NEC UPD75208CW

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD75208
4-BIT SINGLE-CHIP MICROCOMPUTER
DESCRIPTION
The µPD75208 is a microcomputer with a CPU capable of 1-, 4-, and 8-bit-wise data processing, a ROM, a RAM,
I/O ports, a fluorescent display tube controller/driver, a watch timer, a timer/pulse generator capable of outputting
14-bit PWM, a serial interface and a vectored interrupt function integrated on a single-chip.
It uses the VCR, ECR and CD fluorescent display tubes as display devices and is most suitable for applications
requiring the timer/watch function and high-speed interrupt servicing. It can help to provide the unit with many
functions and to decrease performance costs.
With the µPD75208, the µPD75P216A, 75P218 one-time PROM products are available for system development
evaluation or small production.
★
The following manual provides detailed description of the functions of the µPD75208. Be sure to read this manual
when you design an application system.
µPD75216A User’s Manual: IEM-988
FEATURES
• Architecture equal to that of an 8-bit microcomputer
• High-speed operation : Minimum instruction execution time : 0.95 µs (when operated at 4.19 MHz)
• Instruction execution time variable function realizing a wide range of operating voltages
•
•
•
•
On-chip large-capacity program memory : 8K bytes
Watch operation with an ultra low current consumption : 5µA TYP. (at the 3 V operation)
On-chip programmable fluorescent display tube controller/driver
Timer function : 4 ch
• 14-bit PWM output capability with the voltage synthesizer type electronic tuner
• Buzzer output capability
• Interrupt function with importance attached to applications
• For power-off detection
• For remote controlled reception
• Product with an on-chip PROM : µPD75P216A, µPD75P218 (on-chip EPROM : WQFN package)
★
ORDERING INFORMATION
★
Ordering Code
µ PD75208CW-×××
µ PD75208GF-×××-3BE
Package
64-pin plastic shrink DIP (750 mil)
64-pin plastic QFP (14 × 20 mm)
Quality Grade
Standard
Standard
Please refer to “Quality grade on NEC Semiconductor Devices” (Document number IEI-1209) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.
The information in this document is subject to change without notice.
Document No. IC-1884A
(O. D. No.
IC-7048C)
Date Published August 1993 P
Printed in Japan
The mark ★ shows major revised points.
© NEC Corporation 1991
µPD75208
LIST OF FUNCTIONS
Item
Function
Instruction execution time
• 0.95, 1.91, 15.3 µs (Main system clock : 4.19 MHz operation)
• 122 µs (Subsystem clock : 32.768 kHz operation)
On-chip memory
ROM
8064 × 8 bits
RAM
497 × 4 bits
General register
• 4-bit manipulation : 8 × 4 banks
• 8-bit manipulation : 4 × 4 banks
Input/output port
33




