ETC P13252EJ2V0AN00

Application Note
Usage and Applications of 6-Pin Super Mini-Mold
Silicon Medium-Power High-Frequency Amplifier
MMIC
µPC2708TB/2709TB/2710TB
µPC2762TB/2763TB
µPC2771TB/2776TB
Document No. P13252EJ2V0AN00 (2nd edition)
Date Published May 1999 N CP(K)
1998, 1999
©
Printed in Japan
[MEMO]
2
Application Note P13252EJ2V0AN00
The information in this document will be updated without notice.
This document introduces general applications of the products in this series. The application circuits and
circuit constants in this document are examples and not intended for use in actual mass production design. In
addition, please take note that restrictions of the application circuit or standardization of the application circuit
characteristics are not intended.
Especially, characteristics of high-frequency ICs change depending on the external components and
mounting pattern. Therefore, the external circuit constants should be determined based on the required
characteristics on your planned system referring to this document and characteristics should be checked
before using these ICs.
• The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
• No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
• NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
• Descriptions of circuits, software, and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these circuits,
software, and information in the design of the customer's equipment shall be done under the full responsibility
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
parties arising from the use of these circuits, software, and information.
• While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
• NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
M7 98. 8
Application Note P13252EJ2V0AN00
3
[MEMO]
4
Application Note P13252EJ2V0AN00
CONTENTS
1.
INTRODUCTION...............................................................................................................................
7
2.
PRODUCT LINEUP .........................................................................................................................
7
2.1 Characteristics .......................................................................................................................................
7
2.2 Test Circuit .............................................................................................................................................
9
APPLICATION CHARACTERISTIC EXAMPLE ............................................................................
10
3.1 µPC2708TB, µPC2709TB, µPC2710TB..................................................................................................
11
3.2 µPC2762TB, µPC2763TB, µPC2771TB..................................................................................................
17
3.3 µPC2776TB .............................................................................................................................................
31
CONCLUSION ..................................................................................................................................
32
APPENDIX S PARAMETER REFERENCE VALUES (TA = +25°C) ....................................................
33
3.
4.
Precautions for design-ins
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All
the ground pins must be connected together with wide ground pattern to decrease impedance difference.
(3) The bypass capacitor should be attached to the VCC pin.
(4) The inductor must be attached between VCC pin and output pin. The inductance value should be determined in
accordance with desired frequency.
(5) The DC cut capacitor must be each attached to the input and output pins.
(6) Apply voltage only to VCC pin and output pin. Do not apply voltage to input pin nor regulate input pin voltage (e.g.
direct DC pull-down).
(7) External components cannot modify the IC’s internal circuit feedback.
Application Note P13252EJ2V0AN00
5
[MEMO]
6
Application Note P13252EJ2V0AN00
1. INTRODUCTION
The application for high-frequency devices has grown to include not only TV/VCR tuners and cable TV converters
but also, more recently, DBS, cellular phones, pagers, and GPS. In addition, since the systems are shrinking in size,
the ICs used must also become more compact.
NEC has been selling the silicon medium-power high-frequency amplifier ICs µPC2708 to 2710T, µPC2762/63T,
and µPC2771/76T, which are 6-pin mini-mold products (size 2915). Now, a new lineup of 6-pin super mini-mold
products, which are even smaller, has been released.
This application note introduce application characteristics for the 6-pin super mini-mold silicon medium-power
high-frequency amplifier ICs.
See the data sheet for each product for details of the product’s ratings, specifications, and use conditions.
2. PRODUCT LINEUP
2.1 Characteristics
Table 2-1 shows the lineup of silicon medium-power high-frequency amplifiers, which are the super mini-mold
(size 2012) versions of the existing products, which employ package size 2915.
Table 2-1. 6-Pin Super Mini-Mold Silicon Medium-Power High-Frequency Amplifier MMIC Product Lineup
(TA = +25°C, VCC = Vout = 5.0 V or 3.0 V, ZL = ZS = 50 Ω )
Part Number
(discrete part
number)
VCC
(V)
fu
(GHz)
PO (1dB)
(dBm)
PO (sat)
(dBm)
GP
(dB)
NF
(dB)
ICC
(mA)
Marking
µPC2708TB
4.5 to 5.5
2.9
−
+10.0
15
6.5
26
C1D
µPC2709TB
2.3
+9.0
+11.5
23
5.0
25
C1E
µPC2710TB
1.0
−
+13.5
33
3.5
22
C1F
µPC2776TB
2.7
+6.5
+8.5
23
6.0
25
C2L
2.9
+8.0
+9.0
13
6.5
26.5
C1Z
µPC2763TB
2.7
+9.5
+11.0
20
5.5
27
C2A
µPC2771TB
2.2
+11.5
+12.5
21
6.0
36
C2H
µPC2762TB
Remark
2.7 to 3.3
The above values are typical values for major characteristics.
See each product’s data sheet for
detailed ratings, characteristic, etc.
The same part number is used for the product name. However, “TB” is assigned as the package code for the
super mini-mold model, while “T” is assigned for the conventional mini-mold model. The same chip is used for
products having the same part number, but the lead frame and package size have been changed to smaller one.
Therefore, even though there may be a slight shift in the characteristics due to differences in the lead inductance or
package capacitance, the characteristics obtained for the super mini-mold products are practically equivalent to
those of the conventional mini-mold products since the same chips are used.
The super mini-mold product weighs approximately half as much as the mini-mold product. The weight of the
mini-mold product is 13 mg, while the super mini-mold version is only 7 mg. The markings on the super mini-mold
products use the same symbols as the conventional mini-mold products having the same part numbers, but the
products can be distinguished by their package sizes. Figure 2-1 shows the external view of the 6-pin super minimold package, and Figure 2-2 shows the appearance of the product markings.
Application Note P13252EJ2V0AN00
7
Since the theoretical descriptions for the 6-pin super mini-mold products and the 6-pin mini-mold products are the
same because the same chips are used, refer to the Application Note Usage and Application of Silicon MediumPower High-Frequency Amplifier MMIC µPC1677 to 1679, µPC2708 to 2710, µPC2762/2763, µPC2771/2776
(Document No.: P12152E) describing the 6-pin mini-mold products.
Figure 2-1. Package Drawing of the 6-Pin Super Mini-Mold Silicon Medium-Power High-Frequency Amplifier MMIC
0.15 +0.1
–0
2.1 ± 0.1
1.25 ± 0.1
0.1 MIN.
0.2 +0.1
–0
0 to 0.1
0.65
0.65
0.7
1.3
0.9 ± 0.1
2.0 ± 0.2
(Unit: mm)
Figure 2-2. Marking Example
3
2
1
Remark
8
C1E
(Top View)
(Bottom View)
4
4
3
5
5
2
6
6
1
The marking example shown in the above figure corresponds to µPC2709TB.
Application Note P13252EJ2V0AN00
2.2 Test Circuit
The 6-pin super mini-mold products use the same test circuit, in which a bias-tee is used on the output side, as is
used for the conventional 6-pin mini-mold products. Since the package width and pin pitch are smaller, the test
board that is used has smaller mount pads. Figure 2-3 shows the layout of the test board AMP2, which is used for
the 6-pin super mini-mold products.
Figure 2-3. 6-Pin Super Mini-Mold Common Test Board (AMP2)
AMP-2
3
Top view (marking surface)
1
2
IN
OUT
6
5
4
C
1E
→
IC orientation
(Marking example: µ PC2709TB)
VCC
Notes on printed board
• Board material... Loss can be reduced depending on the material of PCB. A polyamide double-sided PCB is
used to maximize the performance of the IC itself.
• Back side .......... Whole surface is ground pattern. Through holes keep the ground characteristics of the IC
mounting side.
