PC401 PC401 Compact, Surface Mount Type OPIC Photocoupler ■ Features ■ Outline Dimensions 1. Mini-flat package 2. “ High ” output during light emission 3. Isolation voltage between input and output ( Viso : 3 750V rms ) 4. TTL and LSTTL compatible output 5. Recognized by UL(No.64380) 6 5 PC401 3 4 Amp. 2.54 ± 0.25 0.4 ± 0.1 3 2.6 ± 0.2 3.6 ± 0.3 7.0 +- 0.2 0.7 Tape width 12mm 12mm - 4 VO 5 GND 6 V CC * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings ( Ta = 25˚C ) Symbol IF VR P V CC V OH I OL PO P tot V iso T opr T stg T sol Rating 50 6 70 16 16 50 130 150 3 750 - 25 to + 85 - 40 to + 125 260 Unit mA V mW V V mA mW mW V rms ˚C ˚C ˚C 0.2mm or more Diameter of reel 370mm 178mm - C0.4 ( Input side ) 0.5 +- 0.4 0.2 0.1 ± 0.1 ■ Package Specifications 5.3 ± 0.3 0.2 ± 0.05 1 6˚ 1 Anode 2 NC 3 Cathode Parameter Forward current Input Reverse voltage Power dissipation Supply voltage High level output voltage Output Low level output current Power dissipation Total power dissipation *1 Isolation voltage Operating temperature Storage temperature *2 Soldering temperature 6 5 1 4.4 ± 0.2 Anode mark 1. Hybrid substrate which requires high density mounting 2. Personal computers, office computers and peripheral equipment 3. Electronic musical instruments Package specifications Taping package ( Net : 3 000pcs. ) Taping package ( Net : 750pcs. ) Sleeve package ( Net : 100pcs. ) Internal connection diagram 4 1.27 ± 0.25 Voltage regulator ■ Applications Model No. PC401 PC401T PC401Z ( Unit : mm ) Soldering area *1 AC for 1 minute, 40 to 60% RH *2 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” PC401 ■ Electro-optical Characteristics Parameter Input Output Forward voltage VF Reverse current Terminal capacitance Operating supply voltage Low level output voltage High level output current Low level supply current High level supply current *3 “ H→L” threshold input current *4 “ L→H” threshold input current *5 Hysteresis Isolation resistance IR Ct V CC V OL I OH I CCL I CCH “ H→L” propagation delay time “ L→H” propagation delay time Response time Transfer characteristics Symbol *6 Fall time Rise time I FHL I FLH I FHL /I FLH R ISO t PHL t PLH tf tr ( Ta = 0 to + 70˚C unless otherwise specified. ) Conditions I F = 4mA I F = 0.3mA Ta = 25˚C,V R = 3V Ta = 25˚C,V = 0,f = 1kHz MIN. 0.7 3 0.4 0.3 0.5 5 x 1010 - I F = 0,V CC = 5V,I OL = 16mA I F = 4mA,V CC = V O = 15V I F = 0,V CC = 5V I F = 4mA,V CC = 5V Ta = 25˚C,V CC = 5V,R L = 280Ω V CC = 5V,R L = 280Ω Ta = 25˚C,V CC = 5V,R L = 280Ω V CC = 5V,R L = 280Ω V CC = 5V,R L = 280Ω Ta = 25˚C,DC500V,40 to 60% RH Ta = 25˚C,V CC = 5V R L = 280Ω ,I F = 4mA TYP. 1.1 1.0 30 0.2 2.5 2.7 0.8 1.1 0.7 1011 2 1 0.05 0.1 MAX. 1.4 10 250 15 0.4 100 5.0 5.5 2.0 4.0 0.9 6 3 0.5 0.5 Unit V µA pF V V µA mA mA mA mA Ω µs *3 I FHL represents forward current when output gose from high to low. *4 I FLH represents forward current