★
 FIP ® dual-function pin
 included
 FIP dedicated pin
 excluded
2
8
20
5
CMOS input pin
CMOS input/output pins
• Direct LED drive capability : 8
• On-chip pull-down resistor by mask option capability : 4
CMOS output pin
• Direct LED drive capability : 4
• PWM/pulse output : 1
• On-chip pull-down resistor by mask option capability : 4
FIP controller/driver
•
•
•
•
•
No. of segments : 9 to 12 segments
No. of digits
: 9 to 16 digits
Dimmer function : 8 levels
On-chip pull-down resistor by mask option capability
Key scan interrupt generation
Timer
4 channels
Serial interface
• MSB start/LSB start switchable
• Serial bus configuration capability
Vectored interrupt
External : 3, Internal : 5
Test input
External : 1, Internal : 1
System clock oscillator
• Ceramic/crystal oscillator for main system clock oscillation : 4.194304 MHz standard
• Crystal oscillator for subsystem clock oscillation : 32.768 kHz standard
Standby function
STOP/HALT mode
Mask option
• Power-on reset, power-on flag
• High withstand voltage port : Pull-down resistor or open-drain output
• Port 6 : Pull-down resistor
Operating temperature range
–40 to +85 °C
Operating voltage
2.7 to 6.0 V (standby data hold : 2.0 to 6.0 V)
Package
• 64-pin plastic shrink DIP (750 mil)
• 64-pin plastic QFP (14 × 20 mm)
•
•
•
•
Timer/pulse generator : 14-bit PWM output enabled
Watch timer
: Buzzer output enabled
Timer/event counter
Basic interval timer
: Watchdog timer application capability
µPD75208
CONTENTS
1.
PIN CONFIGURATION (TOP VIEW) ....................................................................................... 5
2.
BLOCK DIAGRAM .................................................................................................................... 6
3.
PIN FUNCTIONS ...................................................................................................................... 7
3.1
PORT PINS .................................................................................................................................... 7
3.2
NON-PORT PINS .......................................................................................................................... 8
3.3
PIN INPUT/OUTPUT CIRCUIT LIST ............................................................................................ 9
3.4
UNUSED PINS TREATMENT .................................................................................................... 10
3.5
P00/INT4 PIN AND RESET PIN OPERATING PRECAUTIONS ............................................... 11
3.6
XT1, XT2 AND P50 PIN OPERATING PRECAUTIONS ........................................................... 11
4.
ARCHITECTURE AND MEMORY MAP OF THE µPD75208 ............................................... 12
5.
PERIPHERAL HARDWARE FUNCTIONS .............................................................................. 14
5.1
PORTS .......................................................................................................................................... 14
5.2
CLOCK GENERATOR .................................................................................................................. 15
5.3
BASIC INTERVAL TIMER ........................................................................................................... 16
5.4
WATCH TIMER .......................................................................................................................... 17
5.5
TIMER/EVENT COUNTER ......................................................................................................... 18
5.6
TIMER/PULSE GENERATOR ..................................................................................................... 19
5.7
SERIAL INTERFACE ................................................................................................................... 20
5.8
FIP CONTROLLER/DRIVER ........................................................................................................ 22
5.9
POWER-ON FLAG (MASK OPTION) ......................................................................................... 23
6.
INTERRUPT FUNCTIONS ...................................................................................................... 23
7.
STANDBY FUNCTIONS ......................................................................................................... 25
8.
RESET FUNCTIONS ............................................................................................................... 25
9.
INSTRUCTION SET ................................................................................................................ 26
10. MASK OPTION SELECTION .................................................................................................. 35
11. APPLICATION BLOCK DIAGRAM ......................................................................................... 36
11.1
VCR TIMER TUNER .................................................................................................................... 36
11.2
COMPACT DISK PLAYER .......................................................................................................... 37
11.3
ECR ............................................................................................................................................... 37
3
µPD75208
12. ELECTRICAL SPECIFICATIONS ............................................................................................ 38
13. CHARACTERISTIC CURVES .................................................................................................. 50
14. PACKAGE INFORMATION .................................................................................................... 54
15. RECOMMENDED SOLDERING CONDITIONS ..................................................................... 57
APPENDIX A DEVELOPMENT TOOLS .................................................................................... 58
APPENDIX B RELATED DOCUMENT ....................................................................................... 59
4
µPD75208
1. PIN CONFIGURATION (TOP VIEW)
P02/SO
P03/SI
P10/INT0
P11/INT1
P12/INT2
P13/TI0
VDD
S4
S5
S6
S7
S8
S9
VPRE
VLOAD
T15/S10
T14/S11
T13/PH0
T12/PH1
T11/PH2
T10/PH3
T9
T8
T7
T6
T5
T4
T3
T2
T1
T0
RESET
P53
P52
P51
P50
XT2
XT1
P20
P21
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
P22
P23/BUZ
P30
P31
P32
P33
P60
P61
P62
P63
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
µ PD75208CW-× × ×
P40
S3
S2
S1
S0
P00/INT4
P01/SCK
P02/SO
P03/SI
P10/INT0
P11/INT1
P12/INT2
P13/TI0
P20
P21
P22
P23/BUZ
P30
P31
P32
P33
P60
P61
P62
P63
P40
P41
P42
P43
PPO
X1
X2
VSS
P41
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
52
32
P01/SCK
P42
53
31
P00/INT4
P43
54
30
S0
PPO
55
29
S1
X1
56
28
S2
X2
57
27
S3
VSS
58
XT1
µ PD75208GF-× × ×-3BE
62
22
S7
P52
63
21
S8
P53
64
1
S9
VPRE
VLOAD
T15/S10
T14/S11
8
T13/PH0
7
T12/PH1
6
T11/PH2
5
T10/PH3
4
T9
3
T8
2
20
9 10 11 12 13 14 15 16 17 18 19
T7
S6
P51
T6
S5
23
T5
24
61
T4
60
P50
T3
XT2
T2
S4
T1
25
T0
VDD
59
RESET
26
5
INTBT
TI0/P13
PROGRAM
COUNTER(13)
ALU
CY
PORT0
4
P00–P03
PORT1
4
P10–P13
PORT2
4
P20–P23
PORT3
4
P30–P33
PORT4
4
P40–P43
PORT5
4
P50–P53
PORT6
4
P60–P63
10
T0–T9
4
T10/PH3–
T13/PH0
2
T14/S11,T15/
S10
10
S0–S9
SP(8)
TIMER/EVENT
COUNTER
#0
BANK
INTT0
TIMER/PULSE
GENERATOR
2. BLOCK DIAGRAM
6
BASIC
INTERVAL
TIMER
GENERAL REG.
PPO
INTTPG
SI/P03
SO/P02
SERIAL
INTERFACE
ROM
PROGRAM
MEMORY
8064 × 8 BITS
DECODE
AND
CONTROL
SCK/P01
RAM
DATA MEMORY
497 × 4 BITS
INTSIO
INT0/P10
FIP
CONTROLLER/
DRIVER
INT1/P11
INT2/P12
INT4/P00
INTERRUPT
CONTROL
INTW
WATCH
TIMER
fX/2 N
CLOCK
DIVIDER
SYSTEM CLOCK
GENERATOR
SUB
MAIN
STAND BY
CONTROL
VPRE
VLOAD
CPU CLOCK
Φ
INTKS
BUZ/P23
XT1 XT2 X1 X2
VDD
VSS
RESET
4
PH0–PH3
µPD75208
PORTH
µPD75208
3. PIN FUNCTIONS
3.1
PORT PINS
Pin Name
I/O
DualFunction Pin
P00
Input
INT4
P01
Input/output
SCK
F
P02
Input/output
SO
G
P03
Input
SI
B
P10
Input
INT0
P11
INT1
P12
INT2
P13
TI0
P20
P21
*
Input/
output
–––
Function
4-bit input port (PORT0).
8-Bit
I/O
×
Noise removing function available
Input / Output
After Reset Circuit Type *1
Input
B
Input
B
Input
E
Input
E
Input
E
Input
E
Noise removing function available
4-bit input port (PORT1).
4-bit input/output port (PORT2).
×
–––
P22
–––
P23
BUZ
P30–P33
Input/
output
–––
Programmable 4-bit input/ output port (PORT3).
Input/output specifiable in 1-bit units.
P40 to P43
Input/
output
–––
4-bit input/output port (PORT4).
LED direct drive capability.
P50 to P53
Input/
output
–––
4-bit input/output port (PORT5).
LED direct drive capability.
P60 to P63
Input/
output
–––
Programmable 4-bit input/output port (PORT6).
Input/output specifiable in 1-bit units.
On-chip pull-down resistor available (mask
option). Suitable for key input.
×
Input
V
PH0
Output
T13
4-bit P-ch open-drain, high-dielectric, high-current
output port (PORTH).
LED direct drive capability. On-chip pull-down
resistor available (mask option).
×
Low level
(with an onchip pulldown resistor)
or high
impedance.
I
PH1
T12
PH2
T11
PH3
T10
●
Schmitt trigger inputs are circled.
7
µPD75208
3.2
NON-PORT PINS
Pin Name
T0 to T9
I/O
DualFunction Pin
Output
–––
T10 to T13
PH3 to PH0
T14/S11,
T15/S10
–––
Digit output high-voltage high-current
output.
Digit/segment output dual-function
high-voltage high-current output.
Extra pins can be used as PORTH.
Digit/segment output dual-function
high-voltage high-current output.
Static output also possible.
Segment output high voltage output.
Static output also possible.
S0 to S8
Segment high-voltage output.
After Reset
Input / Output
Circuit Type *
Low level
(with an onchip pulldown
resistor ) or
high
impedance
(without a
pull-down
resistor)
I
High
impedance
D
PPO
Output
–––
Timer/pulse generator pulse output.
TI0
Input
P13
External event pulse input for timer/event counter.
SCK
Input/output
P01
Serial clock input/output.
Input
F
SO
Input/output
P02
Serial data output pin or serial data input/output.
Input
G
SI
Input
P03
Serial data input or normal input.
Input
B
INT4
Input
P00
Edge-detected vectored interrupt input (rising and falling
edge detection).
B
INT0
Input
P10
Edge-detected vectored interrupt input with noise
eliminate function (detection edge selection possible).
B
B
P11
INT2
Input
P12
Edge-detected testable input (rising edge detection).
BUZ
Input/output
P23
Fixed frequency output (for buzzer or system clock
trimming).
X1, X2
Input
–––
Crystal/ceramic connect pin for main system clock
oscillation.
External clock input to X1 and its inverted clock input to
X2.
XT1
Input
–––
XT2
–––
Crystal connect pin for subsystem clock oscillation.
