FDSS2407 N-Channel Dual MOSFET 62V, 3.3A, 132mΩ Features General Description 62V, 132mΩ, 5V Logic Level Gate Dual MOSFET in SO-8 This dual N-Channel MOSFET provides added functions as compared to a conventional Power MOSFET. These are: 1. A drain to source voltage feedback signal and 2. A gate drive disable control function that previously required external discrete circuitry. Including these functions within the MOSFET saves printed circuit board space. The drain to source voltage feedback function provides a 5V level output whenever the drain to source voltage is above 62V. This can monitor the time an inductive load takes to dissipate its stored energy. Multiple feedback signals can be wired “OR’d” together to a single input of the monitoring circuit. The gate disable function allows the device to be turned off independent of the drive signal on the gate. This function permits a second control circuit the ability to deactivate the load if necessary. It can also be wired “OR’d” allowing multiple devices to be controlled by a single open collector / drain control transistor. 5V Logic Level feedback signal of the drain to source voltage. Multiple devices can be wired “OR’d” to a single monitoring circuit input. Gate Drive Disable Input. Multiple devices controllable by a single disable transistor. Qualified to AEC Q101 Applications Automotive Injector Driver Solenoid Driver Internal Diagram Source 1 1 8 Drain 1 Gate 1 2 7 Gate Disable Source 2 3 6 Drain 2 Gate 2 4 5 Drain FBK Branding Dash 5 1 2 3 4 SO-8 Pin 5 - Drain Feedback Output Pin 7 - Gate Drive Disable Input ©2004 Fairchild Semiconductor Corporation FDSS2407 Rev. A 1 www.fairchildsemi.com FDSS2407 N-Channel Dual MOSFET December 2004 Symbol VDSS Drain to Source Voltage Parameter Ratings 62 Units V VGS Gate to Source Voltage ±20 V 3.3 A 3.0 A Drain Current Continuous (TA = 25oC, VGS = 10V, RθJA = 55oC/W) ID Continuous (TA = 25oC, VGS = 5V, RθJA = 55oC/W) Pulsed EAS PD Figure 4 A Single Pulse Avalanche Energy ( Note 1) 140 mJ Power dissipation 2.27 W 18 mW/oC -55 to 150 oC Derate above 25oC TJ, TSTG Operating and Storage Temperature Thermal Characteristics Pad Area = 0.50 in2 (323 mm2) (Note 2) RθJA 2 2 55 o C/W RθJA Pad Area = 0.027 in (17.4 mm ) (Note 3) 180 o RθJA Pad Area = 0.006 in2 (3.87 mm2) (Note 4) 200 oC/W C/W Package Marking and Ordering Information Device Marking 2407 Device FDSS2407 Package SO-8 Reel Size 330 mm Tape Width 12 mm Quantity 2500 Electrical Characteristics TA = 25°C unless otherwise noted Symbol Parameter Test Conditions Min Typ Max Units V Off Characteristics BVDSS Drain to Source Breakdown Voltage ID = 5mA, VGS = 0V 62 - - VDS = 15V, VGS=0V - - 1 µA IDSS Zero Gate Voltage Drain Current VDS = 15V, VGS=0V, TA=150oC - - 250 IGSS Gate to Source Leakage Current VGS = ±20V - - ±100 nA V On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250µA 1 - 3 ID = 3.3A, VGS = 10V - 0.099 0.110 ID = 3.0A, VGS = 5V - 0.115 0.132 - 300 - pF - 140 - pF - 16 - pF - 8500 - Ω - 3.3 4.3 nC - 0.4 0.5 nC - 1.2 - nC Ω Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance RG Gate Resistance Qg(TOT) Total Gate Charge at 5V VGS = 0V to 5V VGS = 0V to 1V Qg(TH) Threshold Gate Charge Qgs Gate to Source Gate Charge Qgs2 Gate Charge Threshold to Plateau Qgd Gate to Drain “Miller” Charge VDS = 15V, VGS = 0V, f = 75kHz 2 FDSS2407 Rev. A VDD = 30V ID = 3.3A Ig = 1.0mA - 0.8 - nC - 2.0 - nC www.fairchildsemi.com FDSS2407 N-Channel Dual MOSFET MOSFET Maximum Ratings TA=25°C unless otherwise noted (VGS = 10V) tON Turn-On Time - - 2700 td(ON) Turn-On Delay Time - 630 - ns tr Rise Time - 1200 - ns td(OFF) Turn-Off Delay Time - 8700 - ns tf Fall Time - 3500 - ns tOFF Turn-Off Time - - 18500 ns VDD = 30V, ID = 3.3A VGS = 10V, RGS = 47Ω ns Drain-Source Diode Characteristics ISD = 3.3A - - 1.25 V ISD = 1.7A - - 1.0 V Reverse Recovery Time ISD = 3.3A, dISD/dt = 100A/µs - - 45 ns Reverse Recovered Charge ISD = 3.3A, dISD/dt = 100A/µs - - 60 nC VSD Source to Drain Diode Voltage trr QRR Drain Feedback Characteristics VFBK(Low) Feedback to Source Voltage VDS = 35V, RFBK-SOURCE =51KΩ - 1 1.5 V VFBK(High) Feedback to Source Voltage VDS = 62V, RFBK-SOURCE =51KΩ 3.5 4.4 - V Gate Drive Disable Characteristics VDIS(High) Gate Drive Disable Input Voltage, Gate VGS = 5V, ID = 3.0A, TJ=25oC Enabled 3 - - V VDIS(Low) Gate Drive Disable Input Voltage, Gate VGS = VDS = 10V, ID ≤ 250µA, Disabled TJ=150oC - - 0.4 V Notes: 1. Starting TJ = 25°C, L = 42mH, IAS = 2.6A, VDD = 62V, VGS = 10V. 2. 55oC/W measured using FR-4 board with 0.50 in2 (323 mm2) copper pad at 1 second. 3. 180oC/W measured using FR-4 board with 0.027 in2 (17.4 mm2) copper pad at 1000 seconds. 4. 200oC/W measured using FR-4 board with 0.006 in2 (3.87 mm2) copper pad at 1000 seconds. This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. 3 FDSS2407 Rev. A www.fairchildsemi.com FDSS2407 N-Channel Dual MOSFET Switching Characteristics TA = 25°C unless otherwise noted POWER DISSIPATION MULTIPLIER 1.2 4 1.0 ID, DRAIN CURRENT (A) VGS = 10V 0.8 0.6 0.4 3 2 VGS = 5V 1 0.2 RθJA = 55oC/W 0 0 25 50 75 125 100 TA , AMBIENT TEMPERATURE 0 150 25 50 (oC) 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) Figure 1. Normalized Power Dissipation vs Ambient Temperature Figure 2. Maximum Continuous Drain Current vs Ambient Temperature 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJA, NORMALIZED THERMAL IMPEDANCE 1 RθJA = 55oC/W PDM 0.1 t1 t2 SINGLE PULSE NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA 0.01 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance 200 RθJA = 55oC/W TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION IDM, PEAK CURRENT (A) 100 TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 150 - TA 125 VGS = 5V 10 VGS = 10V 3 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, PULSE WIDTH (s) Figure 4. Peak Current Capability 4 FDSS2407 Rev. A www.fairchildsemi.com FDSS2407 N-Channel Dual MOSFET Typical Characteristics 10 IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 100 100µs 10 1ms 10ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 SINGLE PULSE TJ = MAX RATED TA = 25oC RθJA = STARTING TJ = 25oC STARTING TJ = 150oC