• Specifications .... AMP2 board dimensions: 30 × 30 × 0.4 (mm), with 35-µm thick copper patterning on both
sides
Application Note P13252EJ2V0AN00
9
3. APPLICATION CHARACTERISTIC EXAMPLE
The characteristics of the 6-pin super mini-mold products’ test circuit, in which a bias-tee is used, are described in
the data sheet. This document introduces the results of evaluating whether or not similar characteristics are obtained
as were obtained for the conventional 6-pin mini-mold product, when configuring the application circuit on the AMP2
board using similar inductor parts. As the size of these super mini-mold products is smaller, they are expected to be
increasingly used in cellular phones. Substantial evaluation data is provided of adjacent channel interference power
when inputting PDC, PHS, or GSM modulated signals.
Figure 3-1 shows the application circuit configuration, and Table 3-1 summarizes specifications of the external
inductors used for measurements of the application characteristic example.
Figure 3-1. Application Circuit Configuration
AMP-2
C: 1000 pF
3
Top view (marking surface)
1
2
IN
OUT
C
C
6
L
5
4
C
1E
→
IC orientation
(Marking example: µ PC2709TB)
VCC
C
Table 3-1. Summary of Specifications of the External Inductors Used For Measurements of
the Application Characteristic Example
Form
Manufacturer
Name
Wire-wound chip TOKO
inductor
10
Product Name
Inductance
FSLU2520-***
10-nH to
300-nH
Q
DC
Resistance
Self-Resonance
Frequency
Allowable
Current
15 to 30 MIN. 0.15 to 0.42 Ω 360 to 2300 MHz 380 to 790 mA
Application Note P13252EJ2V0AN00
3.1 µPC2708TB, µPC2709TB, µPC2710TB
The external inductor values vs. gain frequency characteristics of the µPC2708TB, µPC2709TB, and µPC2710TB
were measured using similar wire-wound chip inductors as were externally attached to the µPC2708T, µPC2709T,
and µPC2710T. Figures 3-2, 3-3, and 3-4 show those characteristics. Since the µPC2708TB, µPC2709TB, and
µPC2710TB have a circuit in which the output pin and the input-state/output-state peaking capacitance are linked,
the peaking frequency is easily shifted to a higher frequency according to the external inductor value at the output
pin. When a 10-nH inductor was used in this evaluation, a gain of approximately 22 dB was ensured at 2.7 GHz.
Next, the 10-nH inductor was used to evaluate the characteristics of when these ICs are used in a frequency band of
1 GHz or more. Figures 3-5, 3-6, and 3-7 show those characteristics.
Figure 3-2. µPC2708TB Power Gain vs. Frequency Characteristics External Inductor Value Dependencies
(Conditions: TA = +25°C, VCC = Vout = 5.0 V, ZS = ZL = 50 Ω )
16
L = 100 nH
3
14
MARKER 1
MARKER 2
MARKER 3
MARKER 4
MARKER 5
2
1
L = 10 nH
L = 10 nH
100 MHz
1000 MHz
2000 MHz
2500 MHz
3000 MHz
Power gain GP (dB)
L = 33 nH
12
4
L = 100 nH
10
L = 33 nH
5
8
6
0.1
1.0
1.9
START 0.100000000 GHz
STOP 3.100000000 GHz
2.5
3.1
Frequency f (GHz)
Application Note P13252EJ2V0AN00
11
Figure 3-3. µPC2709TB Power Gain vs. Frequency Characteristic External Inductor Value Dependencies
(Conditions: TA = +25°C, VCC = Vout = 5.0 V, ZS = ZL = 50 Ω )
26
MARKER 1
MARKER 2
MARKER 3
MARKER 4
MARKER 5
24
L = 33 nH
100 MHz
1000 MHz
2000 MHz
2500 MHz
3000 MHz
Power gain GP (dB)
L = 10 nH
22
3
2
L = 22 nH
4
L = 33 nH
20
L = 10 nH
L = 22 nH
18
1
16
5
0.1
1.0
1.9
2.5
3.1
START 0.100000000 GHz
STOP 3.100000000 GHz
Frequency f (GHz)
Figure 3-4. µPC2710TB Power Gain vs. Frequency Characteristics External Inductor Value Dependencies
(Conditions: TA = +25°°C, VCC = Vout = 5.0 V, ZS = ZL = 50 Ω )
34
L = 330 nH
2
MARKER 1 100 MHz
MARKER 2 500 MHz
MARKER 3 1000 MHz
MARKER 4 2000 MHz
30
Power gain GP (dB)
L = 100 nH
3
1
26
L = 10 nH
4
22
18
14
0.1
0.5
0.9
START 0.100000000 GHz
STOP 2.100000000 GHz
1.5
Frequency f (GHz)
12
Application Note P13252EJ2V0AN00
2.1
Figure 3-5. µPC2708TB Frequency Characteristics with 10-nH Inductor (1/2)
(Conditions: TA = +25°°C, VCC = Vout, ZS = ZL = 50 Ω )
Output Power vs. Input Power
(a) Vcc = Vout = 5.0 V
+15
+5
VCC = 5.0 V
f = 2.0 GHz
+10
f = 1.0 GHz
0
f = 2.15 GHz
−5
−10
f = 2.9 GHz
−15
−20
Output power Pout (dBm)
Output power Pout (dBm)
+10
(b) f = 1.0 GHz
+15
VCC = 5.5 V
f = 1.0 GHz
+5
VCC = 5.0 V
0
VCC = 4.5 V
−5
−10
−15
−20
−25
−30
−35 −30 −25 −20 −15 −10 −5 0
Input power Pin (dBm)
−25
−35 −30 −25 −20 −15 −10 −5 0
Input power Pin (dBm)
+5 +10
(c) f = 2.0 GHz
+15
f = 2.0 GHz
VCC = 5.5 V
+10
+5
0
VCC = 5.0 V
−5
VCC = 4.5 V
−10
−15
−20
Output power Pout (dBm)
Output power Pout (dBm)
+10
(d) f = 2.15 GHz
+15
+10
+5
f = 2.15 GHz
VCC = 5.5 V
+5
0
−5
VCC = 5.0 V
VCC = 4.5 V
−10
−15
−20
−25
−35 −30 −25 −20 −15 −10 −5 0
Input power Pin (dBm)
+5 +10
−25
−35 −30 −25 −20 −15 −10 −5 0
Input power Pin (dBm)
+5
+10
(e) f = 2.9 GHz
+10
Output power Pout (dBm)
+5
f = 2.9 GHz
VCC = 5.5 V
0
−5
VCC = 5.0 V
VCC = 4.5 V
−10
−15
−20
−25
−30
−35 −30 −25 −20 −15 −10
−5
0
+5 +10
Input power Pin (dBm)
Application Note P13252EJ2V0AN00
13
Figure 3-5. µPC2708TB Frequency Characteristics with 10-nH Inductor (2/2)
(Conditions: TA = +25°°C, VCC = Vout, ZS = ZL = 50 Ω )
Noise Factor vs. Frequency
9
Noise factor NF (dB)
VCC = 5.5 V
8
VCC = 5.0 V
7
6
5
0.1
VCC = 4.5 V
0.3
1.0
Frequency f (GHz)
14
Application Note P13252EJ2V0AN00
3.0
Figure 3-6. µPC2709TB Frequency Characteristics with 10-nH Inductor
(Conditions: TA = +25°C, VCC = Vout, ZS = ZL = 50 Ω )
Output Power vs. Input Power
(a) Vcc = Vout = 5.0 V
(b) f = 1.0 GHz
+15
+15
f = 1.0 GHz
VCC = 5.0 V
+10
f = 1.0 GHz
Output power Pout (dBm)
Output power Pout (dBm)
+10
+5
f = 2.0 GHz
0
f = 2.15 GHz
–5
–10
VCC = 5.5 V
+5
VCC = 5.0 V
0
VCC = 4.5 V
–5
–10
–15
–15
–20
–35 –30 –25 –20 –15 –10 –5 0
Input power Pin (dBm)
–20
–35 –30 –25 –20 –15 –10 –5 0
Input power Pin (dBm)
+5 +10
(c) f = 2.0 GHz
(d) f = 2.15 GHz
+15
+15
f = 2.0 GHz
f = 2.15 GHz
+10