External clock input to XT1 and XT2 open.
RESET
8
FIP controller/
driver output
pins.
Pull-down
resistor can be
incorporated in
bit units (mask
option).
S9
INT1
*
Function
Input
B
Input
E
System reset input (low level active).
B
VPRE
–––
FIP controller/driver output buffer power supply.
I
VLOAD
–––
FIP controller/driver pull-down resistor connect pin.
I
VDD
–––
Positive power supply.
VSS
–––
GND potential.
Schmitt trigger inputs are circled.
µPD75208
3.3
PIN INPUT/OUTPUT CIRCUIT LIST
TYPE A
TYPE F
VDD
data
IN/OUT
Type D
output
disable
P-ch
IN
Type B
N-ch
Input/Output Circuit Consisting of Type D Push-Pull Output
and Type B Schmitt Trigger Input
CMOS-Specified Input Buffer
TYPE B
TYPE G
VDD
P-ch output
disable
data
P-ch
IN/OUT
IN
N-ch
Type B
Schmitt Trigger Input Having Hysteresis Characteristics
Input/Output Circuit Capable of Switching between Push-Pull
Output and N-ch Open-Drain Output (with P-ch OFF).
TYPE D
TYPE V
VDD
data
data
IN/OUT
P-ch
OUT
output
disable
Type D
output
disable
N-ch
Type A
Pull-down
Resistor
Push-Pull Output which can be Set to Output High Impedance
(with Both P-ch and N-ch Set to OFF)
TYPE E
TYPE I
VDD
data
output
disable
(Mask Option)
VDD
IN/OUT
Type D
data
P-ch
N-ch
Type A
P-ch
OUT
Pull-down Resistor
(Mask Option)
VLOAD
VPRE
Input/Output Circuit Consisting of Type D Push-Pull Output
and Type A Input Buffer
9
µPD75208
3.4
UNUSED PINS TREATMENT
Pin
Recommended Connection
P00/INT4
Connect to VSS
P01/SCK
Connect to VSS or VDD
P02/SO
P03/SI
P10/INT0 to P12/INT2
Connect to VSS
P13/TI0
P20 to P22
Input state : Connect to VSS or V DD
P23/BUZ
Output state : Leave open
P30 to P33
P40 to P43
P50 to P53
P60 to P63
PPO
Leave open
S0 to S9
T15/S10 to T14/S11
T0 to T9
T10/PH3 to T13/PH0
XT1
Connect to VSS or VDD
XT2
Leave open
RESET when there is an on-
Connect to VDD
chip power-on reset circuit
VLOAD when there is no onchip load resistor
10
Connect to VSS or VDD
µPD75208
3.5 P00/INT4 PIN AND RESET PIN OPERATING PRECAUTIONS
P00/INT4 and RESET pins have the function (especially for IC test) to test uPD75208 internal operations in addition
to the functions described in sections 3.1 and 3.2.
The test mode is set when a voltage larger than VDD is applied to one of these pins. If noise larger than VDD is
applied in normal operation, the test mode may be set thereby adversely affecting normal operation.
Since there is a display output pin having a high-voltage amplitude (35 V) next to the P00/INT4 and RESET pins,
if cables for the related signals are routed in parallel, wiring noise larger than VDD may be applied to the P00/INT4
and RESET pins causing errors.
Thus, carry out wiring so that wiring noise can be minimized, If noise still cannot be suppressed, take the measure
against noise using the following external components.
•
Connect diode with small VF (0.3 V or less) between
the pins and VDD
•
Connect a capacitor between the pins and VDD.
VDD
VDD
VDD
VDD
P00/INT4, RESET
P00/INT4, RESET
3.6 XT1, XT2 AND P50 PIN OPERATING PRECAUTIONS
When selecting the 32.768 kHz subsystem clock connected to the XT1 and XT2 pins as the watch timer source
clock, the signal to be input or output to the P50 pin next to the XT2 pin must be a signal required to be switched
between high and low the minimum number of times (once/second or less).
If the P50 pin signal is switched frequently between high and low, a spike is generated in the XT2 pin because
of capacitance coupling of the P50 and XT2 pins and the correct watch functions cannot be achieved (the watch
becomes fast).
If it is necessary to allow the P50 pin signal to switch between high and low, mount an external capacitor to the
P50 pin as shown below.
µ PD75208
P50
XT1
XT2
0.0068 µ F
32.768 kHz
11
µPD75208
4. ARCHITECTURE AND MEMORY MAP OF THE µPD75208
The µPD75208 has three architectural features:
• Bank configuration of data memory
: Static RAM (448 words × 4 bits)
Display data memory (49 words × 4 bits)
Peripheral hardware (128 × 4 bits)
• Bank configuration of general registers: 8 × 4 banks (for operation in 4-bit units)
4 × 4 banks (for operation in 8-bit units)
• Memory mapped I/O
Fig. 4-1 and 4-2 show the memory maps for the µPD75208.
Fig. 4-1 Program Memory Map
Address
0000H
0002H
7
6
MBE RBE
MBE RBE
0
5
0
0
0004H
MBE RBE
0
0006H
MBE RBE
0
0008H
MBE RBE
0
000AH
MBE RBE
0
000CH
MBE RBE
0
000EH
MBE RBE
0
Internal Reset Start Address
(High-Order 5 Bits)
Internal Reset Start Address
(Low-Order 8 Bits)
INTBT/INT4 Start Address
(High-Order 5 Bits)
INTBT/INT4 Start Address
(Low-Order 8 Bits)
INT0 Start Address
(High-Order 5 Bits)
INT0 Start Address
(Low-Order 8 Bits)
INT1 Start Address
(High-Order 5 Bits)
INT1 Start Address
(Low-Order 8 Bits)
INTSIO Start Address
(High-Order 5 Bits)
INTSIO Start Address
(Low-Order 8 Bits)
INTT0 Start Address
(High-Order 5 Bits)
INTT0 Start Address
(Low-Order 8 Bits)
NTTPG Start Address
(High-Order 5 Bits)
INTTPG Start Address
(Low-Order 8 Bits)
INTKS Start Address
(High-Order 5 Bits)
INTKS Start Address
(Low-Order 8 Bits)
CALLF
! faddr
Instruction
Entry
Address
BRCB
! caddr
Instruction
Branch
Address
CALL ! addr
Instruction
Subroutine Entry
Address
BR ! addr
Instruction Branch
Address
0020H
GETI Instruction Reference Table
007FH
0080H
07FFH
0800H
BR $addr
Instruction
Relative Branch
Address
(–15 to –1,
+2 to +16) Branch Destination
Address Specified
by GETI Instruction,
Subroutine Entry
Address
0FFFH
1000H
BRCB
! caddr Instruction
Branch Address
1F7FH
Remarks
12
In all cases other than those listed above, branch to the address with only the lower 8 bits of the PC
changed is enabled by BR PCDE and BR PCXA instructions.
µPD75208
Fig. 4-2 Data Memory Map
General
Register
Area
000H
(32 × 4)
01FH
020H
Bank 0
Stack Area
256 × 4
General
Static RAM
(497 × 4)
0FFH
100H
241 × 4
Bank 1
Display Data
Memory,
etc.
1BFH
1C0H
(49 × 4)
1FFH
Not Incorporated
F80H
Peripheral
Hardware
Area
128 × 4
Bank 15
FFFH
13
µPD75208
5. PERIPHERAL HARDWARE FUNCTIONS
5.1 PORTS
The µPD75208 has the following three types of I/O port:
• 8 CMOS input ports
• 20 CMOS I/O ports
• 4 P-ch open-drain high-voltage, large-current output ports
Total: 32 ports
Table 5-1 Functions of Ports
Port Name
PORT0
Function
4-bit input
PORT1
PORT2
PORT4
PORT5
4-bit
input/output
PORT3
PORT6
PORTH
14
Operation and Feature
Remarks
Always read or test possible irrespective of the dual-function
pin operating mode.
Shares the pins with SI, SO, SCK
and INT4.
Always read or test possible, P10 and P11 are inputs with the
noise eliminate function.
Shares the pins with INT0 to 2
and TI0.
Can be set to the input or output mode in 4-bit units.
Ports 4 and 5 can input/output data in pairs in 8-bit units.
Ports 4 and 5 can directly drive LEDs.
P23 shares the pin with BUZ.
Can be set bit-wise to the input or output mode. Port 6 can
incorporate a pull-down resistor as a mask option.
4-bit output
P-ch open-drain high-voltage, high-current output port. Can
drive an FIP and LED directly. Can incorporate a pull-down
resistor bit-wise as a mask option.
Shares the pins with T10 to T13.
µPD75208
5.2 CLOCK GENERATOR
Operation of the clock generator is specified by the processor clock control register (PCC) and system clock control
register (SCC).
The main system clock or subsystem clock can be selected.
The instruction execution time is variable.
• 0.95 µs, 1.91 µs, 15.3 µs (main system clock: 4.19 MHz)
• 122 µs (subsystem clock: 32.768 kHz)
Fig. 5-1 Clock Generator Block Diagram
XT1
XT2
Subsystem
Clock
Generator
fXT
Watch Timer
Timer/Pulse
Generator
Main System
Clock
Generator
fX
Selector
X1
X2
• FIP Controller
• Basic Interval Timer (BT)
• Timer/Event Counter
• Serial Interface
• Watch Timer
• INT0 Noise Eliminator
1/8 to 1/4096
fXX
Frequency Divider
1/2 1/6
SCC
Oscillation
Stop
Frequency
Divider
Selector
SCC3
SCC0
1/4
• CPU
• INT0 Noise Eliminator
• INT1 Noise Eliminator
PCC
Internal Bus
Φ
PCC0
PCC1
4
HALT F/F
HALT*
STOP*
PCC2
S
PCC3
R
PCC2 and
PCC3
Clear
STOP F/F
Q
Q
Wait Release Signal from BT
S
RES Signal (Internal Reset)
*
Instruction execution
R
Remarks
Standby Release Signal from
Interrupt Control Circuit
1.
2.
3.
4.
fX = Main system clock frequency
fXT = Subsystem clock frequency
fXX = System clock frequency
Φ = CPU clock
5.
6.
7.
PCC: Processor clock control register
SCC: System clock control register
1 clock cycle (tCY) of Φ is 1 machine cycle of an instruction. For tCY, see ”AC Characteristics“ in
12. ELECTRICAL SPECIFICATIONS.
★
15
µPD75208
5.3 BASIC INTERVAL TIMER
The basic interval timer has the following functions:
• Interval timer operation to generate reference time
• Watchdog timer application to detect inadvertent program loop
• Wait time select and count upon standby mode release
• Count contents read
Fig. 5-2 Basic Interval Timer Configuration
From Clock
Generator
fXX/2
fXX/2
Clear
5
7
fXX/2
Set
Basic Interval Timer
(8-Bit Frequency Divider)
MPX
fXX/2
Clear
9
BT
12
3
BTM3
SET1*
BTM2
BTM1
BTM0
Wait Release
Signal during
Standby Release
BTM
8
4
Internal Bus
*
16
Instruction execution
BT Interrupt
Request Flag
IRQBT
Vectored
Interrupt
Request
Signal
µPD75208
5.4 WATCH TIMER
The µPD75208 incorporates one channel of watch timer. The watch timer has the following functions:
• Sets the test flag (IRQW) at 0.5 sec intervals.
The standby mode can be released by IRQW.
• 0.5 second interval can be set with the main system clock and subsystem clock.
• The fast mode enables to set 128-time (3.91 ms) interval useful to program debugging and inspection.
• The fixed frequencies (2.048 kHz) can be output to the P23/BUZ pin for use to generate buzzer sound
and trim the system clock oscillator frequency.
• Since the frequency divider can be cleared, the watch can be started from zero second.
Fig. 5-3 Watch Timer Block Diagram
fW
(256 Hz : 3.91 ms)
7
2
From
Clock
Generator
fXX
128
(32.768 kHz)
Selector
fW
14
2
fW
Frequency Divider
(32.768 kHz)
fXT
(32.768 kHz)
INTW
IRQW
Set Signal
Selector
2Hz
0.5 sec
fW
16
(2.048 kHz) Clear
Output Buffer
P23/BUZ
WM
WM7 WM6
PORT2.3
WM5
WM4 WM3 WM2
WM1
WM0
P23
Output
Latch
Bit 2 of PMGB
Port 2
Input/Output
Mode
8
Internal Bus
Remarks Values at fXX = 4.194304 MHz and fXT = 32.768 kHz are indicated in parentheses.
17
µPD75208
5.5 TIMER/EVENT COUNTER
The µPD75208 incorporates one channel of timer/event counter. The timer/event counter has the following
functions:
• Program interval timer operation
• Event counter operation
• Count state read function
Fig. 5-4 Timer/Event Counter Block Diagram
Internal Bus
8
SET1 *
8
8
TM0
TMOD0
Modulo Register (8)
TMn7 TMn6 TMn5 TMn4 TMn3 TMn2 TMn1 TMn0
8
Match
Comparator (8)
Input Buffer
INTT0
IRQT0
Set Signal
8
T0
P13/TI0