If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 55oC/W 1 0.01 0.1 1 100 10 0.1 VDS, DRAIN TO SOURCE VOLTAGE (V) Figure 5. Forward Bias Safe Operating Area 10 NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 Figure 6. Unclamped Inductive Switching Capability 15 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TJ = 25oC VGS = 5V TA = 25oC ID, DRAIN CURRENT (A) ID , DRAIN CURRENT (A) 15 1 tAV, TIME IN AVALANCHE (ms) 10 5 10 VGS = 3.5V VGS = 10V VGS = 3V 5 TJ = 150oC TJ = -55oC 0 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0 VGS , GATE TO SOURCE VOLTAGE (V) 1.5 2.0 2.5 Figure 8. Saturation Characteristics 240 2.0 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 1.0 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 7. Transfer Characteristics 210 ID = 3.3A 180 150 120 0.5 ID = 1A PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.5 1.0 VGS = 10V, ID = 3.3A 90 2 4 6 8 0.5 -80 10 VGS, GATE TO SOURCE VOLTAGE (V) 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature 5 FDSS2407 Rev. A -40 www.fairchildsemi.com FDSS2407 N-Channel Dual MOSFET Typical Characteristics (Continued) TA = 25°C unless otherwise noted 1.2 1.2 ID = 5mA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.0 0.8 0.6 -80 -40 0 40 80 120 1.1 1.0 0.9 -80 160 TJ, JUNCTION TEMPERATURE (oC) 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature 6 1000 FBK voltage measured across a 51KΩ load resistor. CISS = CGS + CGD 5 C, CAPACITANCE (pF) FBK, FEEDBACK VOLTAGE (V) -40 4 TJ = 150oC 3 TJ = 25oC 2 TJ = -55oC COSS ≅ CDS + CGD 100 CRSS = CGD 1 VGS = 0V, f = 75kHz 10 0 20 30 40 50 60 0.1 70 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 13. Feedback Voltage vs Drain to Source Voltage 10 20 Figure 14. Capacitance vs Drain to Source Voltage 500 10 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 5V, ID = 3A 400 VGS = VDS TJ = 150oC ID = 250µA 8 VGS , GATE TO SOURCE VOLTAGE rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 1 VDS , DRAIN TO SOURCE VOLTAGE (V) 300 TJ = 150oC 200 TJ = 25oC 100 TJ = 25oC 6 TJ = -55oC 4 2 TJ = -55oC 0 0 1 2 3 4 5 0 VDIS , GATE DISABLE VOLTAGE (V) 2 3 4 5 VDIS , GATE DISABLE VOLTAGE (V) Figure 15. Drain to Source On Resistance vs Gate Disable Voltage Figure 16. Gate to Source Voltage vs Gate Disable Voltage 6 FDSS2407 Rev. A 1 www.fairchildsemi.com FDSS2407 N-Channel Dual MOSFET Typical Characteristics (Continued) TA = 25°C unless otherwise noted FDSS2407 N-Channel Dual MOSFET Typical Characteristics (Continued) TA = 25°C unless otherwise noted 10 VGS , GATE TO SOURCE VOLTAGE (V) VDD = 30V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 3.3A ID = 1A 2 0 0 2 4 6 8 Qg, GATE CHARGE (nC) Figure 17. Gate Charge Waveforms for Constant Gate Currents Test Circuits and Waveforms VDS BVDSS tP VDS L IAS VDD VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDD - VGS DUT tP IAS 0V 0 0.01Ω tAV Figure 18. Unclamped Energy Test Circuit Figure 19. Unclamped Energy Waveforms VDS RL VDD Qg(TOT) VDS VGS VGS VGS = 5V + Qgs2 VDD DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 Figure 20. Gate