MARKER 2 500 MHz MARKER 3 1000 MHz MARKER 4 2000 MHz 30 Power gain GP (dB) L = 100 nH 3 1 26 L = 10 nH 4 22 18 14 0.1 0.5 0.9 START 0.100000000 GHz STOP 2.100000000 GHz 1.5 Frequency f (GHz) 12 Application Note P13252EJ2V0AN00 2.1 Figure 3-5. µPC2708TB Frequency Characteristics with 10-nH Inductor (1/2) (Conditions: TA = +25°°C, VCC = Vout, ZS = ZL = 50 Ω ) Output Power vs. Input Power (a) Vcc = Vout = 5.0 V +15 +5 VCC = 5.0 V f = 2.0 GHz +10 f = 1.0 GHz 0 f = 2.15 GHz −5 −10 f = 2.9 GHz −15 −20 Output power Pout (dBm) Output power Pout (dBm) +10 (b) f = 1.0 GHz +15 VCC = 5.5 V f = 1.0 GHz +5 VCC = 5.0 V 0 VCC = 4.5 V −5 −10 −15 −20 −25 −30 −35 −30 −25 −20 −15 −10 −5 0 Input power Pin (dBm) −25 −35 −30 −25 −20 −15 −10 −5 0 Input power Pin (dBm) +5 +10 (c) f = 2.0 GHz +15 f = 2.0 GHz VCC = 5.5 V +10 +5 0 VCC = 5.0 V −5 VCC = 4.5 V −10 −15 −20 Output power Pout (dBm) Output power Pout (dBm) +10 (d) f = 2.15 GHz +15 +10 +5 f = 2.15 GHz VCC = 5.5 V +5 0 −5 VCC = 5.0 V VCC = 4.5 V −10 −15 −20 −25 −35 −30 −25 −20 −15 −10 −5 0 Input power Pin (dBm) +5 +10 −25 −35 −30 −25 −20 −15 −10 −5 0 Input power Pin (dBm) +5 +10 (e) f = 2.9 GHz +10 Output power Pout (dBm) +5 f = 2.9 GHz VCC = 5.5 V 0 −5 VCC = 5.0 V VCC = 4.5 V −10 −15 −20 −25 −30 −35 −30 −25 −20 −15 −10 −5 0 +5 +10 Input power Pin (dBm) Application Note P13252EJ2V0AN00 13 Figure 3-5. µPC2708TB Frequency Characteristics with 10-nH Inductor (2/2) (Conditions: TA = +25°°C, VCC = Vout, ZS = ZL = 50 Ω ) Noise Factor vs. Frequency 9 Noise factor NF (dB) VCC = 5.5 V 8 VCC = 5.0 V 7 6 5 0.1 VCC = 4.5 V 0.3 1.0 Frequency f (GHz) 14 Application Note P13252EJ2V0AN00 3.0 Figure 3-6. µPC2709TB Frequency Characteristics with 10-nH Inductor (Conditions: TA = +25°C, VCC = Vout, ZS = ZL = 50 Ω ) Output Power vs. Input Power (a) Vcc = Vout = 5.0 V (b) f = 1.0 GHz +15 +15 f = 1.0 GHz VCC = 5.0 V +10 f = 1.0 GHz Output power Pout (dBm) Output power Pout (dBm) +10 +5 f = 2.0 GHz 0 f = 2.15 GHz –5 –10 VCC = 5.5 V +5 VCC = 5.0 V 0 VCC = 4.5 V –5 –10 –15 –15 –20 –35 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) –20 –35 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 +10 (c) f = 2.0 GHz (d) f = 2.15 GHz +15 +15 f = 2.0 GHz f = 2.15 GHz +10 +10 VCC = 5.5 V Output power Pout (dBm) Output power Pout (dBm) +5 +10 +5 VCC = 5.0 V 0 –5 VCC = 4.5 V –10 –15 VCC = 5.5 V +5 VCC = 5.0 V 0 –5 VCC = 4.5 V –10 –15 –20 –35 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 +10 –20 –35 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 +10 Noise factor vs. Frequency Noise factor NF (dB) 6 VCC = 5.5 V 5 VCC = 4.5 V VCC = 5.0 V 4 3 0.1 0.3 1.0 3.0 Frequency f (GHz) Application Note P13252EJ2V0AN00 15 Figure 3-7. µPC2710TB Frequency Characteristics with 10-nH Inductor (Conditions: TA = +25°°C, VCC = Vout, ZS = ZL = 50 Ω ) Output Power vs. Input Power (a) Vcc = Vout = 5.0 V +15 (b) f = 0.5 GHz +20 f = 1.0 GHz VCC = 5.0 V +15 Output power Pout (dBm) Output power Pout (dBm) +10 f = 500 MHz +5 0 −5 f = 0.5 GHz +10 +5 0 −5 +5 +10 −15 −40 −35 −30 −25 −20 −15 −10 −5 Input power Pin (dBm) (c) f = 1.0 GHz +20 Output power Pout (dBm) VCC = 5.5 V f = 1.0 GHz +10 +5 VCC = 5.0 V 0 VCC = 4.5 V −5 −10 −15 −40 −35 −30 −25 −20 −15 −10 −5 0 +5 +10 Input power Pin (dBm) Noise Factor vs. Frequency Noise factor NF (dB) 5 4.5 VCC = 5.5 V 4 3.5 VCC = 5.0 V VCC = 4.5 V 3 0.1 0.3 1.0 3.0 Frequency f (GHz) 16 VCC = 5.0 V VCC = 4.5 V −10 −10 −40 −35 −30 −25 −20 −15 −10 −5 0 Input power Pin (dBm) +15 VCC = 5.5 V Application Note P13252EJ2V0AN00 0 +5 +10 3.2 µPC2762TB, µPC2763TB, µPC2771TB The external inductor values vs. gain frequency characteristics of the µPC2762TB, µPC2763TB, and µPC2771TB were measured using similar wire-wound chip inductors as were attached to the µPC2762T, µPC2763T, and µPC2771T. Figures 3-8, 3-9, and 3-10 show those characteristics. For the µPC2762TB, reducing the inductor value increased the maximum gain, shifted the curve towards the higher frequency region, and narrowed the band in which the higher gain values occurred. For the µPC2763TB and µPC2771TB, although the gain did not vary when the inductor value changed, reducing the inductor value shifted the curve towards the higher frequency region. Next, as an