+10
VCC = 5.5 V
Output power Pout (dBm)
Output power Pout (dBm)
+5 +10
+5
VCC = 5.0 V
0
–5
VCC = 4.5 V
–10
–15
VCC = 5.5 V
+5
VCC = 5.0 V
0
–5
VCC = 4.5 V
–10
–15
–20
–35 –30 –25 –20 –15 –10 –5 0
Input power Pin (dBm)
+5 +10
–20
–35 –30 –25 –20 –15 –10 –5 0
Input power Pin (dBm)
+5 +10
Noise factor vs. Frequency
Noise factor NF (dB)
6
VCC = 5.5 V
5
VCC = 4.5 V
VCC = 5.0 V
4
3
0.1
0.3
1.0
3.0
Frequency f (GHz)
Application Note P13252EJ2V0AN00
15
Figure 3-7. µPC2710TB Frequency Characteristics with 10-nH Inductor
(Conditions: TA = +25°°C, VCC = Vout, ZS = ZL = 50 Ω )
Output Power vs. Input Power
(a) Vcc = Vout = 5.0 V
+15
(b) f = 0.5 GHz
+20
f = 1.0 GHz
VCC = 5.0 V
+15
Output power Pout (dBm)
Output power Pout (dBm)
+10
f = 500 MHz
+5
0
−5
f = 0.5 GHz
+10
+5
0
−5
+5 +10
−15
−40 −35 −30 −25 −20 −15 −10 −5
Input power Pin (dBm)
(c) f = 1.0 GHz
+20
Output power Pout (dBm)
VCC = 5.5 V
f = 1.0 GHz
+10
+5
VCC = 5.0 V
0
VCC = 4.5 V
−5
−10
−15
−40 −35 −30 −25 −20 −15 −10 −5
0
+5 +10
Input power Pin (dBm)
Noise Factor vs. Frequency
Noise factor NF (dB)
5
4.5
VCC = 5.5 V
4
3.5
VCC = 5.0 V
VCC = 4.5 V
3
0.1
0.3
1.0
3.0
Frequency f (GHz)
16
VCC = 5.0 V
VCC = 4.5 V
−10
−10
−40 −35 −30 −25 −20 −15 −10 −5 0
Input power Pin (dBm)
+15
VCC = 5.5 V
Application Note P13252EJ2V0AN00
0
+5 +10
3.2 µPC2762TB, µPC2763TB, µPC2771TB
The external inductor values vs. gain frequency characteristics of the µPC2762TB, µPC2763TB, and µPC2771TB
were measured using similar wire-wound chip inductors as were attached to the µPC2762T, µPC2763T, and
µPC2771T. Figures 3-8, 3-9, and 3-10 show those characteristics.
For the µPC2762TB, reducing the inductor value increased the maximum gain, shifted the curve towards the
higher frequency region, and narrowed the band in which the higher gain values occurred. For the µPC2763TB and
µPC2771TB, although the gain did not vary when the inductor value changed, reducing the inductor value shifted the
curve towards the higher frequency region. Next, as an application characteristic when these ICs are used in the
transmission stage of a mobile communications device, the adjacent channel interference power was measured in an
application circuit using a 300-nH inductor.
The measurement conditions were applied using the PDC800M,
PDC1.5G, PHS (1.9 GHz), and GSM900.
For the µPC2762TB, µPC2763TB, and µPC2771TB, the adjacent channel interference power in the linear region
had a satisfactory value of –60 dBc or less with detuning at each frequency. Also, for the GSM900 conditions, even
the adjacent channel interference power in the saturated region had a satisfactory value of –60 dBc or less with
detuning at ±400 kHz. Figures 3-11, 3-12, and 3-13 show these characteristics.
Figure 3-8. µPC2762TB Power Gain vs. Frequency Characteristic External Inductor Value Dependencies
(Conditions: TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω )
18
L = 10 nH
MARKER 1 100 MHz
MARKER 2 900 MHz
MARKER 3 1900 MHz
MARKER 4 2500 MHz
MARKER 5 3000 MHz
L = 22 nH
16
Power gain GP (dB)
L = 33 nH
4
3
L = 100 nH
14
L = 33 nH
2
12
L = 100 nH
L = 22 nH
10
5
L = 10 nH
8
1.0
1
1.9
2.5
3.1
START 0.100000000 GHz
STOP 3.100000000 GHz
Frequency
Application Note P13252EJ2V0AN00
17
Figure 3-9. µPC2763TB Power Gain vs. Frequency Characteristic External Inductor Value Dependencies
(Conditions: TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω )
24
22
3
MARKER 1 100 MHz
MARKER 2 900 MHz
MARKER 3 1900 MHz
MARKER 4 2500 MHz
MARKER 5 3000 MHz
L = 22 nH
L = 10 nH
Power gain GP (dB)
L = 100 nH
2
20
L = 33 nH
18
L = 33 nH
L = 100 nH
4
L = 22 nH
16
L = 10 nH
14
1.0
1
1.9
2.5
5
3.1
START 0.100000000 GHz
STOP 3.100000000 GHz
Frequency
Figure 3-10. µPC2771TB Power Gain vs. Frequency Characteristic External Inductor Value Dependencies
(Conditions: TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω )
22
MARKER 1
MARKER 2
MARKER 3
MARKER 4
MARKER 5
L = 10 nH
L = 100 nH
20
3
2
Power gain GP (dB)
4
L = 22 nH
L = 33 nH
18
L = 33 nH
L = 100 nH
5
L = 22 nH
16
L = 10 nH
14 1
0.1
1.0
1.9
START 0.100000000 GHz
STOP 3.100000000 GHz
Frequency
18
Application Note P13252EJ2V0AN00
2.5
3.1
100 MHz
900 MHz
1500 MHz
1900 MHz
2500 MHz
Figure 3-11. µPC2762TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (1/4)
a)
Input frequency fin = 950 MHz
(Input wave conditions: π/4 QPSK modulated signal input, transmission rate 42 kbps, roll-off rate = 0.5,
PN9 stage (pseudo-random pattern))
+5
–20
Pout
0
–30
–5
–40
Padj
∆f = 50 kHz
–50
–10
–60
–15
–70
Padj
∆f = 100 kHz
–80
–30 –25 –20 –15 –10 –5
0
Input power Pin (dBm)
+5
Padj waveform (linear region)
REF 10.0 dBm
10dB/
f = 950 MHz
PO = +4 dBm
ADJ BS
21.0 kHz
ATT 20 dB
ADJ (UP, LOW)
–65.00 dB
–64.25 dB
–25
+10
REF 15.0 dBm
10dB/
f = 950 MHz
Pin = +3 dBm
ADJ BS
21.0 kHz
DL 15.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
SPAN 250.0 kHz
–20
Padj waveform (saturated region)
DL 10.0 dBm
CENTER 950.0000 MHz
Output power Pout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power, Output power vs. Input power
+10
–10
Application Note P13252EJ2V0AN00
ATT 30 dB
CENTER 950.0000 MHz
ADJ (UP, LOW)
–34.75 dB
–34.25 dB
SPAN 250.0 kHz
19
Figure 3-11. µPC2762TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (2/4)
b) Input frequency fin = 1440 MHz
(Input wave conditions: π/4 QPSK modulated signal input, transmission rate 42 kbps, roll-off rate = 0.5,
PN9 stage (pseudo-random pattern))
+5
–20
Pout
0
–30
–40
–5
Padj
∆f = 50 kHz
–10
–50
–60
Padj
∆f = 100 kHz
–15
–70
–20
–80
–30 –25 –20 –15 –10 –5
0
Input power Pin (dBm)
+5
Padj waveform (linear region)
REF 10.0 dBm
10dB/
f = 1440 MHz
PO = +4 dBm
ADJ BS
21.0 kHz
ATT 20 dB
ADJ (UP, LOW)
–64.50 dB
–63.75 dB
REF 15.0 dBm
10dB/
f = 1440 MHz
Pin = +3 dBm
ADJ BS
21.0 kHz
DL 15.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
20
