DATA SHEET MOS INTEGRATED CIRCUIT µPD75336 4-BIT SINGLE-CHIP MICROCOMPUTER DESCRIPTION The µPD75336 is one of the “75X-series” 4-bit single-chip microcomputers enabled to process data with performance equivalent to that of 8-bit microcomputers. The µPD75336 is a microcomputer with an expanded capacity of the ROM and RAM of conventional µPD75328 and an improved 8-bit data processing capacity. It can carry out A/D converter low-voltage operations. For evaluation purposes for system development or small-quantity production, the µPD75P336 is available which is a product with the on-chip mask ROM of µPD75336 replaced with a one-time PROM. Functions are described in detail in the following User’s Manual, which should be read when carrying out design work. µPD75336 User’s Manual: IEU-725 FEATURES • µPD75328 upward compatible • Instruction execution time variable function useful for high-speed operations and power saving • 0.95, 1.91, 3.81, 15.3 µs (Main system clock: When operated at 4.19 MHz) • 122 µ s (Subsystem clock: When operated at 32.768 kHz) • Memory capacity: µPD75336 ROM: 16256 × 8 bits RAM: 768 × 4 bits • On-chip 8-bit resolution A/D converter (successive approximation type): 8 channels • Low-voltage operation possible: VDD = 2.7 to 6.0 V • On-chip LCD controller/driver • Maximum of 20 × 4 segments drive possible • Improved timer functions: 4 channels • Improved 8-bit data processing capability • Transfer, add/subtract, increase/decrease and compare possible • Ultra-compact package in use (80-pin plastic TQFP (fine pitch)( 12 mm)) • On-chip PROM (µPD75P336) operative at low voltages available • VDD = 2.7 to 6.0 V APPLICATIONS Cameras, VCR integrated cameras, air conditioners, sphygmomanometers, etc. The information in this document is subject to change without notice. Document No. IC-2893C (O.D. No. IC-7972C) Date Published February 1994 P Printed in Japan The mark ★ shows major revised points. © NEC Corporation 1991 µPD75336 ORDERING INFORMATION Ordering Code Package µ PD75336GC-×××-3B9 µ PD75336GK-×××-BE9 80-pin plastic QFP ( 14 mm) 80-pin plastic TQFP (fine pitch)( 12 mm) Remarks “×××” is a ROM code number. QUALITY GRADE Ordering Code Package Quality Grade µ PD75336GC-×××-3B9 µPD75336GK-×××-BE9 80-pin plastic QFP ( 14 mm) 80-pin plastic TQFP (fine pitch)( 12 mm) Standard Standard Remarks “×××” is a ROM code number. Please refer to “Quality Grade on NEC Semiconductor Devices” (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications. 2 µPD75336 GENERAL DESCRIPTION OF FUNCTIONS Item Function Instruction execution time On-chip memory When main system clock is selected: 0.95, 1.91, 3.81, 15.3 µs (when operated at 4.19 MHz) When subsystem clock is selected: 122 µs (when operated at 32.768 kHz) ROM 16256 × 8 bits RAM 768 × 4 bits General register • 4-bit manipulation: 8 × 4 banks • 8-bit manipulation: 4 × 4 banks 8 pins I/O line (The dual function pins for LCD-drive are included. The dedicated pins for LCD-drive are excluded.) CMOS input/output pin Use of pull-up resistor enabled by software (except P00) 8 pins CMOS output pin Dual function with segment pins 8 pins N-ch open-drain input/output 10 V withstand voltage. On-chip specification of pull-up resistor enabled by mask option 20 pins 44 CMOS input pins LCD controller/driver • Output pins for LCD-drive • Segment output pins: 20 pins (dual-function pins with CMOS output: 8 pins) • Common output pins: 4 pins • Maximum 20 × 4 segment drive • Display mode selection: Static 1/2, 1/3, 1/4 duties A/D converter On-chip 8-bit resolution A/D converter (successive approximation type) • 8-channel analog input • Low-voltage operable VDD = 2.7 to 6.0 V • A/D conversion speed 40.1 µs (when operated at 4.19 MHz) Timer 4 channels • 8-bit timer/event counter × 2 channels • 8-bit basic interval timer • Watch timer ... 0.5 sec time interval generation, buzzer output possible (2 kHz, 4 kHz, 32 kHz) Serial interface • NEC standard serial bus interface (SBI) • Clocked serial interface Bit sequential buffer Special bit manipulation memory: 16 bits Clock output (PCL) Φ, 524 kHz, 262 kHz, 65.5 kHz (when operated at 4.19 MHz) Buzzer output (BUZ) 2 kHz, 4 kHz, 32 kHz (with main system clock or subsystem clock in operation) Vectored interrupt • External: 3 • Internal: 4 Test input • External: 1 • Internal: 1 8-bit data processing Transfer, add/subtract, increase/decrease and compare System clock oscillator • Ceramic/crystal oscillator for main system clock oscillation : 4.194304 MHz • Crystal oscillator for subsystem clock oscillation : 32.768 kHz Standby STOP/HALT mode Operating voltage VDD = 2.7 to 6.0 V Package • 80-pin plastic QFP ( 14 mm) • 80-pin plastic TQFP (fine pitch)( 12 mm) 3 µPD75336 CONTENTS 1. PIN CONFIGURATION (TOP VIEW) ......................................................................................................... 5 2. BLOCK DIAGRAM ...................................................................................................................................... 7 3. PIN FUNCTIONS ........................................................................................................................................ 8 3.1 PORT PINS .......................................................................................................................................................... 8 3.2 NON-PORT PINS ............................................................................................................................................... 10 3.3 PIN INPUT/OUTPUT CIRCUITS ...................................................................................................................... 12 3.4 MASK OPTION SELECTION ............................................................................................................................ 15 3.5 RECOMMENDED CONNECTION OF UNUSED PINS .................................................................................... 15 4. MEMORY CONFIGURATION .................................................................................................................. 16 5. PERIPHERAL HARDWARE FUNCTIONS ................................................................................................ 19 5.1 PORTS ................................................................................................................................................................ 19 5.2 CLOCK GENERATOR ........................................................................................................................................ 20 5.3 CLOCK OUTPUT CIRCUIT ................................................................................................................................ 21 5.4 BASIC INTERVAL TIMER ................................................................................................................................. 22 5.5 WATCH TIMER .................................................................................................................................................. 23 5.6 TIMER/EVENT COUNTER ................................................................................................................................ 24 5.7 SERIAL INTERFACE .......................................................................................................................................... 26 5.8 LCD CONTROLLER/DRIVER ............................................................................................................................ 28 5.9 A/D CONVERTER ............................................................................................................................................. 30 5.10 BIT SEQUENTIAL BUFFER .............................................................................................................................. 31 6. INTERRUPT FUNCTIONS ........................................................................................................................ 32 7. STANDBY FUNCTIONS ........................................................................................................................... 34 8. RESET FUNCTIONS ................................................................................................................................. 35 9. INSTRUCTION SET .................................................................................................................................. 38 10. ELECTRICAL SPECIFICATIONS .............................................................................................................. 46 11. PACKAGE INFORMATION ...................................................................................................................... 60 12. RECOMMENDED SOLDERING CONDITIONS ....................................................................................... 62 APPENDIX A. DIFFERENCES BETWEEN µPD75336 AND µPD75328 FUNCTIONS ................................ 