application characteristic when these ICs are used in the transmission stage of a mobile communications device, the adjacent channel interference power was measured in an application circuit using a 300-nH inductor. The measurement conditions were applied using the PDC800M, PDC1.5G, PHS (1.9 GHz), and GSM900. For the µPC2762TB, µPC2763TB, and µPC2771TB, the adjacent channel interference power in the linear region had a satisfactory value of –60 dBc or less with detuning at each frequency. Also, for the GSM900 conditions, even the adjacent channel interference power in the saturated region had a satisfactory value of –60 dBc or less with detuning at ±400 kHz. Figures 3-11, 3-12, and 3-13 show these characteristics. Figure 3-8. µPC2762TB Power Gain vs. Frequency Characteristic External Inductor Value Dependencies (Conditions: TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω ) 18 L = 10 nH MARKER 1 100 MHz MARKER 2 900 MHz MARKER 3 1900 MHz MARKER 4 2500 MHz MARKER 5 3000 MHz L = 22 nH 16 Power gain GP (dB) L = 33 nH 4 3 L = 100 nH 14 L = 33 nH 2 12 L = 100 nH L = 22 nH 10 5 L = 10 nH 8 1.0 1 1.9 2.5 3.1 START 0.100000000 GHz STOP 3.100000000 GHz Frequency Application Note P13252EJ2V0AN00 17 Figure 3-9. µPC2763TB Power Gain vs. Frequency Characteristic External Inductor Value Dependencies (Conditions: TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω ) 24 22 3 MARKER 1 100 MHz MARKER 2 900 MHz MARKER 3 1900 MHz MARKER 4 2500 MHz MARKER 5 3000 MHz L = 22 nH L = 10 nH Power gain GP (dB) L = 100 nH 2 20 L = 33 nH 18 L = 33 nH L = 100 nH 4 L = 22 nH 16 L = 10 nH 14 1.0 1 1.9 2.5 5 3.1 START 0.100000000 GHz STOP 3.100000000 GHz Frequency Figure 3-10. µPC2771TB Power Gain vs. Frequency Characteristic External Inductor Value Dependencies (Conditions: TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω ) 22 MARKER 1 MARKER 2 MARKER 3 MARKER 4 MARKER 5 L = 10 nH L = 100 nH 20 3 2 Power gain GP (dB) 4 L = 22 nH L = 33 nH 18 L = 33 nH L = 100 nH 5 L = 22 nH 16 L = 10 nH 14 1 0.1 1.0 1.9 START 0.100000000 GHz STOP 3.100000000 GHz Frequency 18 Application Note P13252EJ2V0AN00 2.5 3.1 100 MHz 900 MHz 1500 MHz 1900 MHz 2500 MHz Figure 3-11. µPC2762TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (1/4) a) Input frequency fin = 950 MHz (Input wave conditions: π/4 QPSK modulated signal input, transmission rate 42 kbps, roll-off rate = 0.5, PN9 stage (pseudo-random pattern)) +5 –20 Pout 0 –30 –5 –40 Padj ∆f = 50 kHz –50 –10 –60 –15 –70 Padj ∆f = 100 kHz –80 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 Padj waveform (linear region) REF 10.0 dBm 10dB/ f = 950 MHz PO = +4 dBm ADJ BS 21.0 kHz ATT 20 dB ADJ (UP, LOW) –65.00 dB –64.25 dB –25 +10 REF 15.0 dBm 10dB/ f = 950 MHz Pin = +3 dBm ADJ BS 21.0 kHz DL 15.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s SPAN 250.0 kHz –20 Padj waveform (saturated region) DL 10.0 dBm CENTER 950.0000 MHz Output power Pout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power, Output power vs. Input power +10 –10 Application Note P13252EJ2V0AN00 ATT 30 dB CENTER 950.0000 MHz ADJ (UP, LOW) –34.75 dB –34.25 dB SPAN 250.0 kHz 19 Figure 3-11. µPC2762TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (2/4) b) Input frequency fin = 1440 MHz (Input wave conditions: π/4 QPSK modulated signal input, transmission rate 42 kbps, roll-off rate = 0.5, PN9 stage (pseudo-random pattern)) +5 –20 Pout 0 –30 –40 –5 Padj ∆f = 50 kHz –10 –50 –60 Padj ∆f = 100 kHz –15 –70 –20 –80 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 Padj waveform (linear region) REF 10.0 dBm 10dB/ f = 1440 MHz PO = +4 dBm ADJ BS 21.0 kHz ATT 20 dB ADJ (UP, LOW) –64.50 dB –63.75 dB REF 15.0 dBm 10dB/ f = 1440 MHz Pin = +3 dBm ADJ BS 21.0 kHz DL 15.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s 20 SPAN 250.0 kHz –25 +10 Padj waveform (saturated region) DL 10.0 dBm CENTER 1.4400000 GHz Output power Pout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power, Output power vs. Input power +10 –10 Application Note P13252EJ2V0AN00 ATT 30 dB CENTER 1.4400000 GHz ADJ (UP, LOW) –32.25 dB –31.75 dB SPAN 250.0 kHz Figure 3-11. µPC2762TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (3/4) c) Input frequency fin = 1900 MHz (Input wave conditions: π/4 QPSK modulated signal input, transmission rate 384 kbps, roll-off rate = 0.5, PN9 stage (pseudo-random pattern)) +5 –20 Pout 0 –30 –40 –5 Padj ∆f = 600 kHz –50 –10 –60 –15 –70 Padj ∆f = 900 kHz –80 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 Padj waveform (linear region) REF 0.0 dBm 10dB/ f = 1900 MHz PO = +4 dBm ADJ BS 192 kHz ATT 10 dB ADJ (UP, LOW) –66.00 dB –65.00 dB –25 +10 REF 5.0 dBm 10dB/ f = 1900 MHz Pin = +3 dBm ADJ BS 192 kHz DL 5.