SPAN 250.0 kHz
–25
+10
Padj waveform (saturated region)
DL 10.0 dBm
CENTER 1.4400000 GHz
Output power Pout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power, Output power vs. Input power
+10
–10
Application Note P13252EJ2V0AN00
ATT 30 dB
CENTER 1.4400000 GHz
ADJ (UP, LOW)
–32.25 dB
–31.75 dB
SPAN 250.0 kHz
Figure 3-11. µPC2762TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (3/4)
c)
Input frequency fin = 1900 MHz
(Input wave conditions: π/4 QPSK modulated signal input, transmission rate 384 kbps, roll-off rate = 0.5,
PN9 stage (pseudo-random pattern))
+5
–20
Pout
0
–30
–40
–5
Padj
∆f = 600 kHz
–50
–10
–60
–15
–70
Padj
∆f = 900 kHz
–80
–30 –25 –20 –15 –10 –5
0
Input power Pin (dBm)
+5
Padj waveform (linear region)
REF 0.0 dBm
10dB/
f = 1900 MHz
PO = +4 dBm
ADJ BS
192 kHz
ATT 10 dB
ADJ (UP, LOW)
–66.00 dB
–65.00 dB
–25
+10
REF 5.0 dBm
10dB/
f = 1900 MHz
Pin = +3 dBm
ADJ BS
192 kHz
DL 5.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
SPAN 2.000 MHz
–20
Padj waveform (saturated region)
DL 0.0 dBm
CENTER 1.9000000 GHz
Output power Pout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power, Output power vs. Input power
+10
–10
ATT 20 dB
CENTER 1.9000000 GHz
Application Note P13252EJ2V0AN00
ADJ (UP, LOW)
–36.25 dB
–35.50 dB
SPAN 2.000 MHz
21
Figure 3-11. µPC2762TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (4/4)
d) Input frequency fin = 900 MHz
(Input wave conditions: GMSK modulated signal input, transmission rate 270.833 kbps, roll-off rate = 0.3,
PN9 stage (pseudo-random pattern))
+5
–20
Pout
–30
0
–40
–5
–50
–10
Padj
∆f = ±400 kHz
–60
–70
–15
–20
Padj
∆f = ±800 kHz
–80
–30 –25 –20 –15 –10 –5
0
Input power Pin (dBm)
+5
Padj waveform (linear region)
REF 0.0 dBm
10dB/
f = 900 MHz
PO = +4 dBm
ADJ CH SPACE
400 kHz
ATT 10 dB
ADJ (UP, LOW)
–69.50 dB
–66.50 dB
REF 0.0 dBm
10dB/
f = 900 MHz
Pin = +4 dBm
ADJ CH SPACE
400 kHz
DL 0.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
22
SPAN 2.000 MHz
–25
+10
Padj waveform (saturated region)
DL 0.0 dBm
CENTER 900.000 MHz
Output power Pout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power, Output power vs. Input power
+10
–10
Application Note P13252EJ2V0AN00
ATT 10 dB
CENTER 900.000 MHz
ADJ (UP, LOW)
–67.25 dB
–62.75 dB
SPAN 2.000 MHz
Figure 3-12. µPC2763TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (1/4)
a)
Input frequency fin = 950 MHz
(Input wave conditions: π/4 QPSK modulated signal input, transmission rate 42 kbps, roll-off rate = 0.5,
PN9 stage (pseudo-random pattern))
–20
+10
Pout
+5
–30
–40
0
Padj
∆f = 50 kHz
–50
–5
–60
–10
–70
Padj
∆f = 100 kHz
–80
–30 –25 –20 –15 –10 –5
0
Input power Pin (dBm)
+5
Padj waveform (linear region)
REF 10.0 dBm
10dB/
f = 950 MHz
PO = +4 dBm
ADJ BS
21.0 kHz
ATT 20 dB
ADJ (UP, LOW)
–69.75 dB
–68.75 dB
–20
+10
REF 15.0 dBm
10dB/
f = 950 MHz
Pin = –3 dBm
ADJ BS
21.0 kHz
DL 15.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
SPAN 250.0 kHz
–15
Padj waveform (saturated region)
DL 10.0 dBm
CENTER 950.000 MHz
Output power Pout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power, Output power vs. Input power
+15
–10
Application Note P13252EJ2V0AN00
ATT 30 dB
CENTER 950.000 MHz
ADJ (UP, LOW)
–33.25 dB
–32.75 dB
SPAN 250.0 kHz
23
Figure 3-12. µPC2763TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (2/4)
b) Input frequency fin = 1440 MHz
(Input wave conditions: π/4 QPSK modulated signal input, transmission rate 42 kbps, roll-off rate = 0.5,
PN9 stage (pseudo-random pattern))
+10
–20
Pout
–30
+5
–40
0
–50
–5
Padj
∆f = 50 kHz
–10
–60
Padj
∆f = 100 kHz
–70
–80
–30 –25 –20 –15 –10 –5
0
Input power Pin (dBm)
+5
Padj waveform (linear region)
REF 10.0 dBm
10dB/
f = 1440 MHz
PO = +4 dBm
ADJ BS
21.0 kHz
ATT 20 dB
ADJ (UP, LOW)
–67.25 dB
–66.00 dB
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
24
–20
+10
REF 15.0 dBm
10dB/
f = 1440 MHz
Pin = –3 dBm
ADJ BS
21.0 kHz
DL 15.0 dBm
SPAN 250.0 kHz
–15
Padj waveform (saturated region)
DL 10.0 dBm
CENTER 1.4400000 GHz
Output power Pout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power, Output power vs. Input power
+15
–10
Application Note P13252EJ2V0AN00
ATT 30 dB
CENTER 1.4400000 GHz
ADJ (UP, LOW)
–32.00 dB
–31.75 dB
SPAN 250.0 kHz
Figure 3-12. µPC2763TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (3/4)
c)
Input frequency fin = 1900 MHz
(Input wave conditions: π/4 QPSK modulated signal input, transmission rate 384 kbps, roll-off rate = 0.5,
PN9 stage (pseudo-random pattern))
+10
–20
Pout
–30
+5
0
–40
–50
Padj
∆f = 600 kHz
–5
–10
–60
Padj
∆f = 900 kHz
–70
–80
–30 –25 –20 –15 –10 –5
0
Input power Pin (dBm)
+5
Padj waveform (linear region)
REF 0.0 dBm
10dB/
f = 1900 MHz
PO = +4 dBm
ADJ BS
192 kHz
ATT 20 dB
ADJ (UP, LOW)
–69.75 dB
–69.00 dB
–20
+10
REF 0.0 dBm
10dB/
f = 1900 MHz
Pin = –3 dBm
ADJ BS
192 kHz
DL 0.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
SPAN 2.000 MHz
–15
Padj waveform (saturated region)
DL 0.0 dBm
CENTER 1.9000000 GHz
Output power Pout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power, Output power vs. Input power
+15
–10
ATT 20 dB
CENTER 1.9000000 GHz
Application Note P13252EJ2V0AN00
ADJ (UP, LOW)
–37.50 dB
–36.75 dB
SPAN 2.000 MHz
25
Figure 3-12. µPC2763TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (4/4)
d) Input frequency fin = 900 MHz
(Input wave conditions: GMSK modulated signal input, transmission rate 270.833 kbps, roll-off rate = 0.3,
PN9 stage (pseudo-random pattern))
–30
+10
Pout
–40
+5
–50
0
Padj
∆f = ±400 kHz
–60
–5
–10
–70
Padj
∆f = ±800 kHz
–80
–15
–90
–30 –25 –20 –15 –10 –5
0
Input power Pin (dBm)
+5
Padj waveform (linear region)
REF 0.0 dBm
10dB/
f = 900 MHz
PO = +4 dBm
ADJ CH SPACE
400 kHz
ATT 10 dB
ADJ (UP, LOW)
–69.25 dB
–66.00 dB
REF 0.0 dBm
10dB/
f = 900 MHz
Pin = –4 dBm
ADJ CH SPACE
400 kHz
DL 0.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