Charge Test Circuit Figure 21. Gate Charge Waveforms 7 FDSS2407 Rev. A www.fairchildsemi.com VDS tON tOFF td(ON) td(OFF) RL tr VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS 50% 50% PULSE WIDTH VGS 0 Figure 22. Switching Time Test Circuit 10% Figure 23. Switching Time Waveforms VDS + LM324 - NC VDISABLE DUT Figure 24. Gate to Source Voltage vs Gate Disable Voltage 8 FDSS2407 Rev. A www.fairchildsemi.com FDSS2407 N-Channel Dual MOSFET Test Circuits and Waveforms (Continued) maximum transient thermal impedance curve. The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. (T –T ) JM A P DM = -----------------------------R θJA Thermal resistances corresponding to other copper areas can be obtained from Figure 25 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads. R 15 θ JA = 79.9 + ------------------------------0.14 + Area (EQ. 2) (EQ. 1) The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 26 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. In using surface mount devices such as the SO8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 200 5. Air flow and board orientation. RθJA = 79.9 + 15/(0.14+Area) RθJA (oC/W) 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 25 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized ZqJA, THERMAL IMPEDANCE (oC/W) 160 150 100 50 0.001 0.01 0.1 1 AREA, TOP COPPER AREA (in2) 10 Figure 25. Thermal Resistance vs Mounting Pad Area COPPER BOARD AREA - DESCENDING ORDER 0.020 in2 0.140 in2 0.257 in2 0.380 in2 0.493 in2 120 80 40 0 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) Figure 26. Thermal Impedance vs Mounting Pad Area 9 FDSS2407 Rev. A www.fairchildsemi.com FDSS2407 N-Channel Dual MOSFET Thermal Resistance vs. Mounting Pad Area .SUBCKT FDSS2407 2 1 3 101 102 ; rev July 2004 Ca 12 8 1e-10 Cb 15 14 4e-10 Cin 6 8 2.8e-10 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD LDRAIN Dplcap 10 5 DplcapMOD DPLCAP 5 DRAIN CGATE 9 20 5e-9 2 10 DDISABLE 20 101 DDISABLEMOD RLDRAIN DFBK1 104 103 DFBK1MOD RSLC1 RFBK1 DBREAK 51 DFBK2 7 104 DFBK2MOD RSLC2 103 DFBK3 104 102 DFBK3MOD 5 11 RFBK1 5 103 RFBK1MOD 13e3 51 ESLC DFBK1 RFBK2 104 7 RFBK2MOD 2.15e3 + 50 DBODY Ebreak 11 7 17 18 67.4 EBREAK 17 INJ FBK 104 RDRAIN 6 102 Eds 14 8 5 8 1 18 ESG 8 DFBK3 Egs 13 8 6 8 1 EVTHRES + 16 CGATE 21 + 19 Esg 6 10 6 8 1 MWEAK DFBK2 LGATE EVTEMP 8 Evthres 6 21 19 8 1 RGATE + 18 GATE 6 RFBK2 Evtemp 20 6 18 22 1 MMED 1 22 9 20 It 8 17 1 MSTRO RLGATE Lgate 1 9 1.8e-9 LSOURCE CIN Ldrain 2 5 1.0e-9 GATE SOURCE 8 7 3 Lsource 3 7 0.6e-9 DISABLE 101 RSOURCE RLgate 1 9 18 RLSOURCE DDISABLE RLdrain 2 5 10 S1A S2A RLsource 3 7 6 RBREAK 12 15 14 13 Mmed 16 6 8 8 MmedMOD 17 18 13 8 Mstro 16 6 8 8 MstroMOD RVTEMP S1B S2B Mweak 16 21 8 8 MweakMOD 13 19 CB Rbreak 17 18 RbreakMOD 1 CA IT + 14 + Rdrain 50 16 RdrainMOD 3.5e-2 VBAT 6 5 Rgate 9 20 RgateMOD 8.63e3 EGS 8 EDS 8 + RSLC1 5 51 RSLCMOD 1e-6 8 RSLC2 5 50 1e3 22 Rsource 8 7 RsourceMOD 5.3e-2 RVTHRES Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*20),3.5))} .MODEL DbodyMOD D (IS=1.1E-12 N=1.05 IKF=4e-1 RS=4.2e-2 TRS1=3e-4 TRS2=1.3e-6 + CJO=3.3e-10 TT=3e-8 M=0.38, XTI=3.5) .MODEL DbreakMOD D (RS=1 TRS1=1e-3 TRS2=-9e-6) .MODEL DplcapMOD D (CJO=1.97e-10 IS=1e-30 N=10 M=0.84) .MODEL DDISABLEMOD D (RS=30 IS=1e-15 BV=4.7 TBV1=-3e-4 TBV2=-3e-6 XTI=0) .MODEL DFBK1MOD D (IS=1e-15 BV=23.8 IKF=2 TBV1=-6e-4 TBV2=6e-6) .MODEL DFBK2MOD D (RS=1 IS=1e-30 BV=5.6 N=3.3 NBV=1) .MODEL DFBK3MOD D (RS=1 IS=1e-15 BV=4.2 NBV=2.5) .MODEL MmedMOD NMOS (VTO=1.7 KP=1.08 IS=1e-30 N=10 TOX=1 L=1u W=1u RG= 8.56e3) .MODEL MstroMOD NMOS (VTO=2 KP=14 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MweakMOD NMOS (VTO=1.5 kp=0.04 IS=1e-30 N=10 TOX=1 L=1u W=1u RG= 8.56e4 RS=0.1) .MODEL RbreakMOD RES (TC1=1.05e-3 TC2=-9e-7) .MODEL RdrainMOD RES (TC1=9e-3 TC2=2.7e-5) .MODEL RSLCMOD RES (TC1=2e-3 TC2=6e-6) .MODEL RsourceMOD RES (TC1=3e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-1.1e-3 TC2=-3.3e-6) .MODEL RvtempMOD RES (TC1=-1.6e-3 TC2=1e-7) .MODEL RFBK1MOD RES (TC1=-1.4e-3 TC2=1e-6) .MODEL RFBK2MOD RES (TC1=-1.4e-3 TC2=1e-6) .MODEL RgateMOD RES (TC1=-1.4e-3 TC2=1e-5) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4.0 VOFF=-3.0) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.0 VOFF=-4.0) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.0 VOFF=-0.5) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-1.0) .ENDS + - Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 10 FDSS2407 Rev. A www.fairchildsemi.com FDSS2407 N-Channel Dual MOSFET PSPICE Electrical Model FDSS2407 N-Channel Dual MOSFET SABER Electrical Model REV July 2004 template FDSS2407 n2,n1,n3,n101,n102 electrical n2,n1,n3,n101,n102 { var i iscl dp..model dbodymod = (isl=1.1e-12,nl=1.05,ikf=4e-1,rs=4.2e-2,trs1=3e-4,trs2=1.3e-6,cjo=3.3e-10,tt=3e-8,m=0.38,xti=3.5) dp..model dbreakmod = (rs=1,trs1=1e-3,trs2=-9e-6) dp..model ddisablemod = (rs=30, isl=1e-15,bv=4.7,tbv1=-3e-4,tbv2=-3e-6,xti=0) dp..model dfbk1mod = (isl=1e-15,bv=23.8,ikf=2,tbv1=-6e-4,tbv2=6e-6) dp..model dfbk2mod = (rs=1,isl=1e-30,bv=5.6,nl=3.3,nbv=1) dp..model dfbk3mod = (rs=1,isl=1e-15,bv=4.2,nbv=2.5) dp..model dplcapmod = (cjo=1.97e-10,isl=10e-30,nl=10,m=0.84) m..model mmedmod = (type=_n,vto=1.7,kp=1.08,is=1e-30,tox=1) m..model mstrongmod = (type=_n,vto=2,kp=14,is=1e-30,tox=1) m..model mweakmod = (type=_n,vto=1.5,kp=0.04,is=1e-30, tox=1,rs=0.1) m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4.0,voff=-3.0) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.0,voff=-4.0) sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.0,voff=-0.5) sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-1.0) c.ca n12 n8 = 1e-10 c.cb n15 n14 = 4e-10 c.cin n6 n8 = 2.8e-10 c.cgate n9 n20 = 5e-9 LDRAIN DPLCAP DRAIN 2 5 10 RLDRAIN DBODY dp.dbody n7 n5 = model=dbodymod RSLC1 RFBK1 dp.dbreak n5 n11 = model=dbreakmod 51 dp.dplcap n10 n5 = model=dplcapmod RSLC2 103 dp.ddisable n20 n101 = model=ddisablemod ISCL DFBK1 dp.dfbk1 n104 n103 = model=dfbk1mod DBREAK 50 dp.dfbk2 n7 n104 = model=dfbk2mod INJ FBK 104 dp.dfbk3 n104 n102 = model=dfbk3mod RDRAIN 6 102 11 ESG 8 spe.ebreak n11 n7 n17 n18 = 67.4 DFBK3 EVTHRES + 16 CGATE spe.eds n14 n8 n5 n8 = 1 21 + 19 MWEAK DFBK2 