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s SPAN 2.000 MHz –20 Padj waveform (saturated region) DL 0.0 dBm CENTER 1.9000000 GHz Output power Pout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power, Output power vs. Input power +10 –10 ATT 20 dB CENTER 1.9000000 GHz Application Note P13252EJ2V0AN00 ADJ (UP, LOW) –36.25 dB –35.50 dB SPAN 2.000 MHz 21 Figure 3-11. µPC2762TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (4/4) d) Input frequency fin = 900 MHz (Input wave conditions: GMSK modulated signal input, transmission rate 270.833 kbps, roll-off rate = 0.3, PN9 stage (pseudo-random pattern)) +5 –20 Pout –30 0 –40 –5 –50 –10 Padj ∆f = ±400 kHz –60 –70 –15 –20 Padj ∆f = ±800 kHz –80 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 Padj waveform (linear region) REF 0.0 dBm 10dB/ f = 900 MHz PO = +4 dBm ADJ CH SPACE 400 kHz ATT 10 dB ADJ (UP, LOW) –69.50 dB –66.50 dB REF 0.0 dBm 10dB/ f = 900 MHz Pin = +4 dBm ADJ CH SPACE 400 kHz DL 0.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s 22 SPAN 2.000 MHz –25 +10 Padj waveform (saturated region) DL 0.0 dBm CENTER 900.000 MHz Output power Pout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power, Output power vs. Input power +10 –10 Application Note P13252EJ2V0AN00 ATT 10 dB CENTER 900.000 MHz ADJ (UP, LOW) –67.25 dB –62.75 dB SPAN 2.000 MHz Figure 3-12. µPC2763TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (1/4) a) Input frequency fin = 950 MHz (Input wave conditions: π/4 QPSK modulated signal input, transmission rate 42 kbps, roll-off rate = 0.5, PN9 stage (pseudo-random pattern)) –20 +10 Pout +5 –30 –40 0 Padj ∆f = 50 kHz –50 –5 –60 –10 –70 Padj ∆f = 100 kHz –80 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 Padj waveform (linear region) REF 10.0 dBm 10dB/ f = 950 MHz PO = +4 dBm ADJ BS 21.0 kHz ATT 20 dB ADJ (UP, LOW) –69.75 dB –68.75 dB –20 +10 REF 15.0 dBm 10dB/ f = 950 MHz Pin = –3 dBm ADJ BS 21.0 kHz DL 15.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s SPAN 250.0 kHz –15 Padj waveform (saturated region) DL 10.0 dBm CENTER 950.000 MHz Output power Pout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power, Output power vs. Input power +15 –10 Application Note P13252EJ2V0AN00 ATT 30 dB CENTER 950.000 MHz ADJ (UP, LOW) –33.25 dB –32.75 dB SPAN 250.0 kHz 23 Figure 3-12. µPC2763TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (2/4) b) Input frequency fin = 1440 MHz (Input wave conditions: π/4 QPSK modulated signal input, transmission rate 42 kbps, roll-off rate = 0.5, PN9 stage (pseudo-random pattern)) +10 –20 Pout –30 +5 –40 0 –50 –5 Padj ∆f = 50 kHz –10 –60 Padj ∆f = 100 kHz –70 –80 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 Padj waveform (linear region) REF 10.0 dBm 10dB/ f = 1440 MHz PO = +4 dBm ADJ BS 21.0 kHz ATT 20 dB ADJ (UP, LOW) –67.25 dB –66.00 dB RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s 24 –20 +10 REF 15.0 dBm 10dB/ f = 1440 MHz Pin = –3 dBm ADJ BS 21.0 kHz DL 15.0 dBm SPAN 250.0 kHz –15 Padj waveform (saturated region) DL 10.0 dBm CENTER 1.4400000 GHz Output power Pout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power, Output power vs. Input power +15 –10 Application Note P13252EJ2V0AN00 ATT 30 dB CENTER 1.4400000 GHz ADJ (UP, LOW) –32.00 dB –31.75 dB SPAN 250.0 kHz Figure 3-12. µPC2763TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (3/4) c) Input frequency fin = 1900 MHz (Input wave conditions: π/4 QPSK modulated signal input, transmission rate 384 kbps, roll-off rate = 0.5, PN9 stage (pseudo-random pattern)) +10 –20 Pout –30 +5 0 –40 –50 Padj ∆f = 600 kHz –5 –10 –60 Padj ∆f = 900 kHz –70 –80 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 Padj waveform (linear region) REF 0.0 dBm 10dB/ f = 1900 MHz PO = +4 dBm ADJ BS 192 kHz ATT 20 dB ADJ (UP, LOW) –69.75 dB –69.00 dB –20 +10 REF 0.0 dBm 10dB/ f = 1900 MHz Pin = –3 dBm ADJ BS 192 kHz DL 0.