26
SPAN 2.000 MHz
–20
+10
Padj waveform (saturated region)
DL 0.0 dBm
CENTER 900.000 MHz
Output power Pout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power, Output power vs. Input power
+15
–20
Application Note P13252EJ2V0AN00
ATT 10 dB
CENTER 900.000 MHz
ADJ (UP, LOW)
–66.75 dB
–62.75 dB
SPAN 2.000 MHz
Figure 3-13. µPC2771TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (1/4)
a)
Input frequency fin = 950 MHz
(Input wave conditions: π/4 QPSK modulated signal input, transmission rate 42 kbps, roll-off rate = 0.5,
PN9 stage (pseudo-random pattern))
–20
+10
Pout
+5
–30
0
–40
Padj
∆f = 50 kHz
–50
–5
–10
–60
–70
Padj
∆f = 100 kHz
–80
–30 –25 –20 –15 –10 –5
0
Input power Pin (dBm)
+5
Padj waveform (linear region)
REF 10.0 dBm
10dB/
f = 950 MHz
PO = +7 dBm
ADJ BS
21.0 kHz
ATT 20 dB
ADJ (UP, LOW)
–62.75 dB
–61.25 dB
–20
+10
REF 15.0 dBm
10dB/
f = 950 MHz
Pin = –3 dBm
ADJ BS
21.0 kHz
DL 15.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
SPAN 250.0 kHz
–15
Padj waveform (saturated region)
DL 10.0 dBm
CENTER 950.000 MHz
Output power Pout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power, Output power vs. Input power
+15
–10
Application Note P13252EJ2V0AN00
ATT 30 dB
CENTER 950.000 MHz
ADJ (UP, LOW)
–34.50 dB
–33.50 dB
SPAN 250.0 kHz
27
Figure 3-13. µPC2771TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (2/4)
b) Input frequency fin = 1440 MHz
(Input wave conditions: π/4 QPSK modulated signal input, transmission rate 42 kbps, roll-off rate = 0.5,
PN9 stage (pseudo-random pattern))
–20
+10
Pout
–30
+5
–40
0
–50
Padj
∆f = 50 kHz
–5
–10
–60
–70
Padj
∆f = 100 kHz
–80
–30 –25 –20 –15 –10 –5
0
Input power Pin (dBm)
+5
Padj waveform (linear region)
REF 10.0 dBm
10dB/
f = 1440 MHz
PO = +7 dBm
ADJ BS
21.0 kHz
ATT 20 dB
ADJ (UP, LOW)
–61.50 dB
–60.50 dB
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
28
–20
+10
REF 15.0 dBm
10dB/
f = 1440 MHz
Pin = –3 dBm
ADJ BS
21.0 kHz
DL 15.0 dBm
SPAN 250.0 kHz
–15
Padj waveform (saturated region)
DL 10.0 dBm
CENTER 1.4400000 GHz
Output power Pout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power, Output power vs. Input power
+15
–10
Application Note P13252EJ2V0AN00
ATT 30 dB
CENTER 1.4400000 GHz
ADJ (UP, LOW)
–33.50 dB
–33.25 dB
SPAN 250.0 kHz
Figure 3-13. µPC2771TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (3/4)
c)
Input frequency fin = 1900 MHz
(Input wave conditions: π/4 QPSK modulated signal input, transmission rate 384 kbps, roll-off rate = 0.5,
PN9 stage (pseudo-random pattern))
+10
–20
Pout
–30
+5
–40
0
–50
–5
Padj
∆f = 600 kHz
–10
–60
Padj
∆f = 900 kHz
–70
–80
–30 –25 –20 –15 –10 –5
0
Input power Pin (dBm)
+5
Padj waveform (linear region)
REF 0.0 dBm
10dB/
f = 1900 MHz
PO = +7 dBm
ADJ BS
192 kHz
ATT 20 dB
ADJ (UP, LOW)
–54.00 dB
–51.75 dB
–20
+10
REF 0.0 dBm
10dB/
f = 1900 MHz
Pin = –3 dBm
ADJ BS
192 kHz
DL 0.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
SPAN 2.000 MHz
–15
Padj waveform (saturated region)
DL 0.0 dBm
CENTER 1.9000000 GHz
Output power Pout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power, Output power vs. Input power
+15
–10
ATT 20 dB
CENTER 1.9000000 GHz
Application Note P13252EJ2V0AN00
ADJ (UP, LOW)
–39.25 dB
–38.50 dB
SPAN 2.000 MHz
29
Figure 3-13. µPC2771TB Adjacent Channel Interference Power Characteristics with 300-nH Inductor (4/4)
d) Input frequency fin = 900 MHz
(Input wave conditions: GMSK modulated signal input, transmission rate 270.833 kbps, roll-off rate = 0.3,
PN9 stage (pseudo-random pattern))
Pout
–20
+10
–30
+5
–40
0
–5
–50
Padj
∆f = ±400 kHz
–60
–10
Padj
∆f = ±800 kHz
–70
–15
–80
–30 –25 –20 –15 –10 –5
0
Input power Pin (dBm)
+5
Padj waveform (linear region)
REF 0.0 dBm
10dB/
f = 900 MHz
PO = +7 dBm
ADJ CH SPACE
400 kHz
ATT 10 dB
ADJ (UP, LOW)
–69.25 dB
–66.00 dB
REF 0.0 dBm
10dB/
f = 900 MHz
Pin = –4 dBm
ADJ CH SPACE
400 kHz
DL 0.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
30
SPAN 2.000 MHz
–20
+10
Padj waveform (saturated region)
DL 0.0 dBm
CENTER 900.000 MHz
Output power Pout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power, Output power vs. Input power
+15
–10
Application Note P13252EJ2V0AN00
ATT 20 dB
CENTER 900.000 MHz
ADJ (UP, LOW)
–67.75 dB
–63.50 dB
SPAN 2.000 MHz
3.3 µPC2776TB
The external inductor values and gain frequency characteristics of the µPC2776TB were measured using similar
wire-wound chip inductors as were attached to the µPC2776T. Figure 3-14 shows those characteristics. Since the
output-side characteristic impedance of the µPC2776TB below the VHF band is close to 50 Ω, using an external
inductor value greater than or equal to 100 nH makes the µPC2776TB suitable for applications in the VHF band.
Also, the curves in Figure 3-14 show that a wide area shift of frequencies cannot be achieved by reducing the
inductor value as can be done for the µPC2709TB since an internal circuit insensitive to load variations is used for
the µPC2776TB.
Figure 3-14. µPC2776TB Power Gain vs. Frequency Characteristic External Inductor Value Dependencies
(Conditions: TA = +25°C, VCC = Vout = 5.0 V, ZS = ZL = 50 Ω )
26
MARKER 1
MARKER 2
MARKER 3
MARKER 4
MARKER 5
24
Power gain GP (dB)
L = 100 nH
L = 10 nH
3
2
100 MHz
1000 MHz
2000 MHz
2500 MHz
3000 MHz
L = 33 nH
22
4
L = 10 nH
L = 33 nH
L = 100 nH
20
18 1
5
16
0.1
1.0
1.9
START 0.100000000 GHz
STOP 3.100000000 GHz
2.5
3.1
Frequency
Application Note P13252EJ2V0AN00
31
4. CONCLUSION
This application note introduced the application characteristics for the 6-pin super mini-molded µPC2708TB,
µPC2709TB, µPC2710TB, µPC2762TB, µPC2763TB, µPC2771TB, and µPC2776TB and described how they differ
from the conventional 6-pin mini-mold products. Readers can see that similar characteristics are obtained even
though the external form has been reduced in size.