spe.egs n13 n8 n6 n8 = 1 LGATE EVTEMP 8 RGATE + 18 GATE spe.esg n6 n10 n6 n8 = 1 6 RFBK2 EBREAK MMED 1 22 + spe.evthres n6 n21 n19 n8 = 1 9 20 MSTRO 17 spe.evtemp n20 n6 n18 n22 = 1 RLGATE CIN GATE i.it n8 n17 = 1 DISABLE l.lgate n1 n9 = 1.8e-9 101 l.ldrain n2 n5 = 1.0e-9 DDISABLE l.lsource n3 n7 = 0.6e-9 S1A S2A 12 res.rlgate n1 n9 = 18 15 13 14 8 13 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 6 S1B S2B res.rbreak n17 n18 = 1, tc1=1.05e-3,tc2=-9e-7 13 CB CA res.rdrain n50 n16 = 3.5e-2,tc1=9e-3,tc2=2.7e-5 + 14 + res.rgate n9 n20 = 8.63e3,tc1=-1.4e-3,tc2=1e-5 6 5 EGS EDS res.rfbk1 n5 n103 = 13e3,tc1=-1.4e-3,tc2=1e-6 8 8 res.rfbk2 n104 n7 = 2.15e3,tc1=-1.4e-3,tc2=1e-6 res.rslc1 n5 n51 = 1e-6,tc1=2e-3,tc2=6e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 5.3e-2,tc1=3e-3,tc2=1e-6 res.rvthres n22 n8 = 1,tc1=-1.1e-3,tc2=-3.3e-6 res.rvtemp n18 n19 = 1,tc1=-1.6e-3,tc2=1e-7 18 - 8 LSOURCE SOURCE 3 7 RSOURCE RLSOURCE RBREAK 17 18 RVTEMP 19 IT VBAT + 8 22 RVTHRES sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/20))** 3.5)) } } 11 FDSS2407 Rev. A www.fairchildsemi.com th JUNCTION REV July 2004 FDSS2407T Copper Area =0.5 in2 CTHERM1 Junction c2 1.2e-4 CTHERM2 c2 c3 2e-3 CTHERM3 c3 c4 2e-2 CTHERM4 c4 c5 3.0e-2 CTHERM5 c5 c6 4e-2 CTHERM6 c6 c7 7e-2 CTHERM7 c7 c8 2e-1 CTHERM8 c8 Ambient 2.8 RTHERM1 CTHERM1 8 RTHERM2 CTHERM2 7 RTHERM1 Junction c2 1.4 RTHERM2 c2 c3 2.0 RTHERM3 c3 c4 2.8 RTHERM4 c4 c5 9.0 RTHERM5 c5 c6 18.0 RTHERM6 c6 c7 26.0 RTHERM7 c7 c8 28.0 RTHERM8 c8 Ambient 29.0 RTHERM3 CTHERM3 6 RTHERM4 SABER Thermal Model CTHERM4 5 Copper Area = 0.5 in2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th c2 =1.2e-4 ctherm.ctherm2 c2 c3 =2e-3 ctherm.ctherm3 c3 c4 =2e-2 ctherm.ctherm4 c4 c5 =3.0e-2 ctherm.ctherm5 c5 c6 =4e-2 ctherm.ctherm6 c6 c7 =7e-2 ctherm.ctherm7 c7 c8 =2e-1 ctherm.ctherm8 c8 tl =2.8 RTHERM5 CTHERM5 4 RTHERM6 CTHERM6 3 RTHERM7 rtherm.rtherm1 th c2 =1.4 rtherm.rtherm2 c2 c3 =2.0 rtherm.rtherm3 c3 c4 =2.8 rtherm.rtherm4 c4 c5 =9.0 rtherm.rtherm5 c5 c6 =18.0 rtherm.rtherm6 c6 c7 =26.0 rtherm.rtherm7 c7 c8 =28.0 rtherm.rtherm8 c8 tl =29.0 } CTHERM7 2 CTHERM8 RTHERM8 tl 12 FDSS2407 Rev. A AMBIENT www.fairchildsemi.com FDSS2407 N-Channel Dual MOSFET SPICE Thermal Model The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ ActiveArray™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™ E2CMOS™ EnSigna™ FACT™ FACT Quiet Series™ FAST® FASTr™ FPS™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ I2C™ i-Lo™ Across the board. Around the world.™ The Power Franchise® Programmable Active Droop™ ImpliedDisconnect™ IntelliMAX™ ISOPLANAR™ LittleFET™ MICROCOUPLER™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC® OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerEdge™ PowerSaver™ PowerTrench® QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ µSerDes™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic® TINYOPTO™ TruTranslation™ UHC™ UltraFET® UniFET™ VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I15 13 FDSS2407 Rev. A www.fairchildsemi.com FDSS2407 N-Channel Dual MOSFET TRADEMARKS