From Clock 

Generator


(Refer to Fig. 5-1)
Count Register (8)
MPX
CP
Clear
Timer Operation Start
IRQT0
Clear
*
18
Instruction execution
µPD75208
5.6 TIMER/PULSE GENERATOR
The µPD75208 incorporates one channel of timer/pulse generator which can be used as a timer or a pulse
generator. The timer/pulse generator has the following functions:
(a)
Functions available in the timer mode
• 8-bit interval timer operation (IRQTPG generation) enabling the clock source to be varied at 5 levels
• Square wave output to PPO pin
(b)
Functions available in the PWM pulse generate mode
• 14-bit accuracy PWM pulse output to the PPO pin (Used as a digital-to-analog converter and applicable
to tuning)
215
• Fixed time interval (
= 7.81 ms : at 4.19 MHz operation) interrupt generation
fXX
If pulse output is not necessary, the PPO pin can be used as a 1-bit output port.
Note
If the STOP mode is set while the timer/pulse generator is in operation, erroneous operation may result.
To prevent that from occurring, preset the timer/pulse generator to the stop state using its mode
register.
Fig. 5-5 Block Diagram of Timer/Pulse Generator (Timer Mode)
Internal Bus
8
8
MODL
Modulo Register L (8)
MODH
Modulo Register H (8)
TPGM3
(Set to "1")
INTTPG
IRQTPG
Set Signal
Modulo Latch H (8)
8
Match
Comparator (8)
Output Buffer
Selector
T F/F
PPO
Frequency
Divider
fX
1/2
TPGM1
CP
Prescalar Select Latch (5)
Clear
Set
8
Count Register (8)
TPGM4 TPGM5 TPGM7
Clear
19
µPD75208
Fig. 5-6 Timer/Pulse Generator Block Diagram (PWM Pulse Generate Mode)
Internal Bus
8
8
MODH
Modulo Register H (8)
MODL
Modulo Register L (6)
(2)
TPGM3
MODL7-2 (6)
MODH (8)
Modulo Latch (14)
Output Buffer
TPGM1
fx
PWM Pulse Generator
1/2
Selector
PPO
Frequency Divider
INTTPG
TPGM5
(IRQTPG Set Signal)
215
(
= 7.81 ms : at 4.19 MHz operation)
fX
5.7
TPGM7
SERIAL INTERFACE
The serial interface has the following functions:
• Clock synchronous 8-bit send/receive operation (simultaneous send/receive)
• Clock synchronous 8-bit serial bus operation (data input/output from the SO pin. N-ch open-drain SO output)
• Start LSB/MSB switching
These functions facilitate data communication with another microcomputer of µPD7500 series or 78K series via
a serial bus and coupling with peripheral devices.
20
Fig 5-7 Serial Interface Block Diagram
Internal Bus
8
8
Selector
P03/SI
SIO0
SET1 *2
SIO7
SIO
SIOM
Shift Register (8)
*1
P02/SO
8
SIOM7 SIOM6 SIOM5 SIOM4 SIOM3 SIOM2 SIOM1 SIOM0
SO Output
Latch
Serial Clock
Counter (3)
INTSIO
IRQSIO
Set Signal
Overflow
Clear
IRQSIO
Clear Signal
Serial Start
P01/SCK
R
Q
Φ
S
fxx/2
4
fxx/2
10
MPX
*
1. CMOS output and N-ch open-drain output switchable output buffer.
2. Instruction execution
µPD75208
21
µPD75208
5.8 FIP CONTROLLER/DRIVER
The on-chip FIP controller/driver has the following functions:
• Generates the segment and digit signals by automatically reading the display data memory executing DMA
•
•
•
•
operation.
Can select up to a total of 26 display devices in the range of 9 to 12 segments and 9 to 16 digits.
Can apply the remaining display output as static output.
Can adjust the brightness at 8 levels using the dimmer function.
•
Can apply key scan operations.
• Generates interrupt at the key scan timing (IRQKS)
• Can generate key scan data output from the segment output pin.
Owns the high-voltage output pin (40 V) which can directly drive the FIP.
•
• Segment special pins (S0 to S9) : VOD = 40 V, IOD = 3 mA
• Digit output pins (T0 to T15)
: VOD = 40 V, IOD = 15 mA
Can incorporate pull-down resistors bit-wise as mask options.
Fig. 5-8 FIP Controller/Driver Block Diagram
Internal Bus
4
Display
Mode
Register
Display Data Memory
(48 × 4 Bits)
Key Scan Registers
(KS0 and KS1)
4
Digit
Select
Register
Key Scan
Flag (KSF)
4
Dimmer
Select
Register
Port H
12
IRQKS
Generation
Signal
Digit Signal Generator
Segment Data Latch (12)
2
2
4
4
10
Selector
2
4
10
Hige-Voltage Output Buffer
10
S0-S9
Note
2
4
T15/S10 and T13/PH0T14/S11
T10/PH3
10
T0-T9
VLOAD
VPRE
The FIP controller/driver can only operate in the high and intermediate-speeds (PCC = 0011B or 0010B) of
the main system clock (SCC.0 = 0). It may cause errors with any other clock or in the standby mode. Thus,
be sure to stop FIP controller operation (DSPM.3 = 0) and then shift the unit to any other clock mode or
the standby mode.
22
µPD75208
5.9 POWER-ON FLAG (MASK OPTION)
The power-on flag (PONF) is automatically set (1) when the power-on reset circuit is activated and the poweron reset signal is generated. (See Fig. 8-1 Reset Signal Generator)
The PONF is mapped at bit 0 of address FD1H in the data memory space and can be tested by the memory bit
manipulation instructions (SKT, SKF, SKTCLR) or cleared (CLR1).
Note
The PONF cannot be set by SET1 instruction.
6. INTERRUPT FUNCTIONS
The µPD75208 has eight types of interrupt sources and can generate multiple interrupts with priority order.
It is also equipped with two types of test sources. INT2 is an edge detected testable input.
The µPD75208 interrupt control circuit has the following functions:
• Hardware-controller vectored interrupt function which can control interrupt acknowledge with the interrupt
enable flag (IE×××) and the interrupt master enable flag (IME).
•
•
•
•
Function of setting any interrupt start address.
Multiple interrupt function which can specify priority order with the interrupt priority select register (IPS).
Interrupt request flag (IRQ×××) test function. (Interrupt generation can be checked by software.)
Standby mode release function. (Interrupt to be released by interrupt enable flag can be selected.)
23
24
Fig. 6-1 Interrupt Control Circuit Block Diagram
Internal Bus
2
2
IM1
IM0
INT
BT
Both Edges
Detection
Circuit
INT4
/P00
INT0
/P10
*
INT1
/P11
*
Edge
Detection
Circuit
Edge
Detection
Circuit
*
IST
Decoder
IRQBT
IRQ4
VRQn
IRQ0
IRQ1
IRQSIO
INTT0
IRQT0
Priority Control
Circuit
Vector
Table
Address
Generator
Circuit
IRQTPG
INTKS
IRQKS
INTW
IRQW
Rising Edge
Detection
Circuit
2
IPS
Interrupt Enable Flag (IE XXX )
INTSIO
INTTPG
INT2
/P12
(IME)
4
Standby Release
Signal
IRQ2
Noise Eliminator
µPD75208
µPD75208
7. STANDBY FUNCTIONS
Two standby modes (STOP mode and HALT mode) are available for the µPD75208 to decrease power consumption in the program standby mode.
Table 7-1 Operation Status in Standby Mode
HALT Mode
STOP Mode
STOP instruction
HALT instruction
System clock when set
Setting enabled only with main system
clock.
Setting enabled with either main system
clock or subsystem clock.
Clock oscillator
Oscillator stops only with main system
clock.
Stops only with CPU clock Φ (Oscillation
continued).
Basic interval timer
Operation stopped.
Operation (IRQBT set at reference time
intervals).
Serial interface
Operation enabled only when external
SCK input is selected for serial clock.
Operation enabled when serial clock other
than Φ is specified.
Timer/event counter
Operation enabled only when TI0 pin
input is specified for count clock.
Operation enabled.
Timer/pulse generator
Operation stopped.
Operation enabled.
Watch timer
Operation enabled only fXT is selected for Operation enabled.
count clock.
FIP controller/driver
Operation disabled (display off mode set before disabling).
CPU
Operation stopped.
Operating State
Set instruction
Interrupt request signal (except INT0, INT1, INT2) or RESET input enabled by
interrupt enable flag.
Release signal
8. RESET FUNCTIONS
The reset signal (RES) generator has a configuration shown in Fig. 8-1.
Fig. 8-1 Reset Signal Generator
RESET
Internal Reset Signal
(RES)
Power-On
Reset
Generator
SWB
SWA
Power-On Flag
(PONF)
Bit
Manipulation
Instruction
Execution
Internal Bus
Mask
Option
The power-on reset generator is a circuit to generate a one-shot pulse upon detection of the start-up of the power
voltage. This pulse is used in three ways according to SWA, SWB mask option specification shown in Fig. 8-1. (See
10. MASK OPTION SELECTION.)
25
µPD75208
9. INSTRUCTION SET
(1)
Operand identifier and description
Enter an operand in the operand column of each instruction using the description method relating to the
operand identifier of the instruction (refer to RA75X Assembler Package User's Manual, Language (EEU-730)
for details). If more than one description method is available, select one. Capital alphabetic letters, plus and
minus signs are keywords. Describe them as they are.
In the case of immediate data, describe appropriate numerical values or labels.
Identifier
*
26
Description Method
reg
reg1
X, A, B, C, D, E, H, L
X, B, C, D, E, H, L
rp
rp1
rp2
rp’
rp’1
XA, BC, DE, HL
BC, DE, HL
BC, DE
XA, BC, DE, HL, XA’, BC’, DE’, HL’
BC, DE, HL, XA’, BC’, DE’, HL’
rpa
rpa1
HL, HL+, HL-, DE, DL
DE, DL
n4
n8
4-bit immediate data or label
8-bit immediate data or label
mem
bit
8-bit immediate data or label*
2-bit immediate data or label
fmem
pmem
FB0H to FBFH and FF0H to FFFH immediate data or labels
FC0H to FFFH immediate data or labels
addr
caddr
faddr
0000H to 1F7FH immediate data or labels
12-bit immediate data or label
11-bit immediate data or label
taddr
20H to 7FH immediate data (bit0 = 0) or label
PORTn
IE×××
RBn
MBn
PORT0 to PORT6
IEBT, IESIO, IET0, IETPG, IE0, IE1, IEKS, IEW, IE4
RB0 to RB3
MB0, MB1, MB15
For 8-bit data processing, only even addresses can be specified.
µPD75208
(2)
Legend for operation description
A
: A register; 4-bit accumulator
B
C
D
E
:
:
:
:
B register
C register
D register
E register
H
L
X
XA
:
:
:
:
H register
L register
X register
Register pair (XA); 8-bit accumulator
BC
DE
HL
XA’
:
:
:
:
Register pair (BC)
Register pair (DE)
Register pair (HL)
Expanded register pair (XA’)
BC’
DE’
HL’
PC
:
:
:
:
Expanded register pair (BC’)
Expanded register pair (DE’)
Expanded register pair (HL’)
Program counter
SP
CY
PSW
MBE
:
:
:
:
Stack pointer
Carry flag; Bit accumulator
Program status word
Memory bank enable flag
RBE
PORTn
IME
IPS
:
:
:
:
Register bank enable flag
Port n (n = 0 to 6)
Interrupt master enable flag
Interrupt priority select register
IE×××
RBS
MBS
PCC
:
:
:
:
Interrupt enable flag
Register bank select register
Memory bank select register
Processor clock control register
•
(××)
××H
: Address and bit delimiter
: Contents addressed by ××
: Hexadecimal data
27
µPD75208
(3)
Description of symbols in the addressing area column
*1
MB = MBE • MBS
(MBS = 0, 1, 15)
*2
MB = 0
*3
MBE = 0 : MB = 0 (00H to 7FH)
MB = 15 (80H to FFH)
MBE = 1 : MB = MBS (MBS = 0, 1, 15)
*4
MB = 15, fmem = FB0H to FBFH,
FF0H to FFFH
*5
MB = 15, pmem = FC0H to FFFH
*6
addr = 0000H to 1F7FH
*7
addr = (Current PC) – 15 to (Current PC) – 1,
(Current PC) + 2 to (Current PC) + 16
*8
caddr = 0000H to 0FFFH
1000H to 1F7FH
*9
faddr = 0000H to 07FFH
*10
taddr = 0020H to 007FH
Remarks
(4)
(PC12 = 0) or
(PC12 = 1)
1.
2.
3.
MB indicates accessible memory bank.
In *2, MB = 0 irrespective of MBE and MBS.
In *4 and *5, MB = 15 irrespective of MBE and MBS.
4.
*6 to *10 indicate addressable areas.
Data Memory
Addressing
Program Memory
Addressing
Description of the machine cycle column
S indicates the number of machine cycles required for skip operation by an instruction having skip function.
The S value varies as follows:
• When not skipped ................................................................................................... S = 0
• When 1-byte or 2-byte instructions are skipped ................................................. S = 1
• When 3-byte instructions are skipped (BR !addr, CALL !addr instruction) ..... S = 2
Note
GETI instruction is skipped in one machine cycle.
One machine cycle is equal to one cycle(=tCY) of CPU clock Φ and three time periods are available according
to PCC setting.
28
µPD75208
Note 1 Mnemonic
Transfer
MOV
XCH
MOVT
Operands
No. of Machine
Bytes
Cycle
Operation
Addressing
Area
Skip
Condition
A, #n4
1
1
A←n4
Stack A
reg1, #n4
2
2
reg1←n4
XA, #n8
2
2
XA←n8
Stack A
HL, #n8
2
2
HL←n8
Stack B
rp2, #n8
2
2
rp2←n8
A, @HL
1
1
A←(HL)
*1
A, @HL+
1
2+S
A←(HL), then L←L+1
*1
L=0
A, @HL–
1
2+S
A←(HL), then L←L–1
*1
L = FH
A, @rpa1
1
1
A←(rpa1)
*2
XA, @HL
2
2
XA←(HL)
*1
@HL, A
1
1
(HL)←A
*1
@HL, XA
2
2
(HL)←XA
*1
A, mem
2
2
A←(mem)
*3
XA, mem
2
2
XA←(mem)
*3
mem, A
2
2
(mem)←A
*3
mem, XA
2
2
(mem)←XA
*3
A, reg
2
2
A←reg
XA, rp'
2
2
XA←rp'
reg1, A
2
2
reg1←A
rp'1, XA
2
2
rp'1←XA
A, @HL
1
1
A↔(HL)
*1
A, @HL+
1
2+S
A↔(HL), then L←L+1
*1
L=0
A, @HL–
1
2+S
A↔(HL), then L←L–1
*1
L = FH
A, @rpa1
1
1
A↔(rpa1)
*2
XA, @HL
2
2
XA↔(HL)
*1
A, mem
2
2
A↔(mem)
*3
XA, mem
2
2
XA↔(mem)
*3
A, reg1
1
1
A↔reg1
XA, rp'
2
2
XA↔rp'
XA, @PCDE
1
3
XA←(PC12–8+DE)ROM
XA, @PCXA
1
3
XA←(PC12–8+XA)ROM
Note 2
Note
1. Instruction Group
2. Table reference
29
µPD75208
Note
Mnemonic
Bit transfer
MOV1
ADDS
ADDC
Operation
SUBS
SUBC
AND
OR
XOR
Note
30
Operand
No. of Machine
Bytes
Cycle
Operation
Addressing
Area
Skip
Condition
CY, fmem.bit
2
2
CY←(fmem.bit)
*4
CY, pmem.@L
2
2
CY←(pmem 7–2+L3–2.bit(L 1–0))
*5
CY, @H+mem.bit
2
2
CY←(H+mem3–0.bit)
*1
fmem.bit, CY
2
2
(fmem.bit)←CY
*4
pmem.@L, CY
2
2
(pmem7–2+L3–2.bit(L1–0))←CY
*5
@H+mem.bit, CY
2
2
(H+mem3–0.bit)←CY
*1
A, #n4
1
1+S
A←A+n4
carry
XA, #n8
2
2+S
XA←XA+n8
carry
A, @HL
1
1+S
A←A+(HL)
XA, rp'
2
2+S
XA←XA+rp'
carry
rp'1, XA
2
2+S
rp'1←rp'1+XA
carry
A, @HL
1
1
A, CY←A+(HL)+CY
XA, rp'
2
2
XA, CY←XA+rp'+CY
rp'1, XA
2
2
rp'1, CY←rp'1+XA+CY
A, @HL
1
1+S
A←A–(HL)
XA, rp'
2
2+S
XA←XA–rp'
borrow
rp'1, XA
2
2+S
rp'1←rp'1–XA
borrow
A, @HL
1
1
A, CY←A–(HL)–CY
XA, rp'
2
2
XA, CY←XA–rp'–CY
rp'1, XA
2
2
rp'1, CY←rp'1–XA–CY
A, #n4
2
2
A←A n4
A, @HL
1
1
A←A (HL)
XA, rp'
2
2
XA←XA rp'
rp'1, XA
2
2
rp'1←rp'1 XA
A, #n4
2
2
A←A n4
A, @HL
1
1
A←A (HL)
XA, rp'
2
2
XA←XA
rp'1, XA
2
2
rp'1←rp'1
A, #n4
2
2
A←A
n4
A, @HL
1
1
A←A
(HL)
XA, rp'
2
2
XA←XA
rp'1, XA
2
2
rp'1←rp'1
Instruction Group
*1
*1
*1
*1
*1
*1
rp'
XA
*1
rp'
XA
carry
borrow
µPD75208
Increment/decrement
Note 2
Note 1 Mnemonic
Operation
Addressing
Area
Skip
Condition
A
1
1
CY←A0, A3←CY, An–1←An
NOT
A
2
2
A←A
INCS
reg
1
1+S
reg←reg+1
reg = 0
rp1
1
1+S
rp1←rp1+1
rp1 = 00H
@HL
2
2+S
(HL)←(HL)+1
*1
(HL) = 0
mem
2
2+S
(mem)←(mem)+1
*3
(mem) = 0
reg
1
1+S
reg←reg–1
reg = FH
rp'
2
2+S
rp'←rp'–1
rp = FFH
reg, #n4
2
2+S
Skip if reg = n4
reg = n4
@HL, #n4
2
2+S
Skip if (HL) = n4
*1
(HL) = n4
A, @HL
1
1+S
Skip if A = (HL)
*1
A = (HL)
XA, @HL
2
2+S
Skip if XA = (HL)
*1
XA = (HL)
A, reg
2
2+S
Skip if A = reg
A = reg
XA, rp'
2
2+S
Skip if XA = rp'
XA = rp'
SET1
CY
1
1
CY←1
CLR1
CY
1
1
CY←0
SKT
CY
1
1+S
NOT1
CY
1
1
DECS
Compare
Carry flag
manipulation
No. of Machine
Bytes
Cycle
RORC
SKE
Note
Operands
Skip if CY = 1
CY = 1
CY←CY
1. Instruction Group
2. Accumulator manipulation
31
µPD75208
Note
Mnemonic
SET1
CLR1
Memory bit manipulation
SKT
SKF
SKTCLR
AND1
OR1
XOR1
BR
32
No. of Machine
Bytes
Cycle
Operation
Addressing
Area
Skip
Condition
mem.bit
2
2
(mem.bit)←1
*3
fmem.bit
2
2
(fmem.bit)←1
*4
pmem.@L
2
2
(pmem7–2+L3–2.bit(L 1–0))←1
*5
@H + mem.bit
2
2
(H+mem3–0.bit)←1
*1
mem.bit
2
2
(mem.bit)←0
*3
fmem.bit
2
2
(fmem.bit)←0
*4
pmem.@L
2
2
(pmem7–2+L3–2.bit(L 1–0))←0
*5
@H+mem.bit
2
2
(H+mem3–0.bit)←0
*1
mem.bit
2
2+S
Skip if (mem.bit) = 1
*3
(mem.bit) = 1
fmem.bit
2
2+S
Skip if (fmem.bit) = 1
*4
(fmem.bit) = 1
pmem.@L
2
2+S
Skip if (pmem7–2+L3–2.bit(L1–0)) = 1
*5
(pmem.@L) = 1
@H+mem.bit
2
2+S
Skip if (H+mem3–0.bit) = 1
*1
(@H+mem.bit) = 1
mem.bit
2
2+S
Skip if (mem.bit) = 0
*3
(mem.bit) = 0
fmem.bit
2
2+S
Skip if (fmem.bit) = 0
*4
(fmem.bit) = 0
pmem.@L
2
2+S
Skip if (pmem7–2+L3–2.bit(L1–0)) = 0
*5
(pmem.@L) = 0
@H+mem.bit
2
2+S
Skip if (H+mem3–0.bit) = 0
*1
(@H+mem.bit) = 0
fmem.bit
2
2+S
Skip if (fmem.bit) = 1 and clear
*4
(fmem.bit) = 1
pmem.@L
2
2+S
Skip if (pmem7–2+L3–2.bit(L1–0))=1 and clear
*5
(pmem.@L) = 1
@H+mem.bit
2
2+S
Skip if (H+mem3–0.bit)=1 and clear
*1
(@H+mem.bit)=1
CY, fmem.bit
2
2
CY←CY (fmem.bit)
*4
CY, pmem.@L
2
2
CY←CY (pmem7–2+L3–2.bit(L1–0))
*5
CY, @H+mem.bit
2
2
CY←CY (H+mem3–0.bit)
*1
CY, fmem.bit
2
2
CY←CY (fmem.bit)
*4
CY, pmem.@L
2
2
CY←CY (pmem7–2+L3–2.bit(L 1–0))
*5
CY, @H+mem.bit
2
2
CY←CY (H+mem3–0.bit)
*1
CY, fmem.bit
2
2
CY←CY
(fmem.bit)
*4
CY, pmem.@L
2
2
CY←CY
(pmem7–2+L3–2.bit(L 1–0))
*5
CY, @H+mem.bit
2
2
CY←CY
(H+mem3–0.bit)
*1
addr
—
—
PC 12–0←addr
*6
(Optimum instruction is
selected from among BR !addr,
BRCB !caddr and BR $addr by an
assembler.)
Branch
Note
Operands
!addr
3
3
PC12–0←addr
*6
$addr
1
2
PC12–0←addr
*7
BRCB
!caddr
2
2
PC12–0←PC12+caddr11–0
*8
BR
PCDE
2
3
PC12–0←PC12–8+DE
PCXA
2
3
PC12–0←PC12–8+XA
Instruction Group
µPD75208
Note
Mnemonic
Operands
!addr
3
3
(SP–4) (SP–1) (SP–2)←PC11–0
(SP–3)← MBE, RBE, 0, PC12
PC12–0←addr, SP←SP–4
*6
CALLF
!faddr
2
2
(SP–4) (SP–1) (SP–2)←PC11–0
(SP–3)← MBE, RBE, 0, PC12
PC12–0←00, faddr, SP←SP–4
*9
1
3
MBE, RBE, 0, PC12←(SP+1)
Subroutine stack control
Unconditional
1
3+S
RETI
1
3
×, ×, ×, PC12←(SP+1)
PC11–0←(SP) (SP+3) (SP+2)
PSW←(SP+4) (SP+5), SP←SP+6
rp
1
1
(SP–1) (SP–2)←rp, SP←SP–2
BS
2
2
(SP–1)←MBS, (SP–2)←RBS, SP←SP–2
rp
1
1
rp←(SP+1) (SP), SP←SP+2
BS
2
2
MBS←(SP+1), RBS←(SP), SP←SP+2
2
2
IME(IPS.3)←1
2
2
IE×××←1
2
2
IME(IPS.3)←0
IE×××
2
2
IE×××←0
A, PORTn
2
2
A←PORTn
XA, PORTn
2
2
XA←PORTn+1, PORTn
PORTn, A
2
2
PORTn←A
PORTn, XA
2
2
PORTn+1, PORTn←XA
HALT
2
2
Set HALT Mode (PCC.2←1)
STOP
2
2
Set STOP Mode (PCC.3←1)
NOP
1
1
No Operation
RBn
2
2
RBS←n
MBn
2
2
MBS←n (n = 0, 1, 15)
EI
Interrupt
control
MBE, RBE, 0, PC12←(SP+1)
PC11–0←(SP) (SP+3) (SP+2)
SP←SP+4
then skip unconditionally
RETS
POP
Input/output
Skip
Condition
PC11–0←(SP) (SP+3) (SP+2)
SP←SP+4
PUSH
Special CPU control
Addressing
Area
Operation
CALL
RET
*
No. of Machine
Bytes
Cycle
IE×××
DI
IN
*
OUT *
SEL
(n = 0 to 6)
(n = 4)
(n = 2 to 6)
(n = 4)
(n = 0 to 3)
MBE = 0 or MBE = 1 and MBS = 15 must be set for execution of IN/OUT instruction
Note
Instruction Group
33
µPD75208
Note
Mnemonic
taddr
Special
GETI *
Operands
*
1
3
Operation
• TBR instruction
PC12–0←(taddr)4–0+(taddr+1)
---------------------------------------------------• TCALL instruction
(SP–4)(SP–1)(SP–2)←PC11–0
(SP–3)← MBE, RBE, 0, PC12
PC12–0←(taddr)4–0+(taddr+1)
SP←SP–4
---------------------------------------------------• (taddr) (taddr+1) instruction
executed in the case of
instruction other than TBR and
TCALL instructions
Addressing
Area
Skip
Condition
*10
------------------------
-----------------------Depends on
instructions
referred to.
TBR and TCALL instructions are assembled pseudo-instructions to define the GETI instruction table.
Note
34
No. of Machine
Bytes
Cycle
Instruction Group
µPD75208
10. MASK OPTION SELECTION
The µPD75208 has the following mask options enabling or disabling on-chip components.
(1)
Pin
Pin
Mask Option
Pull-up resistor incorporation enabled bit-wise
P60 to P63
T0/T9
T10/PH3 to T13/PH0
T14/S11, T15/S10
S0 to S9
Deletion of subsystem clock oscillator feedback resistor
possible
XT1, XT2
Note
(2)
1. In a system not using subsystem clocks, power consumption in the STOP mode can be decreased by
removing the feedback resistor from the oscillator.
2. The feedback resistor must be incorporated when the subsystem clock is used.
Power-on reset generator, power-on flag (PONF)
One of the following three can be selected.
Switch Selection
(See Fig. 8-1)
Power-On Reset Generator
Power-On Flag (PONF)
Internal Reset Signal (RES)
SWA
SWB
ON
ON
Incorporated
Incorporated
Generate automatically
ON
OFF
Incorporated
Incorporated
Not generate automatically
OFF
OFF
Not incorporated
Not incorporated
–––––
35
µPD75208
11. APPLICATION BLOCK DIAGRAM
11.1 VCR TIMER TUNER
Main Power Supply
+
Super Capacitor
Power
Failure
Detection
Electronic
Tuner
Tape Count Pulse
Tape Up/Down
LPF
VDD
INT4
VSS
T0–T15 16
PPO
S0–S11 12
µPD75208