63 APPENDIX B. DEVELOPMENT TOOLS ....................................................................................................... 64 APPENDIX C. RELATED DOCUMENTS ...................................................................................................... 65 4 µPD75336 1. PIN CONFIGURATION (TOP VIEW) • 80-pin plastic QFP ( 14 mm) 10 11 12 13 14 15 16 17 18 * AN3 X1 IC* XT2 XT1 VDD AVREF AVSS AN5 AN4 57 56 55 54 53 52 19 20 2122232425 262728 2930 31323334353637383940 COM0 S12 6 7 8 9 60 59 58 AN2 AN1 AN0 P83/AN7 P82/AN6 P81 P80/TI1 P33 P32 51 50 49 48 47 46 45 44 43 P31/SYNC P30/LCDCL P23/BUZ P22/PCL P21/PTO1 P20/PTO0 P13/TI0 P12/INT2 P11/INT1 42 41 P10/INT0 P03/SI/SB1 P50 P51 P52 P53 P00/INT4 P01/SCK P02/SO/SB0 S15 S14 S13 4 5 P40 P41 P42 P43 VSS S21 S20 S19 S18 S17 S16 2 3 µPD75336GC-×××-3B9 µPD75336GK-×××-BE9 S26/BP2 S25/BP1 S24/BP0 S23 S22 8079787776 757473 7271 70696867666564636261 COM3 BIAS VLC0 VLC1 VLC2 S29/BP5 S28/BP4 S27/BP3 1 COM1 COM2 S31/BP7 S30/BP6 P62/KR2 P61/KR1 P60/KR0 RESET X2 P73/KR7 P72/KR6 P71/KR5 P70/KR4 P63/KR3 • 80-pin plastic TQFP (fine pitch)( 12 mm) Internally connected. Connect the IC PIN to VDD directly. 5 µPD75336 PIN NAMES P00 to P03 P10 to P13 P20 to P23 P30 to P33 P40 to P43 P50 to P53 P60 to P63 P70 to P73 P80 to P83 BP0 to BP7 KR0 to KR7 AV REF AV SS AN0 to AN7 SCK SI SO 6 : : : : : : : : : : : : : : : : : Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Bit Port 0 to 7 Key Return 0 to 7 Analog Reference Analog Ground Analog Input 0 to 7 Serial Clock Serial Input Serial Output SB0,1 : RESET : S12 to S31 : COM0 to COM3 : VLC0 to VLC2 : BIAS : LCDCL : SYNC : TI0, 1 : PTO0, 1 : BUZ : PCL : INT0, 1, 4 : INT2 : X1, 2 : XT1, 2 : IC : VDD : VSS : Serial Bus 0, 1 Reset Segment Output 12 to 31 Common Output 0 to 3 LCD Power Supply 0 to 2 LCD Power Supply Bias Control LCD Clock LCD Synchronization Timer Input 0, 1 Programmable Timer Output 0, 1 Buzzer Clock Programmable Clock External Vectored Interrupt 0, 1, 4 External Test Input 2 Main System Clock Oscillation 1, 2 Subsystem Clock Oscillation 1, 2 Internally Connected Positive Power Supply Ground 8 A/D CONVERTER AVSS BASIC INTERVAL TIMER INTBT TIMER/EVENT COUNTER #0 TI0/P13 PTO0/P20 PROGRAM COUNTER (14) SP(8) ALU 4 P00-P03 PORT 1 4 P10-P13 PORT 2 4 P20-P23 PORT 3 4 P30-P33 PORT 4 4 P40-P43 PORT 5 4 P50-P53 PORT 6 4 P60-P63 PORT 7 4 P70-P73 PORT 8 4 P80-P83 12 S12-S23 CY INTT0 BANK TIMER/EVENT COUNTER #1 TI1/P80 PTO1/P21 PORT 0 2. BLOCK DIAGRAM * AN0-AN7 AVREF INTT1 GENERAL REG. WATCH TIMER BUZ/P23 INTW SI/SB1/P03 f LCD PROGRAM MEMORY (ROM) 16256 × 8 BITS DECODE AND CONTROL DATA MEMORY (RAM) 768 × 4 BITS CLOCKED SERIAL INTERFACE SO/SB0/P02 SCK/P01 INTCSI INT0/P10 INT1/P11 INT2/P12 INTERRUPT CONTROL INT4/P00 8 N fX / 2 CLOCK OUTPUT CONTROL CLOCK DIVIDER SYSTEM CLOCK GENERATOR SUB MAIN STAND BY CONTROL PCL/P22 XT1 XT2 X1 X2 * AN6/P82, AN7/P83 4 COM0–COM3 3 VLC0–VLC2 CPU CLOCK fLCD BIT SEQ. BUFFER (16) S24/BP0 –S31/BP7 VDD VSS RESET BIAS LCDCL/P30 SYNC/P31 7 µPD75336 KR0/P60 –KR3/P63 KR4/P70 –KR7/P73 LCD CONTROLLER /DRIVER 8 µPD75336 3. PIN FUNCTIONS 3.1 PORT PINS (1/2) Pin Name Input/Output DualFunction Pin P00 Input INT4 P01 Input/output SCK P02 Input/output SO/SB0 P03 Input/output SI/SB1 INT0 P10 Input P12 INT2 P13 TI0 P20 PTO0 PTO1 P21 Input/output P22 PCL P23 BUZ P30 *2 LCDCL SYNC P31 *2 Input/output 8 8-Bit I/O Reset I/O Circuit Type *1 B 4-bit input port (PORT 0) Pull-up resistor can be used for P01 to P03 as a 3-bit unit by software. F -A × Input F -B M-C With noise elimination function INT1 P11 * Function P32 *2 — P33 *2 — × Input B -C 4-bit input/output port (PORT 2) Pull-up resistor can be used as a 4-bit unit by software. × Input E-B Programmable 4-bit input/output port (PORT 3) Input/output can be specified bit-wise. Pull-up resistor can be used as a 4-bit unit by software. × Input E-B High level (on-chip pull-up resistor) or high-impedance M High level (on-chip pull-up resistor) or highimpedance M 4-bit input port (PORT 1) Pull-up resistor can be used as a 4-bit unit by software. P40 to P43 *2 Input/output — N-ch open-drain 4-bit input/output port (PORT 4) On-chip pull-up resistor can be specified bitwise (mask option). Open-drain: 10 V withstand voltage P50 to P53 *2 Input/output — N-ch open-drain 4-bit input/output port (PORT 5) On-chip pull-up resistor can be specified bitwise (mask option). Open-drain: 10 V withstand voltage 1. : Schmitt triggered input 2. LED direct drive possible µPD75336 3.1 PORT PINS (2/2) Pin Name DualFunction Pin Input/Output P60 KR0 P61 KR1 Input/output P62 KR2 P63 KR3 P70 KR4 P71 KR5 Input/output P72 KR6 P73 KR7 P80 TI1 P81 –– Input/output P82 AN6 P83 AN7 BP0 S24 Function 8-Bit I/O Programmable 4-bit input/output port (PORT 6) Input/output can be specified bit-wise. Pull-up resistor can be used as a 4-bit unit by software. 4-bit input/output port (PORT 7) Pull-up resistor can be used as a 4-bit unit by software. Reset I/O Circuit Type *1 Input F -A Input F -A E -E 4-bit input/output port (PORT 8) Pull-up resistor can be used as a 4-bit unit by software. E-B × Input Y-B BP1 S25 Output BP2 S26 BP3 S27 BP4 S28 BP5 1-bit output port (BIT PORT) Also used as segment output pin. × *2 G-C S29 Output * BP6 S30 BP7 S31 1. : Schmitt triggered input 2. BP0 to BP7 select VLC1 as the input source. However, the output level depends on BP0 to BP7 and VLC1 external circuit. Example BP0 to BP7 are connected mutually within the µPD75336 as shown below. Therefore, the output level of BP0 to BP7 is determined by the value of R1, R2 and R3. VDD R2 BP0 ON VLC1 R1 BP1 ON R3 µPD75336 9 µPD75336 3.2 NON-PORT PINS (1/2) Pin Name Input/Output DualFunction Pin Input External event pulse input to timer/event counter E -E P20 PTO0 Output Timer/event counter output Input E-B P21 PTO1 PCL Output P22 Clock output Input E-B BUZ Output P23 Fixed frequency output (for buzzer or system clock trimming) Input E-B SCK Input/output P01 Serial clock input/output Input F -A SO/SB0 Input/output P02 Serial data output Serial bus input/output Input F -B SI/SB1 Input/output P03 Serial data input Serial bus input/output Input M -C INT4 Input P00 Edge detection vectored interrupt input (both rising edge and falling edge detection effective) Input B Input B -C Input B -C P10 INT0 Input INT1 Edge detection vectored interrupt input (detection edge selectable) Clocked Asynchronous P11 Edge detection testable input (rising edge detection) INT2 Input P12 KR0 to KR3 Input P60 to P63 Parallel falling edge detection testable input Input F -A Input P70 to P73 Parallel falling edge detection testable input Input F -A Input — Main system clock oscillation crystal/ceramic connection pin. For external clock, the external clock signal is input to X1 and its opposite phase is input to X2. –– –– — Subsystem clock oscillation crystal connection pin. For external clock, the external clock signal is input to XT1 and XT2 is opened. XT1 can be used as a 1-bit input (test). — –– KR4 to KR7 X1 X2 XT1 10 Input P80 TI1 I/O Circuit Type * B -C P13 TI0 * Reset Function Input Asynchronous XT2 –– RESET Input — System reset input — B IC — — Internally Connected. Connect the IC pin to VDD directly. — –– VDD — — Positive power supply — –– VSS — — GND potential — –– : Schmitt triggered input µPD75336 3.2 NON-PORT PINS (2/2) Pin Name Input/Output DualFunction Pin Reset I/O Circuit Type S12 to S23 Output –– Segment signal output *2 G-A S24 to S31 Output BP0 to BP7 Segment signal output *2 G-C COM0 to COM3 Output –– Common signal output *2 G-B VLC0 to VLC2 Input –– LCD drive power supply with on-chip split resistor (mask option) –– –– BIAS Output — Externally mounted split resistor cut output *3 –– LCDCL *1 Output P30 Clock output for driving the externally extended driver Input E-B P31 Clock output for synchronizing the externally extended driver Input E-B SYNC *1 Output Y — AN0 to AN5 AN6 Function Input P82 A/D converter analogs signal input Input Y-B P83 AN7 * AVREF Input — A/D converter reference voltage input — Z AVSS –– –– A/D converter GND potential — Z 1. Reserved pins for future system extension. They are used now only as P30 and P31 pins. 2. For each display output, VLCX is selected as the input source. S12 to S31 COM0 to COM2 COM3 Each display output : V LC1 : VLC2 : VLC0 level varies depending on each display output and VLCX external circuit. 3. Low level if there is an on-chip split resistor. High impedance if there is no on-chip split resistor. 