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s SPAN 2.000 MHz –15 Padj waveform (saturated region) DL 0.0 dBm CENTER 1.9000000 GHz Output power Pout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power, Output power vs. Input power +15 –10 ATT 20 dB CENTER 1.9000000 GHz Application Note P13252EJ2V0AN00 ADJ (UP, LOW) –37.50 dB –36.75 dB SPAN 2.000 MHz 25 Figure 3-12. µPC2763TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (4/4) d) Input frequency fin = 900 MHz (Input wave conditions: GMSK modulated signal input, transmission rate 270.833 kbps, roll-off rate = 0.3, PN9 stage (pseudo-random pattern)) –30 +10 Pout –40 +5 –50 0 Padj ∆f = ±400 kHz –60 –5 –10 –70 Padj ∆f = ±800 kHz –80 –15 –90 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 Padj waveform (linear region) REF 0.0 dBm 10dB/ f = 900 MHz PO = +4 dBm ADJ CH SPACE 400 kHz ATT 10 dB ADJ (UP, LOW) –69.25 dB –66.00 dB REF 0.0 dBm 10dB/ f = 900 MHz Pin = –4 dBm ADJ CH SPACE 400 kHz DL 0.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s 26 SPAN 2.000 MHz –20 +10 Padj waveform (saturated region) DL 0.0 dBm CENTER 900.000 MHz Output power Pout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power, Output power vs. Input power +15 –20 Application Note P13252EJ2V0AN00 ATT 10 dB CENTER 900.000 MHz ADJ (UP, LOW) –66.75 dB –62.75 dB SPAN 2.000 MHz Figure 3-13. µPC2771TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (1/4) a) Input frequency fin = 950 MHz (Input wave conditions: π/4 QPSK modulated signal input, transmission rate 42 kbps, roll-off rate = 0.5, PN9 stage (pseudo-random pattern)) –20 +10 Pout +5 –30 0 –40 Padj ∆f = 50 kHz –50 –5 –10 –60 –70 Padj ∆f = 100 kHz –80 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 Padj waveform (linear region) REF 10.0 dBm 10dB/ f = 950 MHz PO = +7 dBm ADJ BS 21.0 kHz ATT 20 dB ADJ (UP, LOW) –62.75 dB –61.25 dB –20 +10 REF 15.0 dBm 10dB/ f = 950 MHz Pin = –3 dBm ADJ BS 21.0 kHz DL 15.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s SPAN 250.0 kHz –15 Padj waveform (saturated region) DL 10.0 dBm CENTER 950.000 MHz Output power Pout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power, Output power vs. Input power +15 –10 Application Note P13252EJ2V0AN00 ATT 30 dB CENTER 950.000 MHz ADJ (UP, LOW) –34.50 dB –33.50 dB SPAN 250.0 kHz 27 Figure 3-13. µPC2771TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (2/4) b) Input frequency fin = 1440 MHz (Input wave conditions: π/4 QPSK modulated signal input, transmission rate 42 kbps, roll-off rate = 0.5, PN9 stage (pseudo-random pattern)) –20 +10 Pout –30 +5 –40 0 –50 Padj ∆f = 50 kHz –5 –10 –60 –70 Padj ∆f = 100 kHz –80 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 Padj waveform (linear region) REF 10.0 dBm 10dB/ f = 1440 MHz PO = +7 dBm ADJ BS 21.0 kHz ATT 20 dB ADJ (UP, LOW) –61.50 dB –60.50 dB RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s 28 –20 +10 REF 15.0 dBm 10dB/ f = 1440 MHz Pin = –3 dBm ADJ BS 21.0 kHz DL 15.0 dBm SPAN 250.0 kHz –15 Padj waveform (saturated region) DL 10.0 dBm CENTER 1.4400000 GHz Output power Pout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power, Output power vs. Input power +15 –10 Application Note P13252EJ2V0AN00 ATT 30 dB CENTER 1.4400000 GHz ADJ (UP, LOW) –33.50 dB –33.25 dB SPAN 250.0 kHz Figure 3-13. µPC2771TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (3/4) c) Input frequency fin = 1900 MHz (Input wave conditions: π/4 QPSK modulated signal input, transmission rate 384 kbps, roll-off rate = 0.5, PN9 stage (pseudo-random pattern)) +10 –20 Pout –30 +5 –40 0 –50 –5 Padj ∆f = 600 kHz –10 –60 Padj ∆f = 900 kHz –70 –80 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 Padj waveform (linear region) REF 0.0 dBm 10dB/ f = 1900 MHz PO = +7 dBm ADJ BS 192 kHz ATT 20 dB ADJ (UP, LOW) –54.00 dB –51.75 dB –20 +10 REF 0.0 dBm 10dB/ f = 1900 MHz Pin = –3 dBm ADJ BS 192 kHz DL 0.