INT1 


Fluorescent Display Panel (FIP)
12 Segments × 16 Digits

Timer

Tuner

Remote

Controlled

Reception

Tape Counter 
Key Matrix
(12 × 4)
PORT6
SCK
System Controller
SO
Microcomputer SI
SCK
SO
µ PD75104/75106
EEPROM™
INT0
µ PD6252
BUZ
µ PC2800A
X1
36
Remote Controlled
Signal
X2
XT1
XT2
BZ
Piezoelectric Buzzer
µPD75208
11.2 COMPACT DISK PLAYER
SIO
Servo
Control IC
T0–T15 16
SCK
SI/SO
S0–S11 12
Loading
Circuit
Fluorescent Display Panel (FIP)
12 Segments × 16 Digits
µPD75208
Key Matrix
(12 × 4)
PORT6
BUZ
BZ
INT0
Remote Controlled
Signal
µ PC2800A
X1
X2
11.3 ECR
Main Power Supply
Power
Failure
Detection
+
VDD
VSS
INT4
T0–T15 16
S0–S9 10
Fluorescent Display Panel (FIP)
10 Segments × 16 Digits
RAM
µPD75208
Key Matrix
(10 × 4)
Printer
PPO
BZ
X1
X2
XT1
XT2
Piezoelectric Buzzer
37
µPD75208
12. ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)
PARAMETER
Power supply voltage
Input voltage
SYMBOL
TEST CONDITIONS
RATING
UNIT
VDD
–0.3 to +7.0
V
VLOAD
VDD –40 to VDD +0.3
V
VPRE
VDD –12 to VDD +0.3
V
VI
–0.3 to VDD +0.3
V
–0.3 to VDD +0.3
V
VDD –40 to VDD +0.3
V
VO
Pins except display output pins
VOD
Display output pins
Output voltage
Output current high
Output current low
Total loss*1
IOH
IOL
PT
1 pins except display output pins
–15
mA
S0 to S9
1 pin
–15
mA
T0 to T15
1 pin
–30
mA
Total of pins except display output pins
–20
mA
Total of display output pins
–120
mA
1 pin
17
mA
Total of pins
60
mA
Plastic QFP
450
mW
Plastic shrink DIP
600
mW
Operating temperature
Topt
–40 to +85
°C
Storage temperature
Tstg
–65 to +150
°C
POWER SUPPLY VOLTAGE RANGE (Ta = –40 to +85 °C)
MIN.
MAX.
UNIT
CPU *2
*3
6.0
V
Display controller
4.5
6.0
V
Time/pulse generator
4.5
6.0
V
Other hardware *2
2.7
6.0
V
PARAMETER
38
TEST CONDITIONS
µPD75208
*
1. Calculation of total loss
Design so that the sum of the following three power consumption values for the µPD75208CW/GF will be less
than the total loss PT (It is recommended to use the system with 80 % or less of the rating).
➀ CPU loss
: Given as VDD (MAX.) × IDD1 (MAX.)
➁ Output pin loss
: There are normal output pin loss and display output pin loss. It is necessary
to add a loss derived from the flow of maximum current to each output pin.
➂ Pull-down register loss : Power loss due to a pull-down resistor incorporated in the display output pin
by mask option.
Example
Suppose 4-LED output with 9SEG × 11DIGIT, V DD = 5 V + 10 % and 4.19 MHz oscillation and let a maximum
of 3 mA, 15 mA and 10 mA flow to the segment pin, timing pin and LED output pin, respectively.
Further, let the voltage of fluorescent display tube (VLOAD voltage) be –30 V and normal voltage be small.
➀ CPU loss : 5.5 V × 9.0 mA = 49.5 mW
➁ Pin loss : Segment pin ..... 2 V × 3 mA × 9 = 54 mW
Timing pin ......... 2 V × 15 mA = 30 mW
LED output ........
➂
10
×2V
15
× 10 mA × 4 = 53 mW
Pull-down resistor loss ........ (30 + 5.5 V)2 × 10 = 315 mW
40 kΩ
PT = ➀ + ➁ + ➂ = 501.5 mW
In this example, the power consumption of 501.5 mW is less than the allowable total loss for the shrink
DIP package (600 mW). However, since the allowable total loss is 450 mW for the QFP package, it is
necessary to decrease power consumption by decreasing the number of on-chip pull-down resistors. In
this example, power consumption can be adjusted to 344 mW by incorporating pull-down resistors in
only 11 digit outputs and 4 segment outputs and externally mounting pull-down resistors to the 5
remaining segment outputs.
2. Except the system clock oscillator, display controller and timer/pulse generator.
3. The operating voltage range varies depending on the cycle time. Refer to the section describing AC
characteristics.
39
µPD75208
MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
RESONATOR RECOMMENDED CIRCUIT
X1
Ceramic
resonator*1
X2
C1
C2
X1
TEST CONDITIONS
Oscillator frequency
(fXX) *2
VDD = Oscillation
voltage range
Oscillation
stabilization time *3
After VDD reaches the
minimum value in
the oscillation
voltage range
Oscillator frequency
(fXX) *2
X2
Crystal
resonator*1
MIN.
TYP.
2.0
2.0
4.19
VDD = 4.5 to 6.0 V
C1
C2
X1
X2
External
clock
µ PD74HCU04
*
PARAMETER
Oscillation stabilization
time *3
MAX.
UNIT
5.0*4
MHz
4
ms
5.0 *4
MHz
10
ms
30
ms
X1 input frequency
(fX) *2
2.0
5.0*4
MHz
X1 input high and low
level widths (tXH, tXL )
100
250
ns
1. Resonators are shown in the following page.
2. Oscillator characteristics only. Refer to the description of AC characteristics for details of instruction execution
time.
3. Time required for oscillation to become stabilized after VDD application or STOP mode release.
4. When oscillator frequency is " 4.19 < fX ≤ 5.0 MHz ", do not select " PCC = 0011 " as instruction execution time.
If " PCC = 0011 " is selected, 1 machine cycle becomes less than 0.95 µs, with the result that the specified MIN.
value of 0.95 µs cannot be observed.
★
SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
RESONATOR RECOMMENDED CIRCUIT
XT1
XT2
Crystal
resonator*1
XT1
*
C4
XT2
MIN.
TYP.
MAX.
UNIT
32
32.768
35
kHz
1.0
2
s
10
s
VDD = 4.5 to 6.0 V
Oscillation stabilization
time *3
XT1 input frequency
(fXT)
32
100
kHz
XT1 input high and low
level widths (tXTH, tXTL)
10
32
µs
Leave Open
1. Recommended resonators are shown in the following page.
2. Oscillator characteristics only. Refer to the description of AC characteristics for instruction execution time.
3. Oscillation stabilization time is a time required for oscillation to become stabilized after VDD application or
STOP mode release.
40
TEST CONDITIONS
Oscillator frequency
(fXT) *2
330 kΩ
C3
External
clock
PARAMETER
µPD75208
CAPACITANCE (Ta = 25 °C, VDD = 0 V)
PARAMETER
TEST CONDITIONS
SYMBOL
Input capacitance
MIN.
CIN
Except display output
COUT
Output capacitance
Display output
Input /output capacitance
f = 1 MHz
Unmeasured pin returned
to 0V
CIO
TYP.
MAX.
UNIT
15
pF
15
pF
35
pF
15
pF
RECOMMENDED OSCILLATOR CONSTANTS
MAIN SYSTEM CLOCK : CERAMIC RESONATOR (Ta = –40 to +85 °C)
MANUFACTURER
EXTERNAL
CAPACITANCE (pF)
PRODUCT NAME
C1
OSCILLATION
VOLTAGE RANGE (V)
C2
MIN.
MAX.
Murata Mfg. Co., Ltd.
CSA 4.19MG
30
30
4.0
6.0
Kyocera Corp.
KBR–2.09MS
68
68
4.0
6.0
33
33
KBR–3.58MS
KBR–4.19MS
KBR–4.9M
MAIN SYSTEM CLOCK : CRYSTAL RESONATOR (Ta = –40 to +85 °C)
MANUFACTURER
FREQUENCY
HOLDER
(MHz)
Kinseki
Note
4.19
HC–49/U
EXTERNAL
CAPACITANCE (pF)
OSCILLATION
VOLTAGE RANGE (V)
C1
C2
MIN.
MAX.
15
15
2.7
6.0
Carry out fine adjustment of crystal resonator frequency with external capacitance C1 of 10 to 33 pF.
41
µPD75208
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