11 µPD75336 3.3 PIN INPUT/OUTPUT CIRCUITS Input/output circuits of µPD75336 pins are shown in schematic form. TYPE D (For TYPE E-B, F-A) TYPE A (For TYPE E-B) VDD VDD data P-ch P-ch OUT IN N-ch output disable N-ch Push-pull output that can be made high-impedance output (PCMOS Standard Input Buffer TYPE B ch and N-ch OFF) TYPE E-B VDD P.U.R. P.U.R. enable IN P-ch data IN/OUT Type D output disable Type A P.U.R.:Pull-Up Resistor Schmitt-Triggered Input with Hysteresis Characteristic TYPE B-C TYPE E-E VDD P.U.R. VDD P.U.R. enable P-ch P.U.R. data P-ch P.U.R. enable IN/OUT Type D output disable Type A IN P.U.R. : Pull-Up Resistor Type B Schmitt-Triggered Input with Hysteresis Characteristic P.U.R.:Pull-Up Resistor 12 µPD75336 TYPE F-A TYPE G-B VDD VLC0 P-ch P.U.R. VLC1 P.U.R. enable P-ch P-ch N-ch data IN/OUT OUT Type D output disable COM data N-ch P-ch VLC2 Type B N-ch P.U.R.:Pull-Up Resistor TYPE F-B TYPE G-C VDD P.U.R. VDD P.U.R. enable P-ch P-ch VDD output disable (P) VLC0 P-ch IN/OUT VLC1 data P-ch output disable SEG data/Bit Port data N-ch output disable (N) OUT N-ch VLC2 N-ch P.U.R.:Pull-Up Resistor TYPE G-A TYPE M VDD P.U.R. enable Mask Opution IN/OUT VLC0 P-ch data VLC1 N-ch P-ch SEG data OUT output disable N-ch VLC2 N-ch Middle-High Voltage Input Buffer (+10 V Withstand Voltage) P.U.R.:Pull-Up Resistor 13 µPD75336 TYPE M-C TYPE Y-B VDD VDD P.U.R. P.U.R. enable P.U.R. enable P-ch IN/OUT P-ch data IN/OUT Type D data output disable N-ch output disable Type A port * input Type Y P.U.R.:Pull-Up Resistor P.U.R.:Pull-Up Resistor TYPE Y TYPE Z IN VDD IN P-ch N-ch Sampling C VDD + – AVSS Reference Voltage (from Voltage Tap of Serial Resistor String) AVSS input enable * 14 Reference Voltage This becomes active in executing input instruction. AVSS µPD75336 3.4 MASK OPTION SELECTION The following mask options are available for the pins. Pin Mask Option P40 to P43, P50 to P53 VLC0 to VLC2, BIAS XT1, XT2 3.5 1 Pull-up resistor not available (specifiable bit-wise) 2 Pull-up resistor available (specifiable bit-wise) 1 Split resistor available for LCD drive power supply (specifiable in 4 units) 2 Split resistor not available for LCD drive power supply (specifiable in 4 units) 1 Feedback resistor available (when subsystem clock is used) 2 Feedback resistor not available (when subsystem clock is not used) RECOMMENDED CONNECTION OF UNUSED PINS Pin P00/INT4 Recommended Connection Connect to V SS. P01/SCK P02/SO/SB0 Connect to V SS or VDD. P03/SI/SB1 P10/INT0 to P12/INT2 Connect to VSS. P13/TI0 P20/PTO0 P21/PTO1 P22/PCL P23/BUZ P30 to P33 Input status : Connect to VSS or VDD. P40 to P43 Output status: Leave open. P50 to P53 P60 to P63 P70 to P73 P80, P81 P82/AN6, P83/AN7 S12 to S23 S24/BP0 to S31/BP7 Leave open. COM0 to COM3 VLC0 to VLC2 BIAS Connect to V SS. Connect to V SS only when none of VLC0 to VLC2 are used. Leave open in all other cases. XT1 Connect to V SS or VDD. XT2 Leave open. AN0 to AN5 IC Connect to V SS or VDD. Connect to V DD directly. 15 µPD75336 4. MEMORY CONFIGURATION • Program memory (ROM) ......16256 × 8 bits (0000H to 3F7FH) · 0000H, 0001H : Vector table for writing the program start address by restart · 0002H to 000DH : Vector table for writing the program start address by interrupt · 0020H to 007FH : Table area referred to by GETI instruction • Data memory · Data area ...768 × 4 bits (000H to 2FFH) ·Peripheral hardware area ...128 × 4 bits (F80H to FFFH) 16 µPD75336 Fig. 4-1 Program Memory Map Address 0000H 7 6 MBE RBE 0 Reset Start Address (High-Order 6 Bits) Reset Start Address (Low-Order 8 Bits) MBE 0002H RBE INTBT/INT4 Start Address (High-Order 6 Bits) INTBT/INT4 Start Address (Low-Order 8 Bits) MBE 0004H RBE INT0 Start Address (High-Order 6 Bits) INT0 Start Address (Low-Order 8 Bits) MBE 0006H RBE CALL !addr Instruction Subroutine Entry Address INT1 Start Address (High-Order 6 Bits) INT1 Start Address (Low-Order 8 Bits) MBE 0008H RBE INTCSI Start Address (High-Order 6 Bits) INTCSI Start Address (Low-Order 8 Bits) MBE 000AH RBE CALLF ! faddr Instruction Entry Address INTT0 Start Address (High-Order 6 Bits) INTT0 Start Address (Low-Order 8 Bits) MBE 000CH RBE INTT1 Start Address (High-Order 6 Bits) INTT1 Start Address (Low-Order 8 Bits) ≈ BR !addr Instruction Branch Address BRCB ! caddr Branch Address ≈ BR $addr Instruction Relative Branch Address (-15 to -1, +2 to +16) 0020H GETI Instruction Reference Table 007FH 0080H 07FFH ≈ ≈ ≈ ≈ ≈ ≈ BRCB ! caddr Branch Address ≈ ≈ BRCB ! caddr Branch Address ≈ ≈ BRCB ! caddr Branch Address Branch Destination Address and Subroutine Entry Address by GETI Instruction 0800H 0FFFH 1000H 1FFFH 2000H 2FFFH 3000H 3F7FH Remarks Apart from the cases above, branching is possible to an address for which the PC low-order 8 bits only have been changed, by the BR PCDE or BR PCXA instruction. 17 µPD75336 Fig. 4-2 Data Memory Map Data Memory 000H General Register Area 01FH Memory Bank (32 × 4) 020H Stack Area Bank 0 Bank 1 Bank 2 Bank 15 (224 × 4) Data Area Static RAM (768 × 4) 0FFH 100H (236 × 4) 1EBH 1ECH Display Data Memory Area (20 × 4) (20 × 4) 1FFH 200H 256 × 4 2FFH Not Incorporated F80H Peripheral Hardware Area (128 × 4) 128 × 4 FFFH Remarks 18 Banks 0, 1, 2 : 256 × 4 bits Bank 15 : 128 × 4 bits µPD75336 5. PERIPHERAL HARDWARE FUNCTIONS 5.1 PORTS There are four types of I/O port as follows. • CMOS input (PORT0, 1) • CMOS input/output (PORT2, 3, 6, 7, 8) • CMOS output (BIT PORT) : 8 : 20 : 8 • N-ch open-drain input/output (PORT4, 5) Total : 8 44 Table 5-1 Port Functions Port (Symbol) PORT 0 PORT 1 Function 4-bit input PORT 3 * PORT 6 Operation/Features Regardless of the operating mode of the shared pin, reading or test is always possible. Can be set in the input or output mode bit-wise Remarks Dual-function pins as SO/SB0, SI/ SB1, SCK, INT0 to INT2, INT4 and TI0 Dual-function pins as LCDCL and SYNC. Dual-function pins as KR0 to KR3. PORT 2 4-bit input/output Dual-function pins as PTO0, PTO1, PCL and BUZ in port 2. Can be set in the input or output mode as a 4bit unit. Port 6 and Port 7 are paired for input and output of data as an 8-bit unit. PORT 7 Dual-function pins as TI1, AN6 and AN7 PORT 8 PORT 4 * PORT 5 * BP0 to BP7 * Dual-function pins as KR4 to KR7. 4-bit input/output (N-ch open-drain 10 V withstand voltage) Can be set in the input or output mode as a 4bit unit. Port 4 and port 5 are paired for input and output of data as an 8-bit unit. 1-bit output Data are output bit-wise. Can be switched with LCD driver segment outputs S24 to S31 through software. In the case of the mask option, onchip pull-up resistors can be specified bit-wise. LED can be directly driven. 19 µPD75336 5.2 CLOCK GENERATOR Clock generator operation is determined by the processor clock control register (PCC) and the system clock control register (SCC). There are two types of clock: main system clock and subsystem clock. The instruction execution time can also be changed. • 0.95 µs/1.91 µ s/3.81 µs/15.3 µs (main system clock: at 4.19 MHz operation) • 122 µs (subsystem clock: at 32.768 kHz operation) Fig. 5-1 Block Diagram of Clock Generator • Basic Interval Timer (BT) • Timer/Event Counter • Serial Interface • Watch Timer • LCD Controller/Driver • A/D Converter • INT0 Noise Eliminator • Clock Output Circuit XT1 VDD XT2 Subsystem Clock Oscillation Circuit fXT Main System Clock Oscillation Circuit fX LCD Controller/ Driver Watch Timer X1 VDD X2 1/8 to 1/4096 Frequency Divider Oscillation Stop Selector WM. 3 SCC Selector 1/2 1/4 1/16 SCC3 Internal Bus SCC0 Frequency Divider 1/4 PCC Φ • CPU • INT0 Noise Eliminator • Clock Output Circuit PCC0 PCC1 4 HALT F/F HALT * PCC2 S PCC3 STOP * R PCC2, PCC3 Clear STOP F/F Q Q Wait Release Signal from BT S RESET Signal R * Instruction execution Remarks 20 Standby Release Signal from Interrupt Control Circuit 1. 2. fX = Main system clock frequency fXT = Subsystem clock frequency 3. 4. 5. 6. Φ = CPU clock PCC: Processor clock control register SCC: System clock control register 1 clock cycle of Φ (tCY) is 1 machine cycle of instruction. For tCY, refer to "AC CHARACTERISTICS" in 10. "ELECTRICAL SPECIFICATIONS". µPD75336 5.3 CLOCK OUTPUT CIRCUIT The clock output circuit is intended to output clock pulses from the P22/PCL pin and is used for remote control or to supply clock pulses to peripheral LSIs. • Clock output (PCL): Φ , 524 kHz, 262 kHz, 65.5 kHz (at 4.19 MHz operation) Fig. 5-2 Clock Output Circuit Configuration From Clock Generator Φ fX/2 3 Output Buffer Selector fX/2 fX/2 4 PCL/P22 6 PORT2.2 CLOM3 0 CLOM1CLOM0 CLOM P22 Output Latch Bit 2 of PMGB Bit Specified In Port 2 Input/Output Mode 4 Internal Bus Remarks The clock circuit is so configured that short-width pulses are not generated when clock output enable/disable is switched. 