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s SPAN 2.000 MHz –15 Padj waveform (saturated region) DL 0.0 dBm CENTER 1.9000000 GHz Output power Pout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power, Output power vs. Input power +15 –10 ATT 20 dB CENTER 1.9000000 GHz Application Note P13252EJ2V0AN00 ADJ (UP, LOW) –39.25 dB –38.50 dB SPAN 2.000 MHz 29 Figure 3-13. µPC2771TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (4/4) d) Input frequency fin = 900 MHz (Input wave conditions: GMSK modulated signal input, transmission rate 270.833 kbps, roll-off rate = 0.3, PN9 stage (pseudo-random pattern)) Pout –20 +10 –30 +5 –40 0 –5 –50 Padj ∆f = ±400 kHz –60 –10 Padj ∆f = ±800 kHz –70 –15 –80 –30 –25 –20 –15 –10 –5 0 Input power Pin (dBm) +5 Padj waveform (linear region) REF 0.0 dBm 10dB/ f = 900 MHz PO = +7 dBm ADJ CH SPACE 400 kHz ATT 10 dB ADJ (UP, LOW) –69.25 dB –66.00 dB REF 0.0 dBm 10dB/ f = 900 MHz Pin = –4 dBm ADJ CH SPACE 400 kHz DL 0.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s 30 SPAN 2.000 MHz –20 +10 Padj waveform (saturated region) DL 0.0 dBm CENTER 900.000 MHz Output power Pout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power, Output power vs. Input power +15 –10 Application Note P13252EJ2V0AN00 ATT 20 dB CENTER 900.000 MHz ADJ (UP, LOW) –67.75 dB –63.50 dB SPAN 2.000 MHz 3.3 µPC2776TB The external inductor values and gain frequency characteristics of the µPC2776TB were measured using similar wire-wound chip inductors as were attached to the µPC2776T. Figure 3-14 shows those characteristics. Since the output-side characteristic impedance of the µPC2776TB below the VHF band is close to 50 Ω, using an external inductor value greater than or equal to 100 nH makes the µPC2776TB suitable for applications in the VHF band. Also, the curves in Figure 3-14 show that a wide area shift of frequencies cannot be achieved by reducing the inductor value as can be done for the µPC2709TB since an internal circuit insensitive to load variations is used for the µPC2776TB. Figure 3-14. µPC2776TB Power Gain vs. Frequency Characteristic External Inductor Value Dependencies (Conditions: TA = +25°C, VCC = Vout = 5.0 V, ZS = ZL = 50 Ω ) 26 MARKER 1 MARKER 2 MARKER 3 MARKER 4 MARKER 5 24 Power gain GP (dB) L = 100 nH L = 10 nH 3 2 100 MHz 1000 MHz 2000 MHz 2500 MHz 3000 MHz L = 33 nH 22 4 L = 10 nH L = 33 nH L = 100 nH 20 18 1 5 16 0.1 1.0 1.9 START 0.100000000 GHz STOP 3.100000000 GHz 2.5 3.1 Frequency Application Note P13252EJ2V0AN00 31 4. CONCLUSION This application note introduced the application characteristics for the 6-pin super mini-molded µPC2708TB, µPC2709TB, µPC2710TB, µPC2762TB, µPC2763TB, µPC2771TB, and µPC2776TB and described how they differ from the conventional 6-pin mini-mold products. Readers can see that similar characteristics are obtained even though the external form has been reduced in size. References • Application Note Usage and Application of Silicon Medium-Power High-Frequency Amplifier MMIC µPC1677 to 1679, µPC2708 to 2710, µPC2762/2763, µPC2771/2776 (Document No. P12152E) • Data sheet for each product µPC2708TB (Document No. P13442E) µPC2709TB (Document No. P12653E) µPC2710TB (Document No. P13443E) µPC2762TB/2763TB/2771TB (Document No. P12710E) µPC2776TB (Document No. P12680E) 32 Application Note P13252EJ2V0AN00 APPENDIX S PARAMETER REFERENCE VALUES (TA = +25°C) µPC2708TB VCC = Vout = 5.0 V, ICC = 27 mA FREQUENCY MHz MAG S11 ANG S21 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 0.039 0.053 0.069 0.088 0.105 0.123 0.144 0.164 0.186 0.205 0.226 0.245 0.263 0.286 0.308 0.328 0.344 0.364 0.382 0.395 0.405 0.417 0.427 0.431 0.431 0.434 0.423 0.419 0.408 0.400 0.386 138.9 119.7 106.7 97.2 91.6 84.9 79.7 74.7 70.7 66.1 61.7 57.7 53.7 48.6 44.3 40.7 36.2 31.0 26.0 21.2 16.8 11.8 6.6 2.2 –3.0 –8.2 –12.3 –17.1 –21.5 –26.2 –29.3 MAG 5.815 5.822 5.815 5.813 5.794 5.823 5.871 5.890 5.938 5.960 6.072 6.097 6.174 6.275 6.371 6.419 6.470 6.555 6.542 6.570 6.528 6.527 6.438 6.336 6.247 6.127 5.952 5.816 5.619 5.354 5.134 S12 S22 ANG MAG ANG –4.8 –9.8 –14.3 –18.8 –23.8 –28.4 –33.0 –38.2 –42.8 –47.6 –52.7 –57.5 –63.0 –68.4 –74.3 –79.8 –85.9 –92.1 –98.3 –104.7 –111.3 –118.5 –124.7 –131.3 –138.1 –145.0 –151.7 –158.2 –165.0 –171.5 –177.4 0.077 0.075 0.074 0.074 0.072 0.071 0.070 0.071 0.073 0.070 0.069 0.070 0.067 0.069 0.070 0.066 0.067 0.069 0.070 0.070 0.070 0.071 0.072 0.071 