when output goes from low to high. *5 Hysteresis stands for IFHL /I FLH . *6 Test circuit for response time is shown below. Test Circuit for Response Time t r = tf = 0.01 µ s 50% Voltage regulator ZO = 50 Ω 5V VIN t PLH 280 Ω VO VIN 47 Ω VO Fig. 1 Forward Current vs. Ambient Temperature tr 200 Power dissipation P O , P tot ( mW ) 50 Forward current I F ( mA ) 10% VOL tf Fig. 2 Power Dissipation vs. Ambient Temperature 60 40 30 20 10 0 - 25 VOH 90% 1.5V 0.1 µ F Amp. t PHL 0 25 50 75 85 Ambient temperature T a ( ˚C ) 100 P tot 150 PO 130 100 50 0 - 25 0 25 50 Ambient temperature T 75 a ( ˚C ) 85 100 PC401 Fig. 4 Relative Threshold Input Current vs. Supply Voltage Fig. 3 Forward Current vs. Forward Voltage 500 1.4 T a = 75˚C 50˚C 1.2 25˚C 0˚C - 25˚C 100 50 Relative threshold input current Forward current I F ( mA ) 200 T a = 25˚C I FLH = 1 at V CC = 5V 20 10 5 I FLH 1.0 I FHL 0.8 0.6 0.4 2 1 0.2 0 0.5 1.0 1.5 2.0 2.5 Forward voltage V F ( V ) 3.0 0 Fig. 5 Relative Threshold Input Current vs. Ambient Temperature 1.0 V CC = 5V VCC = 5V 1.2 Low level output voltage VOL ( V ) Relative threshold input current 1.4 I FLH 1.0 0.8 I FHL 0.6 0.4 I FLH = 1 at T a = 25˚C 0 25 50 Ambient temperature T 75 IF = 0 T a = 25˚C 0.2 0.1 0.05 a 0.01 1 100 ( ˚C ) 2 5 10 20 Low level output current I 50 OL 100 ( mA ) Fig. 8 High Level Output Current vs. Forward Current Fig. 7 Low Level Output Voltage vs. Ambient Temperature 10 0.5 V CC = 5V VCC = 5V IF = 0 I OL = 30mA High level output current I OH ( µ A) Low level output voltage V OL ( V ) 0.5 0.02 0.2 0.4 0.3 16mA 0.2 5mA 0.1 0 - 25 20 Fig. 6 Low Level Output Voltage vs. Low Level Output Current 1.6 0 - 25 5 10 15 Supply voltage V CC ( V ) 0 25 75 50 Ambient temperature T a ( ˚C ) 100 5 T a = 25˚C 2 1 0.5 0.2 0.1 0 10 20 30 Forward current I 40 F ( mA ) 50 60 PC401 Fig. 9 High Level Output Current vs. Ambient Temperature Fig.10 Supply Current vs. Supply Voltage 9 VCC = V O = 15V 8 I CCH I CCL I F = 4mA 1 Supply current I CC ( mA ) High level output current I OH ( µ A ) 2 0.5 0.2 0.1 0.05 7 I CCH I CCL 6 5 4 I CCH I CCL 3 Ta= - 25˚C 2 25˚C 1 85˚C 0 - 25 0 25 50 75 0 100 2 4 Ambient temperature T a ( ˚C ) 10 12 14 16 18 0.6 VCC = 5V RL = 280 Ω T a = 25˚C 5 8 Fig.12 Rise Time, Fall Time vs. Load Resistance Fig.11 Propagation Delay Time vs. Forward Current 6 6 Supply voltage V CC ( V ) VCC = 5V t PHL 0.5 I F = 4mA Rise time, fall time ( µ s ) Propagation delay time ( µ s ) T a = 25˚C 4 3 2 0.4 0.3 0.2 tr 0.1 1 tf t PLH 0 0 10 20 30 Forward current I 40 F ( mA ) 50 60 0 0.2 0.5 1 2 5 10 Load resistance RL ( k Ω ) ■ Preautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01µ F is added between Vcc and GND near the device in order to stabilize power supply line. ( 2 ) Handle this product the same as with other integrated circuits against static electricity. ( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use ” 20