21 µPD75336 5.4 BASIC INTERVAL TIMER The basic interval timer has the following functions: • • • • Interval timer operation to generate reference time interrupts Watchdog timer application to detect program runaway Wait time selection and count after the standby mode is released Count content read Fig. 5-3 Basic Interval Timer Configuration From Clock Generator fX/2 fX/2 Clear 5 7 fX/2 Set Basic Interval Timer (8-Bit Frequency Divider) MPX fX/2 Clear 9 BT 12 3 BTM3 SET1* BTM2 BTM1 Wait Release Signal during Standby Release BTM0 BTM 8 4 Internal Bus * 22 Instruction execution BT Interrupt Request Flag IRQBT Vectored Interrupt Request Signal µPD75336 5.5 WATCH TIMER The µPD75336 has one-channel on-chip watch timer. The watch timer has the following functions. • Sets the test flag (IRQW) at a 0.5 sec. time interval. Can release the standby mode by IRQW. • Can generate the 0.5 sec. time interval with the main system clock or the subsystem clock. • Can carry out program debugging or inspection efficiently in the fast feed mode with a time interval set to 3.91 µs (128 times the normal feed mode). • Can generate a frequency of 2.048, 4.096 or 32.768 kHz to the P23/BUZ pin to generate buzzer sound or trim the system clock oscillation frequency. • Can start the watch at zero second since it can clear the divider. Fig. 5-4 Block Diagram of Watch Timer fW 6 2 (512 Hz : 1.95 ms) fLCD fW (256 Hz : 3.91 ms) 7 2 From Clock Generator fX 128 (32.768 kHz) fW 14 2 fW (32.768 kHz) Selector INTW IRQW Set Signal Selector Frequency Divider fXT (32.768 kHz) 2 Hz 0.5 sec (4 kHz) (2 kHz) fW 3 2 fW 4 2 Clear Selector Output Buffer P23/BUZ WM WM7 PORT2.3 0 WM5 WM4 WM3 WM2 WM1 WM0 8 P23 Output Latch Bit 2 of PMGB Port 2 Input/Output Mode Bit Test Instruction Internal Bus Values in parentheses are when fX = 4.194304 MHz and fXT = 32.768 kHz. 23 µPD75336 5.6 TIMER/EVENT COUNTER (1) Timer/event counter configuration The µPD75336 has two channels of timer/event counters. Channels 0 and 1 of the timer/event counter have the following differences. Table 5-2 Differences between Timer/Event Counter Channel 0 and Channel 1 Differences Channel 0 Channel 1 Selection count pulse fX/210, fX/28, fX/26, fX/24, fX/212, fX/210, fX/28, fX/26 Clock supply to the serial interface Possible Impossible (2) Timer/event counter functions The timer/event counter functions are: • Programmable interval timer operation • Output of square wave having any selected frequency to the PTOn pin • • • • 24 Event counter operation Output of N-divided TIn pin input to the PTOn pin (frequency divider operation) Serial shift clock supply to the serial interface circuit Count status call function Fig. 5-5 Timer/Event Counter Block Diagram Internal Bus SET1 8 *1 8 8 TMn TMODn Modulo Register (8) TMn6 TMn5 TMn4 TMn3 TMn2 8 Port Input Buffer Match Input Buffer 8 Reset TIn Tn From Clock Generator Count Register (8) CP PORT2.n Bit 2 of PGMB Port 2 P2n Input/ Output Output Latch Mode To Serial Interface TOUT F/F Comparator (8) MPX TOEn TO Enable Flag *2 PTOn Output Buffer INTTn IRQTn Set Signal Clear Timer Operation Start RESET IRQTn Clear Signal Remarks n = 0, 1 (n indicates channel number) * 1. Instruction execution 2. Only from channel 0 of timer/event counter µPD75336 25 µPD75336 5.7 SERIAL INTERFACE The µPD75336 incorporates a clocked 8-bit serial interface, with four modes available. • • • • 26 Operation-halted mode 3-wire serial I/O mode 2-wire serial I/O mode SBI mode (serial bus interface mode) Fig. 5-6 Serial Interface Block Diagram Internal Bus 8/4 Bit Test CSIM 8 8 Bit Manipulation Slave Address Register (SVA) Addres Comparator (8) (8) RELT CMDT SO SET CLR Latch D Q ACKT ACKE BSYE Shift Register (SIO) SBIC Match Signal (8) P03/SI/SB1 Selector Bit Test 8 Selector P02/SO/SB0 Busy/ Acknowledge Output Circuit Bus Release/ Command/ Acknowledge Detection Circuit P01/SCK Serial Clock Counter P01 Output Latch RELD CMDD ACKD INTCSI INTCSI Control Circuit IRQCSI Set Signal 3 Serial Clock Control Circuit Serial Clock Slector fX/24 fX/2 6 fX/2 TOUT F/F (From Timer/ Event Counter 0) External SCK µPD75336 27 µPD75336 5.8 LCD CONTROLLER/DRIVER The µPD75336 incorporates a display controller which generates a segment signal and a common signal in accordance with the display data memory and a segment drive and a common driver which can directly operate the LCD panel. The LCD controller/driver has the following functions. • Automatically read display data memory by DMA operation and generates segment and common signals. • Can select one of the following 5 display modes. 1 2 3 4 Static 1/2 duty (2-time multiplexing), 1/2 bias 1/3 duty (3-time multiplexing), 1/2 bias 1/3 duty (3-time multiplexing), 1/3 bias 5 1/4 duty (4-time multiplexing), 1/3 bias • Can select one of the four frame frequencies in each display mode. • Has a maximum of 20 segment signal outputs (S12 to S31) and a maximum of 4 common outputs (COM0 to COM3). • The segment outputs (S24 to S27, S28 to S31) can be switched to output ports in 4 output units (BP0 to BP3, BP4 to BP7). • Can incorporate a split resistor for LCD drive power supply (mask option). • Applicable to various types of bias methods and LCD drive voltage. • Cuts off current to the split resistor when display is off. • The display data memory not used for display can be used as a normal data memory. • Can operate with subsystem clock. 28 Fig. 5-7 LCD Controller/Driver Block Diagram 4 Display Data Memory 1FFH 1FEH 1F9H 1ECH 1F8H 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 8 4 4 8 Display Mode Register Display Control Register Port 3 Output Latch 1 0 Port Mode Register Group A 1 0 Timing Controller fLCD Multiplexer Selector Common Driver Segment Driver S31/PB7 S30/BP6 S24/BP0 S23 S12 LCD Driver Voltage Control COM3 COM2COM1COM0 V LC2 VLC1 VLC0 P31/ P30/ SYNC LCDCL µPD75336 29 µPD75336 5.9 A/D CONVERTER The µ PD75336 incorporates an 8-bit resolution analog/digital (A/D) converter having 8-channel analog inputs (AN0 to AN7). The A/D converter employs the successive approximation method. Fig. 5-8 A/D Converter Block Diagram Internal Bus ADM 0 ADM6 ADM5 ADM4 SOC EOC 0 0 8 AN0 Control Circuit AN1 Sample & Hold Circuit AN2 + AN3 SA Register (8) Multiplexer AN4 – AN5 Comparator AN6/P82 8 AN7/P83 Tap Decoder AVREF R/2 R R Serial Resistor String AVSS 30 R R/2 µPD75336 5.10 BIT SEQUENTIAL BUFFER.....16 BIT The bit sequential buffer 0 to 3 (BSB0 to BSB3) is a special data memory for bit manipulation. Since it can carry out bit manipulation easily by sequentially changing the address and bit specification, the bit sequential buffer is useful to process data having a long bit length bit-wise. Fig. 5-9 Bit Sequential Buffer Format Address FC3H 3 Bit Symbol L Register L = F 2 1 FC2H 0 3 2 BSB3 1 FC1H 0 3 2 BSB2 L=CL=B 1 0 FC0H 3 2 1 BSB1 L=8L=7 0 BSB0 L=4 L=3 L=0 DECS L INCS L Remarks 1. 2. In pmem.@L addressing, the specified bit shifts in accordance with the L register. In pmem.@L addressing, BSB is always operable regardless of MBE, MBS specifications. 31 µPD75336 6. INTERRUPT FUNCTIONS The µPD75336 has seven types of interrupt sources enabling multiplex interruption by the software control. It has also two types of test source. INT2 of the test source is equipped with two types of edge detection testable inputs. The µPD75336 interrupt control circuit has the following functions: • Vectored interrupt function controlled by the hardware which can control enabling/disabling of interrupt acknowledge using interrupt flag (IE×××) and interrupt master enable flag (IME) • Function of setting any interrupt start address • Multiplex interruption function capable of specifying priority using the interrupt priority select register (IPS) • Interrupt request flag (IRQ×××) test function (generation of interrupt can be checked by the software) • Standby mode release function (interrupt to be released can be selected using the interrupt enable flag) 32 Fig. 6-1 Block Diagram Interrupt Control Circuit Internal Bus 2 1 3 IM2 IM1 IM0 Interrupt Enable Flag (IE XXX ) Both Edges Detection Circuit INT1 /P11 * Edge Detection Circuit IRQCSI INTT0 IRQT0 INTT1 IRQT1 INTW IRQW KR0/P60 Falling Edge Detection Circuit KR7/P73 IRQ1 INTCSI Rising Edge Detection Circuit VRQn IRQ4 IRQ0 Edge Detection Circuit INT2 /P12 IST0 IRQBT Selector INT0 /P10 IPS Decoder INT BT INT4 /P00 IME Priority Control Circuit Standby Release Signal IRQ2 IM2 Vector Table Address Generator * Noise Eliminator µPD75336 33 µPD75336 7. STANDBY FUNCTIONS Two standby modes (STOP mode and HALT mode) are available for the µPD75336 to reduce power consumption during standby for program. Table 7-1 Operating Status in Standby Mode Mode Item STOP instruction HALT instruction System clock at setting Only main system clock settable Main system clock or subsystem clock settable Clock generator Only main system clock oscillation stopped Only CPU clock Φ stopped (oscillation continued) Basic interval timer Operation stop Operable only with main system clock oscillation (IRQBT set at reference time intervals) Serial interface Operable only when external SCK input selected as serial clock Operable with main system clock oscillation or when external SCK input is selected as serial clock. Timer/event counter Operable only when TI0 and TI1 pin input specified as count clock Operable with main system clock oscillation or T10 and TI1 pin input specified as count clock. Watch timer Operable only when fXT selected as count clock Operable LCD controller Operable only when fXT selected as LCDCL Operable A/D converter Operation stop Operable * External interrupt INT1, 2, 4: Operable Only INT0 inoperable CPU Operation stop Operation Status 34 