0.072 0.071 0.071 0.070 0.073 0.074 0.075 –0.8 –1.5 –0.6 –0.5 –1.1 –0.6 0.1 0.5 2.3 1.0 3.3 4.4 2.5 5.0 5.4 7.1 5.6 8.2 8.4 8.7 10.1 9.4 9.5 10.7 12.8 15.4 14.5 16.1 15.3 17.1 17.1 MAG K ANG 0.051 0.048 0.049 0.054 0.054 0.056 0.060 0.065 0.072 0.074 0.075 0.082 0.085 0.091 0.092 0.097 0.096 0.100 0.100 0.101 0.100 0.096 0.098 0.095 0.098 0.094 0.088 0.081 0.074 0.065 0.053 0.9 1.4 5.9 8.9 8.8 10.4 11.5 11.6 11.1 8.2 9.4 5.6 0.6 –4.6 –8.2 –12.6 –19.6 –23.9 –32.0 –38.9 –47.2 –57.2 –66.1 –76.5 –86.1 –99.9 –116.7 –134.4 –149.7 –170.3 172.8 1.34 1.36 1.38 1.36 1.39 1.40 1.40 1.37 1.34 1.36 1.34 1.31 1.33 1.28 1.24 1.26 1.23 1.18 1.15 1.13 1.12 1.09 1.09 1.09 1.09 1.10 1.14 1.18 1.19 1.24 1.28 µPC2709TB VCC = Vout = 5.0 V, ICC = 26 mA FREQUENCY MHz MAG S11 ANG MAG S21 ANG MAG S12 ANG 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 0.227 0.239 0.245 0.244 0.243 0.247 0.265 0.284 0.301 0.305 0.299 0.300 0.314 0.328 0.354 0.359 0.373 0.371 0.379 0.386 0.387 0.374 0.360 0.339 0.338 0.334 0.330 0.311 0.291 0.258 0.240 0.2 1.0 2.9 2.5 1.5 –1.5 –3.2 –3.6 –3.3 –2.4 –3.2 –6.3 –10.3 –14.4 –17.3 –19.5 –22.1 –26.8 –31.1 –36.0 –39.5 –43.8 –48.7 –55.4 –62.0 –66.0 –69.0 –69.9 –72.5 –76.5 –80.6 13.698 13.724 13.830 13.998 14.109 14.246 14.538 14.703 15.051 15.331 15.605 15.773 16.152 16.282 16.337 16.370 16.256 15.977 15.529 15.307 14.745 14.212 13.633 12.846 11.990 11.265 10.560 9.942 9.432 8.818 8.353 –4.5 –9.6 –14.5 –19.9 –25.0 –30.4 –35.5 –41.3 –47.0 –53.5 –60.0 –66.7 –74.0 –81.0 –89.3 –96.5 –104.5 –112.7 –120.5 –128.1 –135.9 –143.7 –151.3 –158.7 –165.5 –172.1 –177.8 176.2 171.3 166.5 161.9 0.027 0.027 0.026 0.027 0.026 0.027 0.028 0.028 0.028 0.029 0.029 0.029 0.030 0.030 0.032 0.031 0.033 0.032 0.033 0.034 0.033 0.033 0.033 0.032 0.033 0.033 0.033 0.033 0.035 0.035 0.035 –1.0 3.1 4.7 7.8 9.8 11.9 13.6 14.9 17.2 18.8 20.9 22.5 23.8 26.1 25.6 26.8 28.0 29.3 31.3 31.0 32.2 30.5 33.9 35.5 38.0 39.1 40.8 43.5 44.9 47.4 53.4 Application Note P13252EJ2V0AN00 S22 MAG 0.196 0.207 0.212 0.223 0.234 0.252 0.270 0.287 0.298 0.309 0.322 0.336 0.353 0.353 0.368 0.370 0.382 0.381 0.378 0.373 0.366 0.363 0.353 0.331 0.318 0.304 0.295 0.282 0.267 0.246 0.225 K ANG 0.9 2.2 4.1 3.4 2.1 –0.4 –2.3 –4.6 –7.4 –11.9 –17.1 –21.5 –24.8 –28.8 –35.5 –41.8 –46.9 –52.8 –57.8 –64.1 –70.8 –78.1 –83.0 –90.0 –95.6 –102.5 –108.3 –113.7 –118.6 –125.1 –131.2 1.37 1.36 1.38 1.32 1.33 1.26 1.20 1.15 1.10 1.05 1.04 1.01 0.95 0.93 0.86 0.86 0.81 0.83 0.83 0.82 0.85 0.90 0.94 1.06 1.11 1.20 1.25 1.36 1.40 1.55 1.64 33 µPC2710TB VCC = Vout = 5.0 V, ICC = 22mA FREQUENCY MHz MAG S11 ANG MAG S21 ANG MAG S12 ANG MAG S22 ANG K 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 0.306 0.324 0.356 0.400 0.439 0.469 0.481 0.488 0.479 0.465 0.448 0.417 0.387 0.350 0.316 0.292 0.256 0.245 0.215 0.201 0.177 0.161 0.145 0.124 0.113 0.107 0.091 0.081 0.067 0.055 0.039 2.5 5.2 5.3 2.5 –3.3 –10.2 –17.9 –26.7 –34.5 –41.2 –49.3 –54.9 –61.2 –65.2 –70.8 –74.0 –76.9 –80.5 –82.9 –85.6 –84.4 –88.8 –88.7 –90.3 –89.8 –91.9 –92.2 –94.9 –97.4 –103.8 –95.6 43.072 43.517 44.432 45.513 45.679 45.670 44.793 43.016 40.519 37.946 35.122 32.108 29.221 26.656 23.895 21.576 19.567 17.743 16.040 14.717 13.475 12.327 11.154 10.262 9.490 8.793 8.149 7.652 7.134 6.726 6.295 –8.4 –17.1 –26.5 –36.9 –48.1 –59.7 –71.8 –84.3 –96.0 –107.3 –117.9 –128.0 –137.0 –145.8 –153.9 –161.6 –168.1 –174.4 179.6 173.5 168.8 163.1 158.7 154.4 150.4 146.4 142.4 138.9 135.1 131.5 128.4 0.012 0.010 0.010 0.012 0.012 0.013 0.014 0.014 0.013 0.016 0.016 0.015 0.015 0.015 0.013 0.016 0.015 0.018 0.017 0.021 0.020 0.021 0.022 0.023 0.025 0.028 0.030 0.031 0.031 0.039 0.039 15.2 10.7 20.2 26.9 27.0 31.3 34.9 27.9 26.6 30.8 26.6 39.5 39.7 50.2 50.8 56.6 69.0 61.7 70.0 71.2 83.0 76.7 87.9 81.4 91.9 88.7 93.4 92.1 93.0 88.3 89.6 0.156 0.164 0.185 0.225 0.255 0.283 0.301 0.312 0.316 0.311 0.307 0.282 0.270 0.248 0.236 0.215 0.200 0.196 0.180 0.175 0.166 0.171 0.159 0.164 0.158 0.166 0.175 0.183 0.191 0.200 0.203 2.7 2.1 0.3 –5.5 –15.4 –27.6 –40.2 –54.9 –67.7 –79.5 –92.2 –104.6 –115.5 –127.0 –136.2 –145.3 –155.2 –162.5 –173.4 –178.1 172.0 167.7 159.1 154.0 147.0 141.8 135.7 131.6 123.4 118.9 111.5 1.08 1.17 1.10 0.92 0.85 0.77 0.74 0.74 0.78 0.79 0.85 