PARAMETER
Input voltage high
SYMBOL
TEST CONDITIONS
MIN.
0.7V DD
VDD
V
VIH2
Ports 0, 1, RESET
0.75VDD
VDD
V
VIH3
X1, X2, XT1
V DD–0.4
VDD
V
0.65VDD
VIH4
VDD
V
Port 6
0.7V DD
VDD
V
VIL1
Except below
0
0.3VDD
V
VIL2
Ports 0, 1, 6, RESET
0
0.2VDD
V
VIL3
X1, X2, XT1
0
0.4
V
VOH
All output pins
Ports 4, 5
Output voltage low
UNIT
Except below
VDD = 4.5 to 6.0V, IOH = –1 mA
Output voltage high
MAX.
VIH1
VDD = 4.5 to 6.0 V
Input Voltage low
TYP.
VOL
IOH = –100 µA
V DD–1.0
V
V DD–0.5
V
0.4
VDD = 4.5 to 6.0V, IOL = 15 mA
VDD = 4.5 to 6.0V, IOL = 1.6 mA
All output pins
IOL = 400 µA
2.0
V
0.4
V
0.5
V
3
µA
20
µA
–3
µA
–20
µA
Input leakage current
high
ILIH1
Input leakage current
low
ILIL1
ILIL2
X1, X2, XT1
Output leakage current high
ILOH
All output pins VOUT = VDD
3
µA
Output leakage current
low
ILOL1
Except display output VOUT = 0 V
–3
µA
–10
µA
Except X1,X2,XT1
VIN = VDD
ILIH2
X1, X2, XT1
Except X1,X2,XT1
VIN = 0 V
ILOL2
Display output
S0 to S9
Display output current
IOD
T0 to T15
Built-in pull-down
resistor (mask option)
RP6
RL
IDD1
IDD2
IDD4
IDD5
42
VPRE = VDD – 9 ±1 V*1
VDD =
4.5 to 6.0 V VPRE = 0 V
VOD =
VPRE = VDD – 9 ±1 V*1
VDD – 2 V
VPRE = 0 V
VDD = 4.5 to 6.0 V
–3
–5.5
mA
–1.5
–3.5
mA
–15
–22
mA
–7
–15
mA
30
80
200
kΩ
1000
kΩ
70
120
kΩ
VDD = 5 V ±10 %*3
3.0
9.0
mA
VDD = 3 V ±10 %*4
0.55
1.5
mA
VDD = 5 V ±10 %
600
1800
µA
VDD = 3 V ±10 %
200
600
µA
VDD = 3 V ±10 %
32 kHz crystal
oscillation*5
HALT mode VDD = 3 V ±10 %
40
120
µA
5
15
µA
VDD = 5 V ±10 %
0.5
20
µA
VDD = 3 V ±10 %
0.1
10
µA
Port 6
VIN = VDD
Display output
4.19 MHz
crystal
oscillation
C1 = C2 =
15pF
Supply current*2
IDD3
VOUT = VLOAD = VDD – 35 V
XT1 = 0 V
STOP mode
30
VOD – VLOAD = 35 V
HALT mode
40
µPD75208
*
1. The following external circuit is recommended.
µ PD75208
+5 V
VDD
RD9. 1EL
RD9. 1EL : Zener Diode (NEC)
Zener Voltage = 8.29 to 9.30 V
VPRE
68 kΩ
VLOAD
–30 V
VSS
2. Current to the on-chip pull-down resistor and power-on reset circuit (mask option) is not included.
3. When the processor clock control register (PCC) is set to 0011 and is operated in the high-speed mode.
4. When the PCC register is set to 0000 and is operated in the low-speed mode.
5. When the system clock control register (SCC) is set to 1001 and is operated with the subsystem clock with
main system clock oscillation stopped.
POWER-ON RESET CIRCUIT CHARACTERISTICS (MASK OPTION) (Ta = -40 to +85 °C)
PARAMETER
SYMBOL
Power-on reset
operating voltage high
VDDH
Power-on reset
operating voltage low
MAX.
UNIT
4.5
6.0
V
VDDL
0
0.2
V
Power supply voltage
rise time
tr
10
*1
µs
Power supply voltage
off time
toff
1
Power-on reset circuit*2
current consumption
*
IDDPR
TEST CONDITIONS
MIN.
VDD = 5 V ±10 %
VDD = 2.7 V
TYP.
s
10
100
µA
2
20
µA
1. 2 17/fXX (31.3 ms at fXX = 4.19 MHz)
2. Current with on-chip power-on reset circuit or power-on flag.
VDDH
VDD
VDDL
toff
Remarks
tr
Start the power supply smoothly.
43
µPD75208
AC CHARACTERISTICS (Ta = –40 to +85 °C , VDD = 2.7 to 6.0 V)
PARAMETER
SYMBOL
TEST CONDITIONS
Operation with main
system clock
CPU clock cycle time
(minimum instruction
execution time = 1
machine cycle) *1
tCY
TI0 input frequency
fTI
MIN.
VDD = 4.5 to 6.0 V
Operation with subsystem clock
VDD = 4.5 to 6.0 V
TI0 input high and lowlevel widths
tTIH,
SCK high and low-level
widths
tKH,
0.95
32
µs
3.8
32
µs
125
µs
0
0.6
MHz
0
165
kHz
122
µs
3
µs
Input
0.8
µs
Output
0.95
µs
Input
3.2
µs
Output
3.8
µs
Input
0.4
µs
tKCY/2–50
ns
1.6
µs
t KCY/2–150
ns
tTIL
tKCY
UNIT
0.83
VDD = 4.5 to 6.0 V
VDD = 4.5 to 6.0 V
SCK cycle time
MAX.
114
TYP.
VDD = 4.5 to 6.0 V
Output
tKL
Input
Output
SI setup time (to SCK↑)
tSIK
100
ns
SI hold time (from SCK↑)
tKSI
400
ns
SO output delay time
from SCK↓
tKSO
Interrupt input high and
low-level widths
RESET low-level width
44
VDD = 4.5 to 6.0 V
ns
1000
ns
INT0
*2
µs
INT1
2tCY
µs
INT2, 4
10
µs
10
µs
tINTH,
tINTL
tRSL
300
µPD75208
1. CPU clock (Φ) cycle time is determined by the
oscillator frequency of the connected resonator,
the system clock control register (SCC) and the
processor clock control register (PCC). The cycle
tCY VS VDD
(Main System Clock in Operation)
40
32
30
time tCY characteristics for power supply voltage
VDD when the main system clock is in operation is
shown below.
2. 2tCY or 128/fXX is set by interrupt mode register
(IM0) setting.
6
5
Operation Guaranteed
Range
4
Cycle Time tCY [µ s]
*
3
2
1
0.5
0
1
2
3
4
5
6
Power Supply Voltage VDD [V]
45
µPD75208
AC Timing Measurement Values (Except X1 and XT1 Inputs)
0.75VDD
0.75VDD
Test Points
0.2VDD
0.2VDD
Clock Timing
1/fX
tXL
tXH
X1 Input
V DD - 0.4 V
0.4 V
1/fXT
tXTL
tXTH
XT1 Input
VDD - 0.4 V
0.4 V
TI0 Timing
1/fTI
tTIL
TI0
46
tTIH
µPD75208
Serial Transfer Timing
tKCY
tKH
tKL
SCK
tSIK
SI
tKSI
Input Data
tKSO
SO
Output Data
Interrupt Input Timing
tINTL
tINTH
INT0,1,2,4
RESET Input Timing
tRSL
RESET
47
µPD75208
DATA MEMORY STOP MODE LOW POWER SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = –40
to +85 °C)
PARAMETER
SYMBOL
Data retention power
supply voltage
VDDDR
Data retention power
supply current *1
IDDDR
Release signal set time
tSREL
Oscillation stabilization
wait time *2
tWAIT
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
6.0
V
10
µA
2.0
VDDDR = 2.0V
0.1
µs
0
Release by RESET
Release by interrupt request
217/fX
ms
*3
ms
* 1. Current to the on-chip pull-down resistor and power-on reset circuit (mask option) is not included.
2. Oscillation stabilization wait time is time to stop CPU operation to prevent unstable operation upon oscillation
start.
3. According to the setting of the basic interval timer mode register (BTM) (see below).
BTM3
BTM2
BTM1
BTM0
Wait Time (Values at fXX = 4.19 MHz in parentheses)
—
0
0
0
220/fX (approx. 250 ms)
—
0
1
1
217/fX (approx. 31.3 ms)
—
1
0
1
215/fX (approx. 7.82 ms)
—
1
1
1
213/fX (approx. 1.95 ms)
Data Retention Timing (STOP Mode Release by RESET)
Internal Reset Operation
HALT Mode
Operating Mode
STOP Mode
Data Retention Mode
VDD
VDDDR
tSREL
STOP Instruction Execution
RESET
tWAIT
48
µPD75208
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)
HALT Mode
Operating Mode
STOP Mode
Data Retention Mode
VDD
VDDDR
tSREL
STOP Instruction Execution
Standby Release Signal
(Interrupt Request)
tWAIT
49
µPD75208
13. CHARACTERISTIC CURVES
IDD vs VDD
(Ta = 25 °C)
5000
High-Speed
Mode (0011)
Medium-Speed
Mode (0010)
Low-Speed
Mode (0000)
1000
HALT Mode
(0100)
Supply Current IDD [ µ A]
500
Subsystem
Clock
Operating
Mode
100
Subsystem
Clock HALT
Mode
50
STOP Mode
(1000)
 Power-on 
 reset