HALT Mode Setting instruction Release signal * STOP Mode Interrupt request signal from operable hardware enabled by interrupt enable flag, or RESET input Operation possible only during main system clock oscillation Interrupt request signal from operable hardware enabled by interrupt enable flag, or RESET input µPD75336 8. RESET FUNCTIONS The µPD75336 is set by RESET input and each hardware is initialized as shown in Table 8-1. Reset operation timing is shown in Fig. 8-1. Fig. 8-1 Reset Operation by RESET Input Wait (31.3 ms/4.19 MHz) RESET Input Operating Mode or Standby Mode HALT Mode Operating Mode Internal Reset Operation 35 µPD75336 Table 8-1 Status after Reset of Each Hardware (1/2) RESET Input in Standby Mode RESET Input during Operation Low-order 6 bits of program memory address 0000H are set to PC13 to PC8 and the contents of address 0001H are set in PC7 to PC0. Low-order 6 bits of program memory address 0000H are set to PC13 to PC8 and the contents of address 0001H are set in PC7 to PC0. Held Undefined Skip flag (SK0 to SK2) 0 0 Interrupt status flag (IST0) 0 0 Bit 6 of program memory address 0000H is set in RBE, and bit 7 is set to MBE. Bit 6 of program memory address 0000H is set in RBE, and bit 7 is set to MBE. Undefined Undefined Data memory (RAM) Held* Undefined General register (X, A, H, L, D, E, B, C) Held Undefined Bank selection register (MBS, RBS) 0, 0 0, 0 Undefined Undefined Mode register (BTM) 0 0 Counter (Tn) 0 0 FFH FFH 0 0 0, 0 0, 0 0 0 Held Undefined Operating mode register (CSIM) 0 0 SBI control register (SBIC) 0 0 Held Undefined Processor clock control register (PCC) 0 0 System clock control register (SCC) 0 0 Clock output mode register (CLOM) 0 0 Display mode register (LCDM) 0 0 Display control register (LCDC) 0 0 04H (EOC = 1) 04H (EOC = 1) 7FH 7FH Hardware Program counter (PC) Carry flag (CY) PSW Bank enable flag (MBE, RBE) Stack pointer (SP) Basic interval timer Timer/event counter (n = 0, 1) Counter (BT) Modulo register (TMODn) Mode register (TMn) TOEn, TOUT F/F Watch timer Mode register (WM) Shift register (SIO) Serial interface Slave address register (SVA) Clock generator, clock output circuit LCD controller Mode register (ADM), EOC A/D converter SA register * 36 Data of data memory addresses 0F8H to 0FDH becomes undefined by RESET input. µPD75336 Table 8-1 Status after Reset of Each Hardware (2/2) RESET Input in Standby Mode RESET Input during Operation IRQ1, IRQ2, IRQ4 Undefined Undefined Other than above 0 0 Interrupt enable flag (IE×××) 0 0 Priority select register (IPS) 0 0 0, 0, 0 0, 0, 0 Output buffer OFF OFF Output latch Clear (0) Clear (0) I/O mode register (PMGA, PMGB, PMGC) 0 0 Pull-up resistor specification register (POGA, POGB) 0 0 Input Input Hardware Interrupt request flag (IRQ×××) Interrupt function INT0, 1, 2 mode registers (IM0, IM1, IM2) ★ Digital port P00 P20 P60 P80 to to to to P03, P10 to P13, P23, P30 to P33, P63, P70 to P73, P83 P40 to P43, P50 to P53 Pin status • High level: With an on-chip pull-up resistor • High impedance: In open-drain S12 to S31, COM0 to COM3 BIAS * • Low level: With an on-chip split resistor • High impedance: Without an on-chip split resistor Bit sequential buffer (BSB0 to BSB3) * Held • High level: With an on-chip pull-up resistor • High impedance: In open-drain * • Low level: With an on-chip split resistor • High impedance: Without an on-chip split resistor Undefined Each display output selects the following VLCX as input source. S12 to S31: VLC1 COM0 to COM2: VLC2 COM3: VLC0 However, the level of each display output varies depending on each display output and VLCX external circuit. 37 µPD75336 9. INSTRUCTION SET (1) Operand representation and description methods In the operand column of each instruction, operands are entered in accordance with the description method for the operand representation of the instruction (refer to RA75X Assembler Package User’s Manual Language Volume (EEU-730) for details). If there is more than one description method, select one method. Alphabetic capital letters, plus and minus signs are keywords. Describe them what they are. In the case of immediate data, describe appropriate numeric values or labels. Symbols of various registers and flags can be described as labels in place of mem, fmem, pmem, bit, etc. (Refer to µPD75336 User’s Manual (IEU-725) for details.) However, labels which can be written for fmem and pmem are limited. Identifier * 38 Description reg reg1 X, A, B, C, D, E, H, L X, B, C, D, E, H, L rp rp1 rp2 rp' rp'1 XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE', HL' BC, DE, HL, XA', BC', DE', HL' rpa rpa1 HL, HL+, HL–, DE, DL DE, DL n4 n8 4-bit immediate data or label 8-bit immediate data or label mem bit 8-bit immediate data or label * 2-bit immediate data or label fmem pmem FB0H to FBFH, FF0H to FFFH immediate data or label FC0H to FFFH immediate data or label addr caddr faddr 0000H to 3F7FH immediate data or label 12-bit immediate data or label 11-bit immediate data or label taddr 20H to 7FH immediate data (however, bit0 = 0) or label PORTn IE××× RBn MBn PORT 0 to PORT 8 IEBT, IET0, IET1, IE0 to IE2, IE4, IECSI, IEW RB0 to RB3 MB0, MB1, MB2, MB15 Only even address can be entered for mem in 8-bit data processing. µPD75336 (2) Operation description legend A : A register; 4-bit accumulator B : B register; 4-bit accumulator C D E H : : : : C register; 4-bit accumulator D register; 4-bit accumulator E register; 4-bit accumulator H register; 4-bit accumulator L X XA BC : : : : L register; 4-bit accumulator X register; 4-bit accumulator Register pair (XA); 8-bit accumulator Register pair (BC) DE HL XA’ BC’ DE’ HL’ PC SP : : : : : : : : Register pair (DE) Register pair (HL) Expanded register Expanded register Expanded register Expanded register Program counter Stack pointer CY PSW MBE RBE : : : : Carry flag; bit accumulator Program status word Memory bank enable flag Register bank enable flag PORTn IME IPS IE××× : : : : Portn (n = 0 to 8) Interrupt master enable flag Interrupt priority select register Interrupt enable flag RBS MBS PCC • : : : : Register bank select register Memory bank select register Processor clock control register Address, bit delimiter (××) ××H : Contents addressed by ×× : Hexadecimal data pair pair pair pair (XA’) (BC’) (DE’) (HL’) 39 µPD75336 (3) Description of symbols in the addressing area column Remarks *1 MB = MBE • MBS (MBS = 0, 1, 2, 15) *2 MB = 0 *3 MBE = 0 : MB = 0 (000H to 07FH) MB = 15 (F80H to FFFH) MBE = 1 : MB = MBS (MBS = 0, 1, 2, 15) *4 MB = 15, fmem = FB0H to FBFH, FF0H to FFFH *5 MB = 15, pmem = FC0H to FFFH *6 addr = 0000H to 3F7FH *7 addr = (Current PC) –15 to (Current PC) –1 (Current PC) + 2 to (Current PC) + 16 *8 caddr = 0000H 1000H 2000H 3000H *9 faddr = 0000H to 07FFH *10 taddr = 0020H to 007FH 1. 2. 3. 4. to to to to 0FFFH 1FFFH 2FFFH 3F7FH (PC13, 12 = (PC13, 12 = (PC13, 12 = (PC13, 12 = 00B) or 01B) or 10B) or 11B) Data memory addressing Program memory addressing MB indicates an accessible memory bank. In *2, MB = 0 irrespective of MBE and MBS. In *4 and *5, MB = 15 irrespective of MBE and MBS. *6 to *10 indicate addressable areas. (4) Description of machine cycle column S indicates the number of machine cycles required for an instruction with skip function to carry out skip operation. The value of S varies as follows: • When not skipped ................................................................................................................................... • When the skipped instruction is a 1-byte or 2-byte instruction ....................................................... • When the skipped instruction is a 3-byte instruction (BR !adder, CALL !adder instructions) ..... Note S=0 S=1 S=2 GETI instruction is skipped in a 1 machine cycle. The 1 machine cycle is equal to one cycle of CPU clock Φ (=tCY) and four time periods are selectable by setting the PCC. 40 µPD75336 Note 1 Mnemonic Transfer MOV Machine Cycles A, #n4 1 1 A ← n4 reg1, #n4 2 2 reg1 ← n4 XA, #n8 2 2 XA ← n8 Stack A HL, #n8 2 2 HL ← n8 Stack B rp2, #n8 2 2 rp2 ← n8 A, @HL 1 1 A ← (HL) *1 A, @HL+ 1 2+S A ← (HL), then L ← L + 1 *1 L=0 A, @HL– 1 2+S A ← (HL), then L ← L – 1 *1 L = FH A, @rpa1 1 1 A ← (rpa1) *2 XA, @HL 2 2 XA ← (HL) *1 @HL, A 1 1 (HL) ← A *1 @HL, XA 2 2 (HL) ← XA *1 A, mem 2 2 A ← (mem) *3 XA, mem 2 2 XA ← (mem) *3 mem, A 2 2 (mem) ← A *3 2 2 (mem) ← XA *3 2 2 A ← reg 2 2 XA ← rp' reg1 ← A mem, XA A, reg XA, rp' Note 2 Note MOVT Operation Skip Condition Stack A 2 2 rp'1, XA 2 2 rp'1 ← XA A, @HL 1 1 A ↔ (HL) *1 A, @HL+ 1 2+S A ↔ (HL), then L ← L + 1 *1 L=0 A, @HL– 1 2+S A ↔ (HL), then L ← L – 1 *1 L = FH A, @rpa1 1 1 A ↔ (rpa1) *2 XA, @HL 2 2 XA ↔ (HL) *1 A, mem 2 2 A ↔ (mem) *3 XA, mem 2 2 XA ↔ (mem) *3 A, reg1 1 1 A ↔ reg1 XA, rp' 2 2 XA ↔ rp' XA, @PCDE 1 3 XA ← (PC13–8 + DE)ROM XA, @PCXA 1 3 XA ← (PC13–8 + XA)ROM reg1, A XCH Addressing Area Bytes Operands 1. Instruction Group 2. Table reference 41 µPD75336 Bit transfer Note 1 Mnemonic MOV1 ADDS ADDC Operation SUBS SUBC AND OR XOR Note 42 Addressing Area Bytes Machine Cycles CY, fmem.bit 2 2 CY ← (fmem.bit) *4 CY, pmem.