References
• Application Note Usage and Application of Silicon Medium-Power High-Frequency Amplifier MMIC µPC1677 to
1679, µPC2708 to 2710, µPC2762/2763, µPC2771/2776 (Document No. P12152E)
• Data sheet for each product
µPC2708TB (Document No. P13442E)
µPC2709TB (Document No. P12653E)
µPC2710TB (Document No. P13443E)
µPC2762TB/2763TB/2771TB (Document No. P12710E)
µPC2776TB (Document No. P12680E)
32
Application Note P13252EJ2V0AN00
APPENDIX S PARAMETER REFERENCE VALUES (TA = +25°C)
µPC2708TB
VCC = Vout = 5.0 V, ICC = 27 mA
FREQUENCY
MHz
MAG
S11
ANG
S21
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.039
0.053
0.069
0.088
0.105
0.123
0.144
0.164
0.186
0.205
0.226
0.245
0.263
0.286
0.308
0.328
0.344
0.364
0.382
0.395
0.405
0.417
0.427
0.431
0.431
0.434
0.423
0.419
0.408
0.400
0.386
138.9
119.7
106.7
97.2
91.6
84.9
79.7
74.7
70.7
66.1
61.7
57.7
53.7
48.6
44.3
40.7
36.2
31.0
26.0
21.2
16.8
11.8
6.6
2.2
–3.0
–8.2
–12.3
–17.1
–21.5
–26.2
–29.3
MAG
5.815
5.822
5.815
5.813
5.794
5.823
5.871
5.890
5.938
5.960
6.072
6.097
6.174
6.275
6.371
6.419
6.470
6.555
6.542
6.570
6.528
6.527
6.438
6.336
6.247
6.127
5.952
5.816
5.619
5.354
5.134
S12
S22
ANG
MAG
ANG
–4.8
–9.8
–14.3
–18.8
–23.8
–28.4
–33.0
–38.2
–42.8
–47.6
–52.7
–57.5
–63.0
–68.4
–74.3
–79.8
–85.9
–92.1
–98.3
–104.7
–111.3
–118.5
–124.7
–131.3
–138.1
–145.0
–151.7
–158.2
–165.0
–171.5
–177.4
0.077
0.075
0.074
0.074
0.072
0.071
0.070
0.071
0.073
0.070
0.069
0.070
0.067
0.069
0.070
0.066
0.067
0.069
0.070
0.070
0.070
0.071
0.072
0.071
0.072
0.071
0.071
0.070
0.073
0.074
0.075
–0.8
–1.5
–0.6
–0.5
–1.1
–0.6
0.1
0.5
2.3
1.0
3.3
4.4
2.5
5.0
5.4
7.1
5.6
8.2
8.4
8.7
10.1
9.4
9.5
10.7
12.8
15.4
14.5
16.1
15.3
17.1
17.1
MAG
K
ANG
0.051
0.048
0.049
0.054
0.054
0.056
0.060
0.065
0.072
0.074
0.075
0.082
0.085
0.091
0.092
0.097
0.096
0.100
0.100
0.101
0.100
0.096
0.098
0.095
0.098
0.094
0.088
0.081
0.074
0.065
0.053
0.9
1.4
5.9
8.9
8.8
10.4
11.5
11.6
11.1
8.2
9.4
5.6
0.6
–4.6
–8.2
–12.6
–19.6
–23.9
–32.0
–38.9
–47.2
–57.2
–66.1
–76.5
–86.1
–99.9
–116.7
–134.4
–149.7
–170.3
172.8
1.34
1.36
1.38
1.36
1.39
1.40
1.40
1.37
1.34
1.36
1.34
1.31
1.33
1.28
1.24
1.26
1.23
1.18
1.15
1.13
1.12
1.09
1.09
1.09
1.09
1.10
1.14
1.18
1.19
1.24
1.28
µPC2709TB
VCC = Vout = 5.0 V, ICC = 26 mA
FREQUENCY
MHz
MAG
S11
ANG
MAG
S21
ANG
MAG
S12
ANG
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.227
0.239
0.245
0.244
0.243
0.247
0.265
0.284
0.301
0.305
0.299
0.300
0.314
0.328
0.354
0.359
0.373
0.371
0.379
0.386
0.387
0.374
0.360
0.339
0.338
0.334
0.330
0.311
0.291
0.258
0.240
0.2
1.0
2.9
2.5
1.5
–1.5
–3.2
–3.6
–3.3
–2.4
–3.2
–6.3
–10.3
–14.4
–17.3
–19.5
–22.1
–26.8
–31.1
–36.0
–39.5
–43.8
–48.7
–55.4
–62.0
–66.0
–69.0
–69.9
–72.5
–76.5
–80.6
13.698
13.724
13.830
13.998
14.109
14.246
14.538
14.703
15.051
15.331
15.605
15.773
16.152
16.282
16.337
16.370
16.256
15.977
15.529
15.307
14.745
14.212
13.633
12.846
11.990
11.265
10.560
9.942
9.432
8.818
8.353
–4.5
–9.6
–14.5
–19.9
–25.0
–30.4
–35.5
–41.3
–47.0
–53.5
–60.0
–66.7
–74.0
–81.0
–89.3
–96.5
–104.5
–112.7
–120.5
–128.1
–135.9
–143.7
–151.3
–158.7
–165.5
–172.1
–177.8
176.2
171.3
166.5
161.9
0.027
0.027
0.026
0.027
0.026
0.027
0.028
0.028
0.028
0.029
0.029
0.029
0.030
0.030
0.032
0.031
0.033
0.032
0.033
0.034
0.033
0.033
0.033
0.032
0.033
0.033
0.033
0.033
0.035
0.035
0.035
–1.0
3.1
4.7
7.8
9.8
11.9
13.6
14.9
17.2
18.8
20.9
22.5
23.8
26.1
25.6
26.8
28.0
29.3
31.3
31.0
32.2
30.5
33.9
35.5
38.0
39.1
40.8
43.5
44.9
47.4
53.4
Application Note P13252EJ2V0AN00
S22
MAG
0.196
0.207
0.212
0.223
0.234
0.252
0.270
0.287
0.298
0.309
0.322
0.336
0.353
0.353
0.368
0.370
0.382
0.381
0.378
0.373
0.366
0.363
0.353
0.331
0.318
0.304
0.295
0.282
0.267
0.246
0.225
K
ANG
0.9
2.2
4.1
3.4
2.1
–0.4
–2.3
–4.6
–7.4
–11.9
–17.1
–21.5
–24.8
–28.8
–35.5
–41.8
–46.9
–52.8
–57.8
–64.1
–70.8
–78.1
–83.0
–90.0
–95.6
–102.5
–108.3
–113.7
–118.6
–125.1
–131.2
1.37
1.36
1.38
1.32
1.33
1.26
1.20
1.15
1.10
1.05
1.04
1.01
0.95
0.93
0.86
0.86
0.81
0.83
0.83
0.82
0.85
0.90
0.94
1.06
1.11
1.20
1.25
1.36
1.40
1.55
1.64
33
µPC2710TB
VCC = Vout = 5.0 V, ICC = 22mA
FREQUENCY
MHz
MAG
S11
ANG
MAG
S21
ANG
MAG
S12
ANG
MAG
S22
ANG
K
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.306
0.324
0.356
0.400
0.439
0.469
0.481
0.488
0.479
0.465
0.448
0.417
0.387
0.350
0.316
0.292
0.256
0.245
0.215
0.201
0.177
0.161
0.145
0.124
0.113
0.107
0.091
0.081
0.067
0.055
0.039
2.5
5.2
5.3
2.5
–3.3
–10.2
–17.9
–26.7
–34.5
–41.2
–49.3
–54.9
–61.2
–65.2
–70.8
–74.0
–76.9
–80.5
–82.9
–85.6
–84.4
–88.8
–88.7
–90.3
–89.8
–91.9
–92.2
–94.9
–97.4
–103.8
–95.6
43.072
43.517
44.432
45.513
45.679
45.670
44.793
43.016
40.519
37.946
35.122
32.108
29.221
26.656
23.895
21.576
19.567
17.743
16.040
14.717
13.475
12.327
11.154
10.262
9.490