0.99 1.12 1.27 1.56 1.49 1.71 1.59 1.88 1.71 1.94 1.99 2.08 2.15 2.19 2.06 2.13 2.13 2.26 1.97 2.08 µPC2762TB VCC = Vout = 3.0 V, ICC = 29 mA 34 FREQUENCY MHz MAG S11 ANG MAG S21 ANG MAG S12 ANG MAG ANG 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 0.338 0.346 0.348 0.340 0.329 0.324 0.341 0.359 0.378 0.375 0.363 0.353 0.357 0.377 0.402 0.414 0.426 0.434 0.448 0.463 0.483 0.492 0.492 0.486 0.489 0.500 0.511 0.511 0.494 0.465 0.441 –1.3 –2.0 –1.2 –1.9 –3.1 –6.2 –8.1 –7.6 –6.5 –5.1 –5.2 –6.7 –8.8 –11.7 –12.7 –13.2 –13.6 –16.1 –19.0 –21.7 –23.9 –25.8 –29.7 –34.6 –40.4 –44.6 –48.5 –50.4 –52.9 –55.9 –60.6 4.560 4.581 4.616 4.661 4.689 4.726 4.844 4.927 5.057 5.179 5.306 5.400 5.567 5.706 5.820 5.987 6.081 6.182 6.229 6.328 6.382 6.431 6.424 6.329 6.146 5.997 5.822 5.693 5.553 5.334 5.157 –3.4 –7.6 –11.3 –15.8 –19.5 –23.6 –27.4 –31.5 –35.8 –41.0 –45.9 –51.0 –56.5 –61.7 –68.0 –73.7 –80.1 –86.7 –93.2 –99.7 –106.7 –113.8 –121.2 –128.8 –136.1 –143.1 –149.9 –157.0 –163.0 –169.5 –175.5 0.039 0.039 0.039 0.040 0.040 0.041 0.042 0.043 0.044 0.045 0.047 0.047 0.048 0.049 0.052 0.052 0.055 0.056 0.057 0.057 0.058 0.058 0.060 0.060 0.062 0.061 0.064 0.066 0.065 0.065 0.066 1.0 2.7 6.8 8.1 11.6 13.7 15.8 18.1 19.3 20.3 22.1 23.7 26.1 24.5 26.7 26.8 29.0 28.2 28.5 28.0 28.5 29.0 30.1 30.2 31.1 32.1 31.4 34.0 33.8 35.5 35.5 0.310 0.311 0.302 0.296 0.290 0.292 0.291 0.292 0.284 0.280 0.285 0.288 0.288 0.285 0.282 0.285 0.288 0.291 0.286 0.282 0.282 0.282 0.278 0.268 0.260 0.251 0.248 0.237 0.222 0.203 0.189 –5.5 –9.5 –12.3 –16.2 –20.2 –24.1 –26.2 –28.3 –30.9 –35.3 –40.0 –43.4 –45.7 –47.9 –52.8 –58.1 –62.0 –66.1 –70.4 –76.2 –81.5 –86.9 –91.7 –98.4 –104.5 –111.3 –116.7 –121.5 –128.3 –134.5 –141.1 Application Note P13252EJ2V0AN00 S22 K 2.23 2.20 2.20 2.18 2.20 2.12 2.01 1.90 1.77 1.72 1.64 1.62 1.54 1.44 1.32 1.27 1.18 1.14 1.09 1.07 1.01 0.99 0.99 1.01 1.02 1.05 1.03 1.04 1.11 1.20 1.27 µPC2763TB VCC = Vout = 3.0 V, ICC = 28 mA FREQUENCY MHz MAG S11 ANG MAG S21 ANG MAG S12 ANG S22 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 0.231 0.242 0.250 0.245 0.242 0.241 0.263 0.291 0.316 0.322 0.318 0.309 0.322 0.344 0.371 0.380 0.388 0.378 0.378 0.375 0.369 0.351 0.331 0.306 0.300 0.294 0.290 0.270 0.248 0.219 0.198 –1.4 –0.2 2.7 2.8 2.0 –2.2 –5.3 –5.6 –5.1 –4.0 –5.4 –9.0 –14.2 –20.6 –23.7 –27.5 –30.6 –36.4 –42.1 –46.6 –50.5 –53.8 –59.8 –66.4 –73.1 –75.8 –77.1 –77.7 –78.7 –82.3 –88.7 10.210 10.305 10.464 10.655 10.863 11.093 11.544 11.843 12.291 12.676 13.066 13.311 13.661 13.845 13.824 13.890 13.634 13.236 12.724 12.290 11.707 11.130 10.524 9.824 9.152 8.583 8.029 7.610 7.240 6.827 6.516 –3.8 –8.5 –12.9 –18.2 –22.8 –28.1 –33.2 –39.0 –45.1 –52.4 –59.8 –67.3 –75.8 –83.9 –93.0 –101.5 –110.5 –119.6 –127.9 –136.1 –144.0 –151.7 –159.1 –165.9 –172.3 –178.2 176.2 170.6 166.1 161.2 156.9 0.023 0.023 0.024 0.024 0.026 0.027 0.028 0.029 0.029 0.030 0.031 0.031 0.033 0.033 0.035 0.035 0.036 0.035 0.035 0.035 0.035 0.036 0.036 0.034 0.035 0.034 0.035 0.037 0.039 0.039 0.040 2.4 7.8 9.3 13.4 16.1 19.9 22.3 22.5 23.9 25.6 24.1 27.0 28.8 28.5 30.1 28.1 29.2 29.9 30.9 32.9 33.0 35.7 36.8 38.7 40.1 43.8 46.3 47.7 51.1 53.6 55.1 ANG MAG ANG MAG ANG –4.7 –9.5 –14.1 –19.4 –24.4 –30.0 –35.9 –42.1 –48.8 –56.6 –64.6 –73.5 –83.2 –92.6 –102.4 –112.0 –121.6 –131.0 –139.6 –147.5 –154.8 –161.7 –168.0 –173.7 –179.7 174.9 170.0 164.7 160.7 155.6 151.3 0.028 0.028 0.029 0.030 0.030 0.031 0.031 0.032 0.032 0.032 0.033 0.033 0.036 0.036 0.036 0.037 0.039 0.038 0.038 0.038 0.039 0.040 0.041 0.041 0.042 0.043 0.045 0.047 0.051 0.051 0.054 0.8 5.0 8.6 11.1 14.9 15.8 19.8 20.1 23.2 23.9 24.9 26.6 28.8 30.0 32.0 31.6 32.5 34.7 36.1 37.4 39.1 41.4 43.7 48.3 48.3 50.8 53.7 54.2 57.7 56.5 59.3 0.327 0.325 0.323 0.326 0.331 0.342 0.350 0.359 0.361 0.371 0.389 0.400 0.405 0.402 0.406 0.413 0.414 0.401 0.387 0.378 0.366 0.356 0.342 0.325 0.322 0.314 0.309 0.303 0.292 0.287 0.279 –6.2 –11.5 –16.2 –20.9 –26.4 –32.0 –37.3 –42.8 –49.4 –56.1 –62.5 –69.3 –75.4 –83.6 –91.6 –99.3 –105.8 –113.7 –120.8 –127.6 –133.1 –138.0 –142.8 –148.3 –152.6 –156.7 –160.1 –164.0 –167.8 –172.8 –176.4 MAG K ANG 0.406 0.412 0.407 0.407 0.405 0.414 0.419 0.424 0.424 0.425 0.438 0.442 0.441 0.434 0.435 0.439 0.439 0.428 0.411 