@L 2 2 CY ← (pmem7–2 + L3–2.bit(L1–0)) *5 CY, @H+mem.bit 2 2 CY ← (H + mem3–0 .bit) *1 fmem.bit, CY 2 2 (fmem.bit) ← CY *4 pmem.@L, CY 2 2 (pmem7–2 + L3–2.bit(L1–0)) ← CY *5 @H+mem.bit, CY 2 2 (H + mem3–0 .bit) ← CY *1 A, #n4 1 1+S A ← A + n4 carry XA, #n8 2 2+S XA ← XA + n8 carry A, @HL 1 1+S A ← A + (HL) XA, rp' 2 2+S XA ← XA + rp' carry rp'1, XA 2 2+S rp'1 ← rp'1 + XA carry A, @HL 1 1 A, CY ← A + (HL) + CY XA, rp' 2 2 XA, CY ← XA + rp' + CY rp'1, XA 2 2 rp'1, CY ← rp'1 + XA + CY A, @HL 1 1+S A ← A – (HL) XA, rp' 2 2+S XA ← XA – rp' borrow rp'1, XA 2 2+S rp'1 ← rp'1 – XA borrow A, @HL 1 1 A, CY ← A – (HL) – CY XA, rp' 2 2 XA, CY ← XA – rp' – CY rp'1, XA 2 2 rp'1, CY ← rp'1 – XA – CY A, #n4 2 2 A ← A ∧ n4 A, @HL 1 1 A ← A ∧ (HL) XA, rp' 2 2 XA ← XA ∧ rp' rp'1, XA 2 2 rp'1 ← rp'1 ∧ XA A, #n4 2 2 A ← A ∨ n4 A, @HL 1 1 A ← A ∨ (HL) XA, rp' 2 2 XA ← XA ∨ rp' rp'1, XA 2 2 rp'1 ← rp'1 ∨ XA A, #n4 2 2 A ← A ∨ n4 A, @HL 1 1 A ← A ∨ (HL) Operands Operation XA, rp' 2 2 XA ← XA ∨ rp' rp'1, XA 2 2 rp'1 ← rp'1 ∨ XA Instruction Group *1 Skip Condition carry *1 *1 *1 *1 *1 *1 borrow µPD75336 Note 3 Comparison Increment/decrement Note 2 Note 1 Note Mnemonic Operands Bytes Machine Cycles Operation Addressing Area Skip Condition RORC A 1 1 CY ← A0, A3 ← CY, An–1 ← A n NOT A 2 2 A←A reg 1 1+S reg ← reg + 1 reg = 0 rp1 1 1+S rp1 ← rp1 + 1 rp1 = 00H @HL 2 2+S (HL) ← (HL) + 1 *1 (HL) = 0 mem 2 2+S (mem) ← (mem) + 1 *3 (mem) = 0 reg 1 1+S reg ← reg – 1 reg = FH rp' 2 2+S rp' ← rp' – 1 rp' = FFH reg, #n4 2 2+S Skip if reg = n4 reg = n4 @HL, #n4 2 2+S Skip if (HL) = n4 *1 (HL) = n4 A, @HL 1 1+S Skip if A = (HL) *1 A = (HL) XA, @HL 2 2+S Skip if XA = (HL) *1 XA = (HL) A, reg 2 2+S Skip if A = reg A = reg XA, reg 2 2+S Skip if XA = rp' XA = rp' SET1 CY 1 1 CY ← 1 CLR1 CY 1 1 CY ← 0 SKT CY 1 1+S NOT1 CY 1 1 INCS DECS SKE Skip if CY = 1 CY = 1 CY ← CY 1. Instruction Group 2. Accumulator operation 3. Carry flag operation 43 µPD75336 Note Mnemonic SET1 Operands Machine Bytes Cycles Operation Addressing Area Skip Condition mem.bit 2 2 (mem.bit) ← 1 *3 fmem.bit 2 2 (fmem.bit) ← 1 *4 pmem.@L 2 2 (pmem7–2 + L3–2.bit (L1–0)) ← 1 *5 @H + mem.bit 2 2 (H + mem3–0.bit) ← 1 *1 mem.bit 2 2 (mem.bit) ← 0 *3 fmem.bit 2 2 (fmem.bit) ← 0 *4 pmem.@L 2 2 (pmem7–2 + L3–2.bit (L1–0)) ← 0 *5 @H + mem.bit 2 2 (H + mem3–0.bit) ← 0 *1 mem.bit 2 2+S Skip if (mem.bit) = 1 *3 (mem.bit) = 1 fmem.bit 2 2+S Skip if (fmem.bit) = 1 *4 (fmem.bit) = 1 pmem.@L 2 2+S Skip if (pmem7–2 + L3–2.bit (L1–0)) = 1 *5 (pmem.@L) = 1 @H + mem.bit 2 2+S Skip if (H + mem3–0.bit) = 1 *1 (@H + mem.bit) = 1 mem.bit 2 2+S Skip if (mem.bit) = 0 *3 (mem.bit) = 0 fmem.bit 2 2+S Skip if (fmem.bit) = 0 *4 (fmem.bit) = 0 pmem.@L 2 2+S Skip if (pmem7–2 + L3–2.bit (L1–0)) = 0 *5 (pmem.@L) = 0 @H + mem.bit 2 2+S Skip if (H + mem3–0.bit) = 0 *1 (@H + mem.bit) = 0 fmem.bit 2 2+S Skip if (fmem.bit) = 1 and clear *4 (fmem.bit) = 1 pmem.@L 2 2+S Skip if (pmem7–2 + L3–2.bit (L1–0)) = 1 and clear *5 (pmem.@L) = 1 @H + mem.bit 2 2+S Skip if (H + mem3–0.bit) = 1 and clear *1 (@H + mem.bit) = 1 CY, fmem.bit 2 2 CY ← CY ∧ (fmem.bit) *4 CY, pmem.@L 2 2 CY ← CY ∧ (pmem7–2 + L3–2.bit (L1–0)) *5 CY, @H + mem.bit 2 2 CY ← CY ∧ (H + mem3–0.bit) *1 CY, fmem.bit 2 2 CY ← CY ∨ (fmem.bit) *4 CY, pmem.@L 2 2 CY ← CY ∨ (pmem7–2 + L3–2.bit (L1–0)) *5 CY, @H + mem.bit 2 2 CY ← CY ∨ (H + mem3–0.bit) *1 CY, fmem.bit 2 2 CY ← CY ∨ (fmem.bit) *4 CY, pmem.@L 2 2 CY ← CY ∨ (pmem7–2 + L3–2.bit (L1–0)) *5 CY, @H + mem.bit 2 2 CY ← CY ∨ (H + mem3–0.bit) *1 *6 CLR1 Memory bit manipulation SKT SKF SKTCLR AND1 OR1 Branch XOR1 BR BRCB Note 44 addr — — PC13–0 ← addr (The assembler selects the optimum instruction from among the BR !addr, BRCB !caddr, and BR $addr instructions.) !addr 3 3 PC13–0 ← addr *6 $addr 1 2 PC13–0 ← addr *7 PCDE 2 3 PC13–0 ← PC13–8 + DE PCXA 2 3 PC13–0 ← PC13–8 + XA !caddr 2 2 PC13–0 ← PC13,12 + caddr11–0 Instruction Group *8 µPD75336 Note 1 Mnemonic !addr (SP – 4) (SP – 1) (SP – 2) ← PC 11–0 (SP – 3) ← MBE, RBE, PC13, PC12 PC13–0 ← addr, SP ← SP – 4 *6 !faddr 2 2 (SP – 4) (SP – 1) (SP – 2) ← PC 11–0 (SP – 3) ← MBE, RBE, PC13, PC12 PC13–0 ← 000 + faddr, SP ← SP – 4 *9 RET 1 3 PC11–0 ← (SP) (SP + 3) (SP + 2) MBE, RBE, PC13, PC12 ← (SP + 1) SP ← SP + 4 RETS 1 3+S PC11–0 ← (SP) (SP + 3) (SP + 2) MBE, RBE, PC13, PC12 ← (SP + 1) SP ← SP + 4, then skip unconditionally RETI 1 3 PC11–0 ← (SP) (SP + 3) (SP + 2) MBE, RBE, PC13, PC12 ← (SP + 1) PSW ← (SP + 4) (SP + 5), SP ← SP + 6 rp 1 1 (SP – 1) (SP – 2) ← rp, SP ← SP – 2 BS 2 2 (SP – 1) ← MBS, (SP – 2) ← RBS, SP ← SP – 2 rp 1 1 rp ← (SP + 1) (SP), SP ← SP + 2 BS 2 2 MBS ← (SP + 1), RBS ← (SP), SP ← SP + 2 2 2 IME(IPS.3) ← 1 2 2 IE × × × ← 1 2 2 IME(IPS.3) ← 0 IE × × × 2 2 IE × × × ← 0 A, PORTn 2 2 A ← PORTn (n = 0–8) XA, PORTn 2 2 XA ← PORTn+1, PORTn (n = 4, 6) PORTn, A 2 2 PORTn ← A (n = 2–8) PORTn, XA 2 2 PORTn+1, PORTn ← XA (n =4, 6) HALT 2 2 Set HALT Mode (PCC.2 ← 1) STOP 2 2 Set STOP Mode (PCC.3 ← 1) NOP 1 1 No Operation RBn 2 2 RBS ← n (n = 0 – 3) MBn 2 2 MBS ← n (n = 0, 1, 2, 15) Subroutine stack control PUSH Note 2 POP EI DI IN* OUT* IE × × × SEL Special Addressing Area Operation 2 CALLF Input/output Machine Cycles 3 CALL Note 3 Operands Bytes GETI taddr 1 3 • TBR Instruction PC13–0 ← (taddr) 5–0 + (taddr + 1) ----------------------------------------------------------------------• TCALL Instruction (SP – 4) (SP – 1) (SP – 2) ← PC11–0 (SP – 3) ← MBE, RBE, PC13, PC12 PC13–0 ← (taddr) 5–0 ← (taddr + 1) SP ← SP – 4 ----------------------------------------------------------------------• Other than TBR and TCALL Instruction Execution of an instruction addressed at (taddr) and (taddr + 1) Skip Condition Unconditional ----------------------------- *10 ----------------------------Depends on the referred instruction * At IN/OUT instruction execution, MBE = 0 or MBE = 1, MBS =15 must be set in advance. Remarks TBR and TCALL instructons are assembler pseudo instructions for GETI instruction table definition. Note 1. Instruction Group 2. Interrupt control 3. CPU control 45 µPD75336 10. ELECTRICAL SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C) PARAMETER Power supply voltage SYMBOL TEST CONDITIONS RATING UNIT –0.3 to +7.0 V –0.3 to V DD +0.3 V –0.3 to V DD +0.3 V –0.3 to +11 V –0.3 to V DD +0.3 V One pin –15 mA All pins –30 mA Peak value 30 mA rms 15 mA Peak value 100 mA rms 60 mA Peak value 100 mA rms 60 mA –65 to +150 °C VDD VI1 Except ports 4 and 5 VI2 Ports 4 and 5 Input voltage On-chip pull-up resistor Open–drain Output voltage VO Output current high IOH One pin Output current low Total of ports 0, 2, 3, 5 and 8 IOL* Total of ports 4, 6, and 7 Storage temperature Rms is calculated using the following expression: [rms] = [peak value] × √duty * ★ Tstg Note Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded. ★ GUARANTEED OPRERATING RANGE PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Power supply voltage VDD 2.7 6.0 V Operating temperature Topt –40 +85 ˚C MAX. UNIT 15 pF 15 pF 15 pF CAPACITANCE (Ta = 25 °C, VDD = 0 V) PARAMETER Input capacitance Output capacitance I/O capacitance 46 SYMBOL TEST CONDITIONS CIN COUT CIO f = 1 MHz Unmeasured pins returned to 0 V. MIN. TYP. µPD75336 MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) RESONATOR RECOMMENDED CIRCUIT PARAMETER TEST CONDITIONS Oscillator frequency (f x)*1 X1 MIN. TYP. MAX. UNIT 5.0*3 MHz 4 ms 5.0*3 MHz 10 ms 30 ms 1.0 5.0*3 MHz 100 500 ns 1.0 X2 Ceramic resonator C1 C2 Oscillation stabilization time*2 VDD After V DD reaches the MIN. value of the oscillation voltage range Oscillator frequency (f x)*1 X1 1.0 4.19 X2 VDD = 4.5 to 6.0 V Crystal resonator C1 C2 Oscillation stabilization time*2 VDD X1 X2 External clock X1 input frequency (f x)*1 X1 input µPD74HCU04 high-/low-level width (tXH, tXL) * 1. The oscillator frequency and X1 input frequency indicate only the oscillator characteristics. For the instruction execution time refer to the AC CHARACTERISTICS. 2. The oscillation stabilization time is necessary for oscillation to stabilize after VDD reaches the MIN. value of the oscillation voltage range or releasing the STOP mode. 3. When the oscillator frequency is “4.19 MHz < fX ≤ 5.0 MHz” PCC = 0011 should for the instruction execution time. If PCC = 0011 is selection, 1 machine cycle is less than 0.95 µs with the result that the specified MIN. value, 0.95 µs cannot be observed. Note When using the main system clock oscillator or the subsystem clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance. • Wiring should be as short as possible. • Wiring should not cross other signal lines or not be placed close to a varying high current. • The potential of the oscillator capacitor ground should always be the same as VSS. Do not ground wiring to a ground pattern in which a high current flows. • Do not fetch a signal from the oscillator. The subsystem clock oscillator is a circuit with a low amplification level, more prone to misoperation due to noise than the main system clock. Therefore, when using the subsystem clock, special care is required in wiring methods. 