8.793
8.149
7.652
7.134
6.726
6.295
–8.4
–17.1
–26.5
–36.9
–48.1
–59.7
–71.8
–84.3
–96.0
–107.3
–117.9
–128.0
–137.0
–145.8
–153.9
–161.6
–168.1
–174.4
179.6
173.5
168.8
163.1
158.7
154.4
150.4
146.4
142.4
138.9
135.1
131.5
128.4
0.012
0.010
0.010
0.012
0.012
0.013
0.014
0.014
0.013
0.016
0.016
0.015
0.015
0.015
0.013
0.016
0.015
0.018
0.017
0.021
0.020
0.021
0.022
0.023
0.025
0.028
0.030
0.031
0.031
0.039
0.039
15.2
10.7
20.2
26.9
27.0
31.3
34.9
27.9
26.6
30.8
26.6
39.5
39.7
50.2
50.8
56.6
69.0
61.7
70.0
71.2
83.0
76.7
87.9
81.4
91.9
88.7
93.4
92.1
93.0
88.3
89.6
0.156
0.164
0.185
0.225
0.255
0.283
0.301
0.312
0.316
0.311
0.307
0.282
0.270
0.248
0.236
0.215
0.200
0.196
0.180
0.175
0.166
0.171
0.159
0.164
0.158
0.166
0.175
0.183
0.191
0.200
0.203
2.7
2.1
0.3
–5.5
–15.4
–27.6
–40.2
–54.9
–67.7
–79.5
–92.2
–104.6
–115.5
–127.0
–136.2
–145.3
–155.2
–162.5
–173.4
–178.1
172.0
167.7
159.1
154.0
147.0
141.8
135.7
131.6
123.4
118.9
111.5
1.08
1.17
1.10
0.92
0.85
0.77
0.74
0.74
0.78
0.79
0.85
0.99
1.12
1.27
1.56
1.49
1.71
1.59
1.88
1.71
1.94
1.99
2.08
2.15
2.19
2.06
2.13
2.13
2.26
1.97
2.08
µPC2762TB
VCC = Vout = 3.0 V, ICC = 29 mA
34
FREQUENCY
MHz
MAG
S11
ANG
MAG
S21
ANG
MAG
S12
ANG
MAG
ANG
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.338
0.346
0.348
0.340
0.329
0.324
0.341
0.359
0.378
0.375
0.363
0.353
0.357
0.377
0.402
0.414
0.426
0.434
0.448
0.463
0.483
0.492
0.492
0.486
0.489
0.500
0.511
0.511
0.494
0.465
0.441
–1.3
–2.0
–1.2
–1.9
–3.1
–6.2
–8.1
–7.6
–6.5
–5.1
–5.2
–6.7
–8.8
–11.7
–12.7
–13.2
–13.6
–16.1
–19.0
–21.7
–23.9
–25.8
–29.7
–34.6
–40.4
–44.6
–48.5
–50.4
–52.9
–55.9
–60.6
4.560
4.581
4.616
4.661
4.689
4.726
4.844
4.927
5.057
5.179
5.306
5.400
5.567
5.706
5.820
5.987
6.081
6.182
6.229
6.328
6.382
6.431
6.424
6.329
6.146
5.997
5.822
5.693
5.553
5.334
5.157
–3.4
–7.6
–11.3
–15.8
–19.5
–23.6
–27.4
–31.5
–35.8
–41.0
–45.9
–51.0
–56.5
–61.7
–68.0
–73.7
–80.1
–86.7
–93.2
–99.7
–106.7
–113.8
–121.2
–128.8
–136.1
–143.1
–149.9
–157.0
–163.0
–169.5
–175.5
0.039
0.039
0.039
0.040
0.040
0.041
0.042
0.043
0.044
0.045
0.047
0.047
0.048
0.049
0.052
0.052
0.055
0.056
0.057
0.057
0.058
0.058
0.060
0.060
0.062
0.061
0.064
0.066
0.065
0.065
0.066
1.0
2.7
6.8
8.1
11.6
13.7
15.8
18.1
19.3
20.3
22.1
23.7
26.1
24.5
26.7
26.8
29.0
28.2
28.5
28.0
28.5
29.0
30.1
30.2
31.1
32.1
31.4
34.0
33.8
35.5
35.5
0.310
0.311
0.302
0.296
0.290
0.292
0.291
0.292
0.284
0.280
0.285
0.288
0.288
0.285
0.282
0.285
0.288
0.291
0.286
0.282
0.282
0.282
0.278
0.268
0.260
0.251
0.248
0.237
0.222
0.203
0.189
–5.5
–9.5
–12.3
–16.2
–20.2
–24.1
–26.2
–28.3
–30.9
–35.3
–40.0
–43.4
–45.7
–47.9
–52.8
–58.1
–62.0
–66.1
–70.4
–76.2
–81.5
–86.9
–91.7
–98.4
–104.5
–111.3
–116.7
–121.5
–128.3
–134.5
–141.1
Application Note P13252EJ2V0AN00
S22
K
2.23
2.20
2.20
2.18
2.20
2.12
2.01
1.90
1.77
1.72
1.64
1.62
1.54
1.44
1.32
1.27
1.18
1.14
1.09
1.07
1.01
0.99
0.99
1.01
1.02
1.05
1.03
1.04
1.11
1.20
1.27
µPC2763TB
VCC = Vout = 3.0 V, ICC = 28 mA
FREQUENCY
MHz
MAG
S11
ANG
MAG
S21
ANG
MAG
S12
ANG
S22
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.231
0.242
0.250
0.245
0.242
0.241
0.263
0.291
0.316
0.322
0.318
0.309
0.322
0.344
0.371
0.380
0.388
0.378
0.378
0.375
0.369
0.351
0.331
0.306
0.300
0.294
0.290
0.270
0.248
0.219
0.198
–1.4
–0.2
2.7
2.8
2.0
–2.2
–5.3
–5.6
–5.1
–4.0
–5.4
–9.0
–14.2
–20.6
–23.7
–27.5
–30.6
–36.4
–42.1
–46.6
–50.5
–53.8
–59.8
–66.4
–73.1
–75.8
–77.1
–77.7
–78.7
–82.3
–88.7
10.210
10.305
10.464
10.655
10.863
11.093
11.544
11.843
12.291
12.676
13.066
13.311
13.661
13.845
13.824
13.890
13.634
13.236
12.724
12.290
11.707
11.130
10.524
9.824
9.152
8.583
8.029
7.610
7.240
6.827
6.516
–3.8
–8.5
–12.9
–18.2
–22.8
–28.1
–33.2
–39.0
–45.1
–52.4
–59.8
–67.3
–75.8
–83.9
–93.0
–101.5
–110.5
–119.6
–127.9
–136.1
–144.0
–151.7
–159.1
–165.9
–172.3
–178.2
176.2
170.6
166.1
161.2
156.9
0.023
0.023
0.024
0.024
0.026
0.027
0.028
0.029
0.029
0.030
0.031
0.031
0.033
0.033
0.035
0.035
0.036
0.035
0.035
0.035
0.035
0.036
0.036
0.034
0.035
0.034
0.035
0.037
0.039
0.039
0.040
2.4
7.8
9.3
13.4
16.1
19.9
22.3
22.5
23.9
25.6
24.1
27.0
28.8
28.5
30.1
28.1
29.2
29.9
30.9
32.9
33.0
35.7
36.8
38.7
40.1
43.8
46.3
47.7
51.1
53.6
55.1
ANG
MAG
ANG
MAG
ANG
–4.7
–9.5
–14.1
–19.4
–24.4
–30.0
–35.9
–42.1
–48.8
–56.6
–64.6
–73.5
–83.2
–92.6
–102.4
–112.0
–121.6
–131.0
–139.6
–147.5
–154.8
–161.7
–168.0
–173.7
–179.7
174.9
170.0
164.7
160.7
155.6
151.3
0.028
0.028
0.029
0.030
0.030
0.031
0.031
0.032
0.032
0.032
0.033
0.033
0.036
0.036
0.036
0.037
0.039
0.038
0.038
0.038
0.039
0.040
0.041
0.041
0.042
0.043
0.045
0.047
0.051
0.051
0.054
0.8
5.0
8.6
11.1
14.9
15.8
19.8
20.1
23.2
23.9
24.9
26.6
28.8
30.0
32.0
31.6
32.5
34.7
36.1
37.4
39.1
41.4
43.7
48.3
48.3
50.8
53.7
54.2
57.7
56.5
59.3
0.327
0.325