0.393 0.385 0.373 0.359 0.336 0.321 0.306 0.299 0.288 0.270 0.253 0.244 –4.1 –7.5 –9.9 –13.9 –17.6 –21.6 –24.6 –27.7 –31.9 –37.1 –42.5 –47.8 –51.2 –56.0 –62.2 –68.9 –74.6 –81.3 –87.0 –93.4 –99.6 –104.9 –110.3 –117.5 –123.3 –129.4 –133.9 –138.6 –143.6 –150.1 –156.2 1.68 1.66 1.58 1.55 1.44 1.37 1.25 1.16 1.09 1.02 0.96 0.96 0.90 0.87 0.82 0.80 0.78 0.84 0.89 0.94 0.99 1.06 1.13 1.31 1.41 1.55 1.58 1.63 1.67 1.79 1.88 µPC2771TB VCC = Vout = 3.0 V, ICC = 35 mA FREQUENCY MHz MAG S11 ANG MAG S21 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 0.045 0.057 0.075 0.090 0.105 0.118 0.138 0.163 0.186 0.202 0.219 0.233 0.252 0.267 0.285 0.293 0.304 0.290 0.285 0.273 0.267 0.254 0.237 0.221 0.212 0.208 0.202 0.190 0.178 0.154 0.147 19.7 37.0 41.3 43.3 42.2 40.2 34.9 32.5 29.4 26.3 21.7 15.4 8.4 –0.1 –6.8 –13.9 –20.9 –28.1 –35.3 –41.8 –47.4 –51.6 –57.1 –61.1 –68.8 –72.2 –74.1 –76.3 –76.7 –82.3 –88.0 10.570 10.638 10.775 11.004 11.275 11.586 12.041 12.367 12.844 13.300 13.771 14.082 14.365 14.336 14.142 13.929 13.428 12.722 11.966 11.232 10.500 9.815 9.168 8.570 7.967 7.507 7.004 6.667 6.336 6.003 5.772 S12 Application Note P13252EJ2V0AN00 S22 K 1.65 1.63 1.58 1.49 1.45 1.37 1.29 1.20 1.15 1.11 1.03 0.99 0.92 0.91 0.90 0.89 0.88 0.96 1.03 1.09 1.14 1.20 1.28 1.37 1.44 1.49 1.53 1.56 1.55 1.62 1.61 35 µPC2776TB VCC = Vout = 5.0 V, ICC = 27 mA 36 FREQUENCY MHz MAG S11 ANG S21 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 0.226 0.240 0.254 0.267 0.285 0.308 0.345 0.386 0.425 0.449 0.466 0.478 0.507 0.533 0.564 0.568 0.576 0.571 0.570 0.569 0.564 0.548 0.535 0.516 0.515 0.508 0.503 0.489 0.471 0.457 0.455 2.8 6.4 10.4 11.4 11.1 8.5 6.1 3.9 1.4 –1.5 –6.1 –12.0 –17.7 –24.7 –30.3 –36.4 –42.0 –48.5 –54.5 –59.7 –64.2 –69.6 –75.5 –81.8 –87.0 –90.9 –94.8 –97.6 –101.3 –106.7 –111.3 S12 S22 K MAG ANG MAG ANG MAG ANG 13.844 13.862 13.942 14.123 14.267 14.423 14.670 14.864 15.210 15.455 15.564 15.550 15.622 15.577 15.527 15.285 14.960 14.570 14.026 13.715 13.283 12.926 12.515 12.093 11.498 11.136 10.511 10.126 9.850 9.242 9.065 –5.9 –12.5 –18.6 –25.2 –31.8 –38.6 –45.5 –52.8 –60.1 –68.4 –76.6 –84.9 –93.1 –101.3 –110.6 –119.0 –127.8 –136.4 –144.7 –151.7 –159.8 –167.5 –174.8 177.9 170.1 163.1 156.6 148.3 143.2 135.5 128.9 0.029 0.029 0.028 0.029 0.029 0.029 0.030 0.030 0.031 0.030 0.030 0.030 0.030 0.029 0.029 0.027 0.026 0.024 0.023 0.022 0.020 0.018 0.018 0.016 0.017 0.015 0.015 0.018 0.019 0.022 0.026 –1.5 0.3 3.2 4.8 7.2 9.3 10.7 11.0 11.9 11.8 10.6 11.7 13.4 13.2 13.5 11.3 12.6 14.8 15.8 18.2 23.5 27.1 36.3 41.9 53.3 64.3 67.9 85.0 93.7 100.0 108.0 0.032 0.024 0.030 0.031 0.037 0.038 0.040 0.043 0.055 0.072 0.084 0.093 0.094 0.114 0.130 0.154 0.167 0.179 0.194 0.212 0.228 0.240 0.251 0.268 0.279 0.296 0.306 0.315 0.330 0.343 0.357 –177.4 –171.9 –176.3 –167.6 –167.3 –159.3 –160.7 –161.9 –169.0 –169.1 –169.1 –173.6 177.9 167.0 164.1 158.0 152.6 143.0 135.2 128.1 121.6 115.9 108.1 102.4 96.0 90.8 86.7 79.2 73.0 67.0 60.7 Application Note P13252EJ2V0AN00 1.39 1.39 1.40 1.36 1.33 1.28 1.22 1.18 1.12 1.10 1.08 1.07 1.05 1.05 1.02 1.07 1.09 1.18 1.27 1.35 1.48 1.66 1.75 2.01 1.99 2.22 2.29 2.00 1.96 1.81 1.53 [MEMO] Application Note P13252EJ2V0AN00 37 [MEMO] 38 Application Note P13252EJ2V0AN00 Facsimile Message From: Name Company Tel. Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us. FAX Address Thank you for your kind support. North America Hong Kong, Philippines, Oceania NEC Electronics Inc. NEC Electronics Hong Kong Ltd. Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: 1-800-729-9288 1-408-588-6130 Korea Europe NEC Electronics Hong Kong Ltd. NEC Electronics (Europe) GmbH Seoul Branch Technical Documentation Dept. Fax: 02-528-4411 Fax: +49-211-6503-274 South America NEC do Brasil S.A. Fax: +55-11-6465-6829 Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583 Japan NEC Semiconductor Technical Hotline Fax: 044-548-7900 Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951 I would like to report the following error/make the following suggestion: Document title: Document number: Page number: If possible, please fax the referenced page or drawing. Document Rating Excellent Good Acceptable Poor Clarity Technical Accuracy Organization CS 99.1