47 ★ µPD75336 SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) RESONATOR RECOMMENDED CIRCUIT XT1 PARAMETER Oscillator frequency (fXT)*1 XT2 C3 C4 MIN. TYP. MAX. UNIT 32 32.768 35 kHz 1.0 2 s 10 s 32 100 kHz 5 15 µs VDD = 4.5 to 6.0 V R Crystal resonator TEST CONDITIONS Oscillation stabilization time*2 VDD XT1 input frequency (fXT)*1 XT1 External clock XT2 Leave Open XT1 input high-/ low-level width (t XTH,t XTL) * ★ 1. The oscillator frequency and X1 input frequency indicate only the oscillator characteristics. For the instruction execution time refer to the AC CHARACTERISTICS. 2. The oscillation stabilization time is necessary for oscillation to stabilize after VDD reaches the MIN. value of the oscillation voltage range or releasing the STOP mode. Note When using the main system clock oscillator or the subsystem clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance. • Wiring should be as short as possible. • Wiring should not cross other signal lines or not be placed close to a varying high current. • The potential of the oscillator capacitor ground should always be the same as VSS. Do not ground wiring to a ground pattern in which a high current flows. • Do not fetch a signal from the oscillator. The subsystem clock oscillator is a circuit with a low amplification level, more prone to misoperation due to noise than the main system clock. Therefore, when using the subsystem clock, special care is required in wiring methods. 48 µPD75336 DC CHARACTERISTICS (Ta = –40 to +85 °C, V DD = 2.7 to 6.0 V) (1/2) PARAMETER SYMBOL TEST CONDITIONS TYP. MAX. UNIT VIH1 Ports 2, 3 and 8 0.7 VDD VDD V VIH2 Ports 0, 1, 6, 7, RESET 0.8 VDD VDD V On-chip pull-up resistor 0.7 VDD VDD V VIH3 Ports 4 and 5 Open–drain 0.7 VDD 10 V VDD –0.5 VDD V Input voltage high Input voltage low MIN. VIH4 X1, X2, XT1 VIL1 Ports 2, 3, 4, 5 and 8 0 0.3 VDD V VIL2 Ports 0, 1, 6, 7, RESET 0 0.2 VDD V VIL3 X1, X2, XT1 0 0.4 V VOH1 Ports 0, 2, 3, 6, 7, 8 BIAS VDD = 4.5 to 6.0 V IOH = –1 mA VDD –1.0 V IOH = –100 µA VDD –0.5 V VDD = 4.5 to 6.0 V IOH = –100 µA VDD –2.0 V IOH = –50 µA VDD –1.0 V Output voltage high VOH2 BP0 to BP7 (with 2 IOH outputs) Ports 3, 4 and 5 VDD = 4.5 to 6.0 V IOL = 15 mA Ports 0, 2, 3, 4, 5, 6, 7 and 8 VOL1 Output voltage low SB0, SB1 VOL2 BP0 to BP7 (with 2 IOL outputs) ILIH1 2.0 V VDD = 4.5 to 6.0 V IOL = 1.6 mA 0.4 V IOL = 400 µA 0.5 V 0.2 VDD V VDD = 4.5 to 6.0 V IOL = 100 µA 1.0 V IOL = 50 µA 1.0 V Other than below 3 µA X1, X2, XT1 20 µA Ports 4 and 5 (open–drain) 20 µA Other than below –3 µA X1, X2, XT1 –20 µA 3 µA 20 µA –3 µA Open–drain pull-up resistor ≥ 1 kΩ 0.4 VIN = VDD Input leakage current high ILIH2 ILIH3 Input leakage current low Output leakage current high Output leakage current low VIN = 10 V ILIL1 VIN = 0 V ILIL2 ILOH1 VOUT = VDD Other than below ILOH2 VOUT = 10 V Ports 4 and 5 (open–drain) ILOL VOUT = 0 V 49 µPD75336 DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) (2/2) PARAMETER SYMBOL RL1 On-chip pull-up resistor RL2 TEST CONDITIONS Ports 0, 1, 2, 3, 6, 7 and 8 (Except P00) VIN = 0 V Ports 4 and 5 VOUT = VDD –2.0 V MIN. TYP. MAX. UNIT VDD = 5.0 V ±10% 15 40 80 kΩ VDD = 3.0 V ±10% 30 300 kΩ VDD = 5.0 V ±10% 15 70 kΩ VDD = 3.0 V ±10% 10 60 kΩ VDD V 140 kΩ 0 ±0.2 V 0 ±0.2 V LCD drive voltage VLCD 2.5 LCD split resistor RLCD 60 LCD output voltage deviation*1 (common) VODC IO = ±5 µA LCD output voltage deviation*1 (segment) VODS IO = ±1 µA IDD1 4.19 MHz*3 crystal oscillation C1 = C2 = 22 pF IDD2 Supply current*2 IDD3 32 kHz*6 crystal oscillation IDD4 VLCD0 = VLCD VLCD1 = VLCD × 2/3 VLCD2 = VLCD × 1/3 2.7 V ≤ VLCD ≤ VDD IDD5 * 100 VDD = 5 V ±10%*4 2.5 8 mA VDD = 3 V ±10%*5 0.35 1.2 mA VDD = 5 V ±10% 500 1500 µA VDD = 3 V ±10% 150 450 µA Operating mode VDD = 3 V ±10% 30 90 µA HALT mode VDD = 3 V ±10% 5 15 µA 0.5 20 µA 0.1 10 µA 0.1 5 µA HALT mode VDD = 5 V ±10% XT1 = 0 V STOP mode 40 VDD = 3 V ±10% Ta = 25 °C 1. The voltage deviation is the difference between the output voltage and the segment or common output desired value (VLCDn; n = 0, 1, 2) 2. Current which flows in the on-chip pull-up resistor or LCD split resistor is not included. 3. Including oscillation of the subsystem clock. 4. When the processor clock control register (PCC) is set to 0011 and the device is operated in the high-speed mode. 5. When PCC is set to 0000 and the device is operated in the low-speed mode. 6. When the system clock control register (SCC) is set to 1011 and the device is operated on the subsystem clock, with main system clock oscillation stopped. 50 µPD75336 A/D CONVERTER CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V, AVSS = VSS = 0 V) PARAMETER SYMBOL TEST CONDITIONS Resolution 2.5 V ≤ AVREF ≤ VDD Absolute accuracy *1 * MIN. TYP. MAX. UNIT 8 8 8 bit –10 ≤ Ta ≤ +85 °C ±1.5 –40 ≤ Ta < –10 °C ±2.0 LSB Conversion time tCONV *2 168/fX s Sampling time tSAMP *3 44/fX s Analog input voltage VIAN AVREF V Analog Input impedance RAN 1000 AVREF current IREF 1.0 AVSS MΩ 2.0 mA 1. Absolute accuracy excluding quantization (±1/2 LSB) error. 2. Time up to end of conversion (EOC = 1) after execution of the conversion start instruction. (40.1 µ s: fX = 4.19 MHz operation) 3. Time up to end of sampling after execution of the conversion start instruction. (10.5 µs: fX = 4.19 MHz operation) 51 µPD75336 AC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) PARAMETER CPU clock cycle time (minimum instruction execution time = 1 SYMBOL Operating on main system clock TI0, TI1 input width high/low Interrupt input width high/low RESET width low * MIN. VDD = 4.5 to 6.0 V tCY machine cycle)*1 TI0, TI1 input frequency TEST CONDITIONS fTI tTIH, TYP. MAX. UNIT 0.95 64 µs 3.8 64 µs 125 µs Operating on subsystem clock 114 VDD = 4.5 to 6.0 V 0 1 MHz 0 275 kHz 122 0.48 µs 1.8 µs INT0 *2 µs INT1, INT2, INT4 10 µs KR0 to KR7 10 µs 10 µs VDD = 4.5 to 6.0 V tTIL tINTH, tINTL tRSL 1. CPU clock (Φ) cycle time is determined by the oscillator frequency of the connected resonator, the system clock control register (SCC) and the tCY vs VDD (Operating on Main System Clock) 70 64 60 processor clock control register (PCC). The figure at the right indicates the cycle time tCY versus supply voltage VDD characteristic with the main system clock operating. Guaranteed Operating Range 4 Cycle Time tCY [ µ s] 2. 2tCY or 128/fX is set by setting the interrupt mode register (IM0). 6 5 3 2 1 0.5 0 1 2 3 4 5 Supply Voltage VDD [V] 52 6 µPD75336 SERIAL TRANSFER OPERATION 2-Wired and 3-Wired Serial I/O Modes (SCK ... Internal clock output) PARAMETER SYMBOL TEST CONDITIONS VDD = 4.5 to 6.0 V MIN. TYP. MAX. UNIT 1600 ns 3800 ns tKCY1/2-50 ns tKH1 tKCY1/2-150 ns SI setup time (to SCK↑) tSIK1 150 ns SI hold time (from SCK↑) tKSI1 400 ns SO output delay time from SCK↓ tKSO1 SCK cycle time tKCY1 tKL1 VDD = 4.5 to 6.0 V SCK width high/low VDD = 4.5 to 6.0 V RL = 1 kΩ, CL = 100 pF* 250 ns 1000 ns MAX. UNIT 2-Wired and 3-Wired Serial I/O Modes (SCK ... External clock input) PARAMETER SYMBOL TEST CONDITIONS VDD = 4.5 to 6.0 V TYP. 800 ns 3200 ns 400 ns tKH2 1600 ns SI setup time (to SCK↑) tSIK2 100 ns SI hold time (from SCK ↑) tKSI2 400 ns SO output delay time from SCK↓ tKSO2 SCK cycle time tKCY2 tKL2 SCK width high/low * MIN. VDD = 4.5 to 6.0 V RL = 1 kΩ, CL = 100 pF* VDD = 4.5 to 6.0 V 300 ns 1000 ns RL and CL are load resistor and load capacitance of the SO output line. 53 µPD75336 SBI Mode (SCK ... Internal clock output (Master)) PARAMETER SYMBOL TEST CONDITIONS VDD = 4.5 to 6.0 V MIN. TYP. MAX. UNIT 1600 ns 3800 ns tKCY3/2-50 ns tKH3 tKCY3/2-150 ns SB0, 1 setup time (to SCK ↑) tSIK3 150 ns SB0, 1 hold time (from SCK ↑) tKSI3 tKCY3/2 ns SB0, 1 output delay time from SCK ↓ tKSO3 SB0, 1 ↓ from SCK ↑ tKSB tKCY3 ns SCK from SB0, 1 ↓ tSBK tKCY3 ns SB0, 1 width low tSBL tKCY3 ns SB0, 1 width high tSBH tKCY3 ns SCK cycle time tKCY3 tKL3 VDD = 4.5 to 6.0 V SCK width high/low VDD = 4.5 to 6.0 V RL = 1 kΩ, CL = 100 pF* 0 250 ns 0 1000 ns SBI Mode (SCK ... External clock input (Slave)) PARAMETER SYMBOL TEST CONDITIONS VDD = 4.5 to 6.0 V MIN. TYP. MAX. UNIT 800 ns 3200 ns 400 ns tKH4 1600 ns SB0, 1 setup time (to SCK ↑) tSIK4 100 ns SB0, 1 hold time (from SCK ↑) tKSI4 tKCY4/2 ns SB0, 1 output delay time from SCK ↓ tKSO4 SB0, 1 ↓ from SCK ↑ tKSB tKCY4 ns SCK ↓ from SB0, 1 ↓ tSBK tKCY4 ns SB0, 1 width low tSBL tKCY4 ns SB0, 1 width high tSBH tKCY4 ns SCK cycle time tKCY4 tKL4 VDD = 4.5 to 6.0 V SCK width high/low * 54 RL = 1 kΩ, CL = 100 pF* VDD = 4.5 to 6.0 V 0 300 ns 0 1000 ns RL and CL are load resistor and load capacitance of the SB0, 1 output lines. µPD75336 AC Timing Test Point (Excluding X1 and XT1 inputs) 0.8 VDD 0.8 VDD Test Points 0.2 VDD 0.2 VDD Clock Timings 1/fX tXL tXH VDD -0.5 V 0.4 V X1 Input 1/fXT tXTL tXTH VDD -0.5 V 0.4 V XT1 Input TI0 Timing 1/fTI tTIL tTIH TI0 55 µPD75336 Serial Transfer Timing 3-wired serial I/O mode: tKCY1 tKL1 tKH1 SCK tKSI1 tSIK1 Input Data SI tKSO1 SO Output Data 2-wired serial I/O mode: tKCY2 tKL2 tKH2 SCK tSIK2 SB0,1 tKSO2 56 tKSI2 µPD75336 Serial Transfer Timing Bus release signal transfer: tKL3,4 tKCY3,4 tKH3,4 SCK tKSB tSBL tSBH tSIK3,4 tSBK tKSI3,4 SB0,1 tKSO3,4 Command signal transfer: tKL3,4 tKCY3,4 tKH3,4 SCK tKSB tSIK3,4 tSBK tKSI3,4 SB0,1 tKSO3,4 Interrupt Input Timing tINTL tINTH INT0,1,2,4 KR0-7 RESET Input Timing tRSL RESET 57 µPD75336 DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = –40 to 85 °C) PARAMETER SYMBOL Data retention supply voltage VDDDR Data retention supply current*1 IDDDR Release signal setup time tSREL Oscillation stabilization wait time*2 tWAIT TEST CONDITIONS TYP. 2.0 VDDDR = 2.0 V 0.1 Release by RESET MAX. UNIT 6.0 V 10 µA µs 0 Release by interrupt request * MIN. 217/fx ms *3 ms 1. Current which flows in the on-chip pull-up resistor is not included. 