circuit
and


 power-on flag
 incorporated 
10
5
X1
X2
XT1
XT2
330 kΩ
32.768 kHz
4.19 MHz
15 pF
15 pF
22 pF
33 pF
1
0
1
2
3
4
5
6
Supply Voltage VDD [V]
Remarks
50
Values of the processor clock control register (PCC) is indicated in parenthesis.
µPD75208
IOL vs VOL (Ports 0, 2, 3, 6)
(Ta = 25 °C)
20
VDD = 5 V
VDD = 6 V
VDD = 4 V
Output Current Low IOL [mA]
15
VDD = 3 V
10
VDD = 2.7 V
5
0
0
1
2
3
4
5
Output Voltage Low VOL [V]
IOH vs (VDD - VOH) (Ports 0, 2, 3, 6)
(Ta = 25 °C)
–20
VDD = 5 V
–15
Output Current High IOH [mA]
VDD = 6 V
VDD = 4 V
–10
VDD = 3 V
–5
VDD = 2.7 V
0
0
1
2
3
4
5
VDD - VOH [V]
51
µPD75208
IOL vs VOL (Ports 4, 5)
(Ta = 25 °C)
20
VDD = 5 V
6V
4V
VDD = 3 V
Output Current Low IOL [mA]
15
VDD = 2.7 V
10
5
0
0
1
2
3
4
5
Output Voltage Low VOL [V]
IOH vs (VDD - VOH) (Ports 4, 5)
(Ta = 25 °C)
–20
VDD = 6 V
Output Current High IOH (mA)
–15
VDD = 5 V
VDD = 4 V
–10
VDD = 3 V
–5
VDD = 2.7 V
0
0
1
2
3
VDD - VOH [V]
52
4
5
µPD75208
IOD vs (VDD - VOD) (T0 to T15)
(Ta = 25 °C)
–40.0
VDD – VPRE = 8 V
–30.0
Display Output Current IOD [mA]
VDD – VPRE = 10 V
VDD – VPRE = 6 V
–20.0
VDD – VPRE = 4 V
–10.0
0
0
1
2
3
4
5
VDD - VOD [V]
IOD vs (VDD - VOD) (S0 to S9)
(Ta = 25 °C)
–10.0
Display Output Current IOD [mA]
VDD – VPRE = 10 V
VDD – VPRE = 8 V
VDD – VPRE = 6 V
–5.0
VDD – VPRE = 4 V
0
0
1
2
3
4
5
VDD - VOD [V]
53
µPD75208
14. PACKAGE INFORMATION
64 PIN PLASTIC SHRINK DIP (750 mil)
64
33
1
32
A
K
H
G
J
I
L
F
D
N
M
NOTE
B
C
M
ITEM MILLIMETERS
R
INCHES
1) Each lead centerline is located within 0.17 mm (0.007 inch) of
its true position (T.P.) at maximum material condition.
A
58.68 MAX.
2.311 MAX.
B
1.78 MAX.
0.070 MAX.
2) Item "K" to center of leads when formed parallel.
C
1.778 (T.P.)
0.070 (T.P.)
D
0.50±0.10
0.020 +0.004
–0.005
F
0.9 MIN.
0.035 MIN.
G
3.2±0.3
0.126±0.012
H
0.51 MIN.
0.020 MIN.
I
4.31 MAX.
0.170 MAX.
J
5.08 MAX.
0.200 MAX.
K
19.05 (T.P.)
0.750 (T.P.)
L
17.0
0.669
M
0.25 +0.10
–0.05
0.010 +0.004
–0.003
N
0.17
0.007
R
0~15°
0~15°
P64C-70-750A,C-1
54
µPD75208
64 PIN PLASTIC QFP (14×20)
A
B
detail of lead end
33
32
51
52
C
D
S
R
Q
64
1
20
19
F
G
H
I
M
J
K
M
P
N
L
NOTE
Each lead centerline is located within 0.20 mm (0.008 inch) of
its true position (T.P.) at maximum material condition.
ITEM
MILLIMETERS
INCHES
A
23.6±0.4
0.929±0.016
B
20.0±0.2
0.795 +0.008
–0.009
C
14.0±0.2
0.551+0.009
–0.008
D
17.6±0.4
0.693±0.016
F
1.0
0.039
G
1.0
0.039
H
0.40±0.10
0.016 +0.004
–0.005
0.008
I
0.20
J
1.0 (T.P.)
0.039 (T.P)
K
1.8±0.2
0.071 +0.008
–0.009
L
0.8±0.2
0.031 +0.009
–0.008
M
0.15 +0.10
–0.05
0.006 +0.004
–0.003
N
P
Q
R
S
0.10
0.004
2.7
0.106
0.1±0.1
0.004±0.004
5°±5°
5°±5°
3.0 MAX.
0.119 MAX.
P64GF-100-3B8,3BE,3BR-2
55
µPD75208
64-pin ceramic QFP for ES (reference) (unit : mm)
14.2
64
52
51
19
20
33
32
18.0
1
0.4
0.15
2.25
1.0
20
12.0
Note
Bottom
View
56
1. Care is needed since the metal cap is connected to pin 26 and set to the positive
power supply level.
2. Care is needed since the lead of the base is
formed obliquely.
3. The lead length is not stipulated since the
cutting of the lead ends is not progresscontrolled.
µPD75208
★
15. RECOMMENDED SOLDERING CONDITIONS
This product should be soldered and mounted under the conditions recommended below.
For details of recommended soldering conditions for the surface mounting type, refer to the document
“Semiconductor Device Mount Technology” (IEI-1207).
For soldering methods and conditions other than those recommended below, contact our salesman.
Table 15-1 Surface Mounting Type Conditions
µPD75208GF-×××-3BE : 64-pin plastic QFP (body 14 × 20 mm)
Soldering Method
*
Soldiering Conditions
Recommended
Condition Symbol
Wave soldering
Solder bath temperature: 260 °C or less, Duration: 10 sec. max.
Number of times: Once, Time limit: 7 days* (thereafter 10 hours prebaking required
at 125 °C)
Preheating temperature : 120 °C max. (package surface temperature)
WS60-107-1
Infrared reflow
Package peak temperature: 230 °C, Duration: 30 sec. max. (at 210 °C or above),
Number of times: Once, Time limit: 7 days*(thereafter 10 hours prebaking required
at 125 °C)
IR30-107-1
VPS
Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above),
Number of times: Once, Time limit: 7 days* (thereafter 10 hours prebaking required
at 125 °C)
VP15-107-1
Pin part heating
Pin part temperature: 300 °C or below , Duration: 3 sec. max. (per device side)
–––
For the storage period after dry-pack decompression storage conditions are max. 25 °C, 65 % RH.
Note Use of more than one soldering method should be avoided (except in the case of pin part heating).
Table 15-2 Insertion Type Soldering Conditions
µPD75208CW-××× : 64-pin plastic shrink DIP (750 mil)
Soldering Method
Soldering Conditions
Wave soldering
(lead part only)
Solder bath temperature: 260 °C or below , Duration: 10 sec. max.
Pin part heating
Pin part temperature: 260 °C or below , Duration: 10 sec. max.
Note
Ensure that the application of wave soldering is limited to the lead part and no solder touches the main
unit directly.
57
µPD75208
APPENDIX A DEVELOPMENT TOOLS
Hardware
The following development tools are provided for developing systems including the µPD75208:
Software
★
*
58
IE-75000-R *1
IE-75001-R
In-circuit emulator for the 75X series
IE-75000-R-EM *2
Emulation board for the IE-75000-R and IE-75001-R
EP-75216ACW-R
Emulation probe for the µPD75216ACW
EP-75216AGF-R
EV-9200G-64
Emulation probe for the µPD75216AGF. A 64-pin conversion socket, the EV-9200G-64, is attached
to the probe.
PG-1500
PROM programmer
PA-75P216ACW
PROM programmer adapter for the µPD75P216ACW and µPD75P218CW. Connected to the
PG-1500.
PA-75P218GF
PROM programmer adapter for the µPD75P218GF. Connected to the PG-1500.
PA-75P218KB
PROM programmer adapter for the µPD75P218KB. Connected to the PG-1500.
IE control program
Host machine
• PC-9800 series (MS-DOSTM Ver. 3.30 to Ver. 5.00A *3)
• IBM PC series (PC DOSTM Ver. 3.1)
PG-1500 controller
RA75X relocatable
assembler
1. Maintenance service only
2. Not contained in the IE-75001-R
3. These software cannot use the task swap function, which is available in MS-DOS Ver. 5.00 and Ver. 5.00A.
µPD75208
APPENDIX B RELATED DOCUMENTS
★
Documents related to the device
Document Name
Document No.
User’s manual
IEU-1294
Application note
IEM-1294
75X series selection guide
IF-1027
Documents related to development tools
Document No.
Software
Hardware
Document Name
IE-75000-R User’s Manual
EEU-1297
IE-75001-R User’s Manual
EEU-1416
IE-75000-R-EM User’s Manual
EEU-1294
EP-75216ACW-R User’s Manual
EEU-1321
EP-75216AGF-R User’s Manual
EEU-1309
PG-1500 User’s Manual
EEU-1335
RA75X Assembler Package
User’s Manual
Operation
PC-9800 series
(MS-DOS) base
IBM PC series
(PC DOS) base
Language
PG-1500 Controller User’s Manual
EEU-1346
EEU-1363
EEU-1291
Other documents
Document Name
Document No.
PACKAGE MANUAL
IEI-1213
SMD SURFACE MOUNT TECHNOLOGY MANUAL
IEI-1207
QUALITY GRADES ON NEC SEMICONDUCTOR DEVICES
IEI-1209
NEC SEMICONDUCTOR DEVICE RELIABILITY/QUALITY CONTROL SYSTEM
IEI-1203
ELECTROSTATIC DISCHARGE (ESD) TEST
IEI-1201
GUIDE TO QUALITY ASSURANCE FOR SEMICONDUCTOR DEVICES
Note
MEI-1202
The above documents may be revised without notice. Use the latest versions when you design an
application system.
59
µPD75208
Cautions on CMOS Devices
1
Countermeasures against static electricity for all MOSs
Caution
When handling MOS devices, take care so that they are not electrostatically charged.
Strong static electricity may cause dielectric breakdown in gates. When transporting or
storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal
cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during
assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins.
Also handle boards on which MOS devices are mounted in the same way.
2
CMOS-specific handling of unused input pins
Caution
Hold CMOS devices at a fixed input level.
Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an
intermediate-level input may be caused by noise. This allows current to flow in the CMOS
device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input
level. Since unused pins may function as output pins at unexpected times, each unused
pin should be separately connected to the VDD or GND pin through a resistor.
If handling of unused pins is documented, follow the instructions in the document.
3
Statuses of all MOS devices at initialization
Caution
The initial status of a MOS device is unpredictable when power is turned on.
Since characteristics of a MOS device are determined by the amount of ions implanted
in molecules, the initial status cannot be determined in the manufacture process. NEC
has no responsibility for the output statuses of pins, input and output settings, and the
contents of registers at power on. However, NEC assures operation after reset and items
for mode setting if they are defined.
When you turn on a device having a reset function, be sure to reset the device first.
60
µPD75208
[MEMO]
61
µPD75208
[MEMO]
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this
document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights
or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear
reactor control systems and life support systems. If customers intend to use NEC devices for above applications
or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact
our sales people in advance.
Application examples recommended by NEC Corporation
Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment,
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
Special
: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,
Anticrime systems, etc.
M4 92.6
EEPROM is a trademark of NEC Corporation.
FIP ® is a trademark of NEC Corporation.
MS-DOS is a trademark of Microsoft Corporation.
PC DOS is a trademark of IBM Corporation.