0.323
0.326
0.331
0.342
0.350
0.359
0.361
0.371
0.389
0.400
0.405
0.402
0.406
0.413
0.414
0.401
0.387
0.378
0.366
0.356
0.342
0.325
0.322
0.314
0.309
0.303
0.292
0.287
0.279
–6.2
–11.5
–16.2
–20.9
–26.4
–32.0
–37.3
–42.8
–49.4
–56.1
–62.5
–69.3
–75.4
–83.6
–91.6
–99.3
–105.8
–113.7
–120.8
–127.6
–133.1
–138.0
–142.8
–148.3
–152.6
–156.7
–160.1
–164.0
–167.8
–172.8
–176.4
MAG
K
ANG
0.406
0.412
0.407
0.407
0.405
0.414
0.419
0.424
0.424
0.425
0.438
0.442
0.441
0.434
0.435
0.439
0.439
0.428
0.411
0.393
0.385
0.373
0.359
0.336
0.321
0.306
0.299
0.288
0.270
0.253
0.244
–4.1
–7.5
–9.9
–13.9
–17.6
–21.6
–24.6
–27.7
–31.9
–37.1
–42.5
–47.8
–51.2
–56.0
–62.2
–68.9
–74.6
–81.3
–87.0
–93.4
–99.6
–104.9
–110.3
–117.5
–123.3
–129.4
–133.9
–138.6
–143.6
–150.1
–156.2
1.68
1.66
1.58
1.55
1.44
1.37
1.25
1.16
1.09
1.02
0.96
0.96
0.90
0.87
0.82
0.80
0.78
0.84
0.89
0.94
0.99
1.06
1.13
1.31
1.41
1.55
1.58
1.63
1.67
1.79
1.88
µPC2771TB
VCC = Vout = 3.0 V, ICC = 35 mA
FREQUENCY
MHz
MAG
S11
ANG
MAG
S21
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.045
0.057
0.075
0.090
0.105
0.118
0.138
0.163
0.186
0.202
0.219
0.233
0.252
0.267
0.285
0.293
0.304
0.290
0.285
0.273
0.267
0.254
0.237
0.221
0.212
0.208
0.202
0.190
0.178
0.154
0.147
19.7
37.0
41.3
43.3
42.2
40.2
34.9
32.5
29.4
26.3
21.7
15.4
8.4
–0.1
–6.8
–13.9
–20.9
–28.1
–35.3
–41.8
–47.4
–51.6
–57.1
–61.1
–68.8
–72.2
–74.1
–76.3
–76.7
–82.3
–88.0
10.570
10.638
10.775
11.004
11.275
11.586
12.041
12.367
12.844
13.300
13.771
14.082
14.365
14.336
14.142
13.929
13.428
12.722
11.966
11.232
10.500
9.815
9.168
8.570
7.967
7.507
7.004
6.667
6.336
6.003
5.772
S12
Application Note P13252EJ2V0AN00
S22
K
1.65
1.63
1.58
1.49
1.45
1.37
1.29
1.20
1.15
1.11
1.03
0.99
0.92
0.91
0.90
0.89
0.88
0.96
1.03
1.09
1.14
1.20
1.28
1.37
1.44
1.49
1.53
1.56
1.55
1.62
1.61
35
µPC2776TB
VCC = Vout = 5.0 V, ICC = 27 mA
36
FREQUENCY
MHz
MAG
S11
ANG
S21
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.226
0.240
0.254
0.267
0.285
0.308
0.345
0.386
0.425
0.449
0.466
0.478
0.507
0.533
0.564
0.568
0.576
0.571
0.570
0.569
0.564
0.548
0.535
0.516
0.515
0.508
0.503
0.489
0.471
0.457
0.455
2.8
6.4
10.4
11.4
11.1
8.5
6.1
3.9
1.4
–1.5
–6.1
–12.0
–17.7
–24.7
–30.3
–36.4
–42.0
–48.5
–54.5
–59.7
–64.2
–69.6
–75.5
–81.8
–87.0
–90.9
–94.8
–97.6
–101.3
–106.7
–111.3
S12
S22
K
MAG
ANG
MAG
ANG
MAG
ANG
13.844
13.862
13.942
14.123
14.267
14.423
14.670
14.864
15.210
15.455
15.564
15.550
15.622
15.577
15.527
15.285
14.960
14.570
14.026
13.715
13.283
12.926
12.515
12.093
11.498
11.136
10.511
10.126
9.850
9.242
9.065
–5.9
–12.5
–18.6
–25.2
–31.8
–38.6
–45.5
–52.8
–60.1
–68.4
–76.6
–84.9
–93.1
–101.3
–110.6
–119.0
–127.8
–136.4
–144.7
–151.7
–159.8
–167.5
–174.8
177.9
170.1
163.1
156.6
148.3
143.2
135.5
128.9
0.029
0.029
0.028
0.029
0.029
0.029
0.030
0.030
0.031
0.030
0.030
0.030
0.030
0.029
0.029
0.027
0.026
0.024
0.023
0.022
0.020
0.018
0.018
0.016
0.017
0.015
0.015
0.018
0.019
0.022
0.026
–1.5
0.3
3.2
4.8
7.2
9.3
10.7
11.0
11.9
11.8
10.6
11.7
13.4
13.2
13.5
11.3
12.6
14.8
15.8
18.2
23.5
27.1
36.3
41.9
53.3
64.3
67.9
85.0
93.7
100.0
108.0
0.032
0.024
0.030
0.031
0.037
0.038
0.040
0.043
0.055
0.072
0.084
0.093
0.094
0.114
0.130
0.154
0.167
0.179
0.194
0.212
0.228
0.240
0.251
0.268
0.279
0.296
0.306
0.315
0.330
0.343
0.357
–177.4
–171.9
–176.3
–167.6
–167.3
–159.3
–160.7
–161.9
–169.0
–169.1
–169.1
–173.6
177.9
167.0
164.1
158.0
152.6
143.0
135.2
128.1
121.6
115.9
108.1
102.4
96.0
90.8
86.7
79.2
73.0
67.0
60.7
Application Note P13252EJ2V0AN00
1.39
1.39
1.40
1.36
1.33
1.28
1.22
1.18
1.12
1.10
1.08
1.07
1.05
1.05
1.02
1.07
1.09
1.18
1.27
1.35
1.48
1.66
1.75
2.01
1.99
2.22
2.29
2.00
1.96
1.81
1.53
[MEMO]
Application Note P13252EJ2V0AN00
37
[MEMO]
38
Application Note P13252EJ2V0AN00
Facsimile Message
From:
Name
Company
Tel.
Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.
FAX
Address
Thank you for your kind support.
North America
Hong Kong, Philippines, Oceania
NEC Electronics Inc.
NEC Electronics Hong Kong Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044
Fax: 1-800-729-9288
1-408-588-6130
Korea
Europe
NEC Electronics Hong Kong Ltd.
NEC Electronics (Europe) GmbH
Seoul Branch
Technical Documentation Dept.
Fax: 02-528-4411
Fax: +49-211-6503-274
South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829
Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583
Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900
Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951
I would like to report the following error/make the following suggestion:
Document title:
Document number:
Page number:
If possible, please fax the referenced page or drawing.
Document Rating
Excellent
Good
Acceptable
Poor
Clarity
Technical Accuracy
Organization
CS 99.1