2. The oscillation stabilization wait time is the time during which the CPU operation is stopped to prevent unstable operation at the oscillation start. 3. Depends on the basic interval timer mode register (BTM) setting (table below). 58 WAIT TIME (Figures in parentheses are for operation at fx = 4.19 MHz) BTM3 BTM2 BTM1 BTM0 — 0 0 0 220/fx (approx. 250 ms) — 0 1 1 217/fx (approx. 31.3 ms) — 1 0 1 215/fx (approx. 7.82 ms) — 1 1 1 213/fx (approx. 1.95 ms) µPD75336 Data Retention Timing (STOP mode release by RESET) Internal Reset Operation HALT Mode STOP Mode Operating Mode Data Retention Mode VDD VDDDR tSREL STOP Instruction Execution RESET tWAIT Data Retention Timing (Standby release signal: STOP mode release by interrupt signal) HALT Mode STOP Mode Operating Mode Data Retention Mode VDD VDDDR tSREL STOP Instruction Execution Standby Release Signal (Interrupt Request) tWAIT 59 µPD75336 11. PACKAGE INFORMATION 80 PIN PLASTIC QFP ( 14) A B 60 61 41 40 Q 5°±5° S C D detail of lead end 21 20 F 80 1 G H I M J M P K N L S80GC-65-3B9-3 NOTE Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition. 60 ITEM MILLIMETERS INCHES A 17.2 ± 0.4 0.677 ± 0.016 B 14.0 ± 0.2 0.551+0.009 –0.008 C 14.0 ± 0.2 0.551+0.009 –0.008 D 17.2 ± 0.4 0.677 ± 0.016 F 0.8 0.031 G 0.8 0.031 H 0.30 ± 0.10 0.012+0.004 –0.005 I 0.13 0.005 J 0.65 (T.P.) 0.026 (T.P.) K 1.6 ± 0.2 0.063 ± 0.008 L 0.8 ± 0.2 0.031+0.009 –0.008 M 0.15+0.10 –0.05 0.006+0.004 –0.003 N 0.10 0.004 P 2.7 Q 0.1 ± 0.1 S 3.0 MAX. 0.106 0.004 ± 0.004 0.119 MAX. µPD75336 80 PIN PLASTIC TQFP (FINE PITCH) ( 12) A B 60 41 61 40 Q 5°±5° S D C detail of lead end 21 F 80 1 G 20 H I M J M P K N L P80GK-50-BE9-3 NOTE Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS INCHES A 14.0 ± 0.4 0.551 ± 0.016 B 12.0 ± 0.2 0.472+0.009 –0.008 C 12.0 ± 0.2 0.472+0.009 –0.008 D 14.0 ± 0.4 0.551 ± 0.016 F 1.25 0.049 G 1.25 0.049 H 0.20 ± 0.10 0.008 ± 0.004 I 0.10 0.004 J 0.5 (T.P.) 0.020 (T.P.) K 1.0 ± 0.2 0.039 –0.008 L 0.5 ± 0.2 0.020+0.008 –0.009 M 0.125 +0.10 –0.05 0.005+0.004 –0.001 N 0.10 P 1.05 Q 0.05 ± 0.05 S 1.27 MAX. +0.009 0.004 0.041 0.002 ± 0.002 0.05 MAX. 61 µPD75336 ★ 12. RECOMMENDED SOLDERING CONDITIONS The µPD75336 should be soldered and mounted under the conditions recommended in the table below. For detail of recommended soldering conditions, refer to information document “Surface Mount Technology Manual” (IEI-1207). For soldering methods and conditions other than those recommended below, contact our salesman. Table 12-1 Surface Mounting Type Soldering Conditions µPD75336GC-×××-3B9 : 80-pin plastic QFP ( 14mm) (1) Soldering Method Recommended Condition Symbol Infrared reflow Package peak temperature: 230˚C, Duration: 30 sec. max. (at 210˚C above), Number of times: Once, Time limit: 7 days* (thereafter 10 hours prebaking required at 125˚C) IR30-107-1 VPS Package peak temperature: 215˚C, Duration: 40 sec. max. (at 200˚C above), Number of times: Once, Time limit: 7 days* (thereafter 10 hours prebaking required at 125˚C) VP15-107-1 Wave soldering Solder bath temperature: 260˚C max., Duration: 10 sec. max., Number of times: Once, Preliminary heat temperature: 120˚C max. (Package surface temperature), Time limit: 7 days* (thereafter 10 hours prebaking required at 125˚C) WS60-107-1 Pin part heating Pin part temperature: 300˚C max., Duration: 3 sec. max. (per device side) (2) µPD75336GK-×××-BE9 : 80-pin plastic TQFP (fine pitch)( 12mm) Soldering Method * Soldering Conditions Soldering Conditions Recommended Condition Symbol Infrared reflow Package peak temperature: 230˚C, Duration: 30 sec. max. (at 210˚C above), Number of times: Once, Time limit: 1 days* (thereafter 16 hours prebaking required at 125˚C) IR30-161-1 VPS Package peak temperature: 215˚C, Duration: 40 sec. max. (at 200˚C above), Number of times: Once, Time limit: 1 days* (thereafter 16 hours prebaking required at 125˚C) VP15-161-1 Pin part heating Pin part temperature: 300˚C max., Duration: 3 sec. max. (per device side) For the storage period after dry-pack decompression, storage conditions are max. 25°C, 65% RH. Note Use of more than one soldering method should be avoided (except in the case of pin part heating). Notice A version of this product with improved recommended soldering conditions is available. For details (improvements such as infrared reflow peak temperature extension (235˚C), number of times: twice, relaxation of time limit, etc.), contact NEC sales personnel. 62 µPD75336 APPENDIX A. DIFFERENCES BETWEEN µPD75336 AND µPD75328 FUNCTIONS Product Name CPU core ROM (Byte) RAM (× 4 bits) General register Main system clock Instruction cycle µPD75336 µPD75328 75X High End 75X Standard 16256 8064 768 512 4 bits × 8 × 4 4 bits × 8 × 1 0.95 µs, 1.91 µs, 3.81 µs, 15. 3 µs (at 4.19 MHz operation) 0.95 µs, 1.91 µs, 15.3 µs (at 4.19 MHz operation) 122 µs (at 32.768 kHz operation) Subsystem clock A/D converter • 8-bit resolution × 8 channels (successive approximation) • A/D operating range: VDD = 2.7 to 6.0 V • 8-bit resolution × 6 channels (successive approximation) • A/D operating range: VDD = 3.5 to 6.0 V Timer/counter • Basic interval timer × 1 • Timer/event counter × 2 • Watch timer × 1 • Basic interval timer × 1 • Timer/event counter × 1 • Watch timer × 1 Vectored interrupt • External: 3 • Internal: 4 • External: 3 • Internal: 3 Buzzer output (BUZ) 2 kHz, 4 kHz, 32 kHz 2 kHz 8-bit data processing Transfer, add/subtract, increase/decrease, compare Transfer Package Product with on-chip PROM • 80-pin plastic QFP ( 14 mm) • 80-pin plastic TQFP (fine pitch)( µPD75P336 12 mm) • 80-pin plastic QFP ( 14 mm) µPD75P328 63 µPD75336 APPENDIX B. DEVELOPMENT TOOLS Software Hardware The following development tools are available for system development using the µPD75336. * IE-75000-R*1 IE-75001-R 75X series in-circuit emulator IE-75000-R-EM*2 IE-75000-R/IE-75001-R emulation board EP-75336GC-R µPD75336 emulation probe. 80-pin conversion socket EV-9200GC-80 added. EV-9200GC-80 EP-75336GK-R EV-9500GK-80 µPD75336 emulation probe. 80-pin conversion socket EV-9500GK-80 added. PG-1500 PROM programmer PA-75P328GC µPD75P336GC PROM programmer adapter, connected to PG-1500 PA-75P336GK µPD75P336GK PROM programmer adapter, connected to PG-1500 IE control program Host Machine • PC-9800 series (MS-DOS Ver. 3.30 to 5.00A*3 ) • IBM PC/AT (PC DOS Ver. 3.1) PG-1500 controller RA75X relocatable assembler 1. Maintenance products 2. Not incorporated in the IE-75001-R. 3. The task swap function, which is provided with Ver. 5.00/5.00A, is not available with this software. ★ Remarks 64 For development tools manufactured by a third party, see the “75X Series Selection Guide (IF-151)”. µPD75336 APPENDIX C. RELATED DOCUMENTS ★ Device Related Documents Document Name Document Number User’s Manual Instruction Application Table 75X Series Selection Guide Development Tools Related Documents Document Name Document Number Hardware IE-75000-R/IE-75001-R User’s Manual IE-75000-R-EM User’s Manual EP-75336GC-R User’s Manual EP-75336GK-R User’s Manual Software PG-1500 User’s Manual Operation Volume RA75X Assembler Package User’s Manual Language Volume PG-1500 Controller User’s Manual Other Related Documents Document Name Document Number Package Manual Surface Mount Technology Manual Quality Grade on NEC Semiconductor Devices NEC Semiconductor Device Reliability & Quality Control Electrostatic Discharge (ESD) Test Semiconductor Devices Quality Guarantee Guide Microcomputer Related Products Guide Other Manufactures Volume Note The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc. 65 µPD75336 66 µPD75336 67 µPD75336 [MEMO] No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance. Application examples recommended by NEC Corporation Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc. Special : Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc. M4 92.6 MS-DOS is a trademark of Microsoft Corporation. PC DOS and PC/AT are trademarks of IBM Corporation.