Improved signal integrity using impedance calculated circuit boards

Webinar 2013: Improved signal integrity through impedance
matched circuit boards
Würth Elektronik Circuit Board Technology
www.we-online.de
Seite 1
01/10/2013
Agenda
S Impedance and the circuit board
I Material aspects and parameters
G Impedance calculation
N Layer stack-ups
A Impedance and HDI (EMC)
L High frequency and mid-performance materials
www.we-online.de
Seite 2
01/10/2013
PCB and impedance
Impedance matching needed to keep the
variations as small as possible!
www.we-online.de
Seite 3
01/10/2013
PCB and impedance
PCB has an ohmic, capacitive and inductive proportion
not an optimal tranfer medium between transmitter and receiver
parameters that influence the signal on a PCB
Length of conductor
Raw material loss factor and permittivity
Reflection due to the PTHs
Impedance matching
Crosstalk between conductors
Noise interference from external sources (EMC shielding)
www.we-online.de
Seite 4
01/10/2013
Important parameters
medium
low
strong
strong
Track width
Copper thickness
Layer distance
Dielectric constant
εr
w+h = layouter / developer
+ PCB supplier
t = galvanic process, base copper
εr = base material
t
w
h
WE offers: advanced partnership!
www.we-online.de
Seite 5
01/10/2013
Material parameters Epsilon R
FR4 Pre-preg 2116
FR4 Pre-preg 106
Thickness 90 – 110 µm
εr = 3,6 – 3,8
Resin content ~50%
Thickness 50 µm
εr = 2,8 – 3,7
Resin content ~70%
FR4 Pre-preg 1080
FR4 Pre-preg 7628
Thickness 60 - 70 µm
εr = 3,2 – 3,7
Resin content ~60%
Thickness 170 – 190 µm
εr = 4,1 – 4,6
Resin content ~45%
glass r ~6,1 / resin r ~3,2
Cores are laminated pre-pregs
www.we-online.de
Seite 6
01/10/2013
Epsilon R
dielectric losses
εr
values in relation to the layer distance FR4
(lossy
1080
2x
1080
3x
1080
2116
2x
2116
3x
2116
Tg 135
3.2
3.5
3.6
3.6
3.9
4.7
Tg 150 hf
3.5
3.7
3.9
3.8
4.3
4.6
60 µm
100 µm
150 µm
250 µm
510 µm
710 µm
Tg 135
3.2
3.5
3.6
3.6
3.9
4.7
Tg 150 hf
3.5
3.7
3.9
3.8
4.3
4.6
Pre-preg
Cores
Influence:
- layer distance
- frequency ….
effective εr
Influence on characteristic wave impedance
www.we-online.de
εr)
Seite 7
01/10/2013
determination of εr effectiv
Calculation of the Er value according to microsection
picture with the help of Polar
www.we-online.de
H1
layer distance
W1
lower track width
W2
upper track width
T1
copper thickness
C1
solder resist on substrate (FR4)
C2
solder resist on track
CEr
Er solder resist (supplier)
Er
dielectric constant
Seite 8
01/10/2013
Layer distances
Pre-preg
17 µm copper
35 µm copper
1 x 1080
65 µm
60 µm
2 x 1080
134 µm
128 µm
Pre-preg
17 µm copper
35 µm copper
2 x 1080
128 µm
120 µm
Pre-preg
17 µm copper
35 µm copper
1 x 1080
70 µm
68 µm
2 x 1080
140 µm
136 µm
layout against plane or foil
layout against layout
plane against plane or foil
www.we-online.de
Seite 9
01/10/2013
Models
layer / track configuration
layer configuration:
Embedded
Microstrip
Surface
Microstrip
Stripline
line width
line width
Single
Differential
space
track configuration:
Gnd
Coplanar
Gnd
www.we-online.de
Seite 10
Which parameters have the biggest influence on the impedance
of a track?
www.we-online.de
Seite 11
Parameters for impedance calculations
C2
thickness solder resist
over track
[15 µm]
S1
gap
layout
W2
upper track width (head)
T1
copper thickness
r
dielectric constant
solder resist
[typ. 3,5]
C1=C3
thickness solder resist
over FR4
[42 µm]
H1
layer distance
Signal > Reference
r
W1
lower track width (foot)
= layout
dielectric constant
FR4
www.we-online.de
Seite 12
01/10/2013
Service “impedance defined stack-ups“
Information required:
• type of stack-up: Standard <>HDI / via types
• Number of layers
• PCB – thickness
• Copper thickness (especially inner layers)
• layer order: position of signal layer plus corresponding reference layers
• Number of signal layers and number of reference layers (Gnd, Power, VCC)
• Impedance requirements (Single e.g. 50 Ohm) (Differential e.g. 90 und 100 Ohm)
• Which track widths and gaps are preferred or possible?
www.we-online.de
Seite 13
01/10/2013
Impedance values for different pre-pregs
Microstrip Outer Layers
Pre-pregs: TG 150°, filled, halogen free
Prepreg (each one ply)
1080
2113
2116
Layer spacing
above plane layer
68 µm
92 µm
108 µm
εr effective 3.5
εr effective 3.6
εr effective 3.8
109 µm
154 µm
179 µm
(with εr 4.2: 94 µm)
(with εr 4.2: 136 µm)
(with εr 4.2: 165 µm)
100 µm
100 µm
100 µm
305 µm
137 µm
122 µm
(pressed thickness , 1 oz copper L2)
Track Width
50 Ω Single Impedance
Track Width
Track Separation
100 Ω diff. Impedance
www.we-online.de
Seite 14
01/10/2013
Example stack-up
LAGENAUFBAU
12 - Lagen
ML12
WE-Artikel Nr.:
Kunde:
CBT SH
LAGENBEZEICHNUNG
KUNDE
AUFBAU
BASISMaterial
PREPREG
ANZAHL/TYP
CU
WE
TOP/VS
S1
S3
Foil
17,5 µm
100
134
16
3.8
17,5 µm
REF
Impedanzberechnung:
S1 Zdiff 100 Ohm @ 180 / 185 / 180 µm
100
16
3.6
17,5 µm
S
87
S1 Zdiff 110 Ohm @ 170 / 270 / 170 µm
16
0,100 mm
S
3.7
17,5 µm
S2
175
33
1 x 2113
7
4.25
3.8
0,100 mm
6
[µm]
35 µm
REF
REF
[µm]
33
2 x 1080
5
[εr]
35 µm
REF
4
KUNDENFORDERUNG
16
0,100 mm
3
ENDDICKE
1)
1 x 1080
1 x 2116
2
Dielektrizitätskonstante
3.8
17,5 µm
100
S2 Zdiff 100 Ohm @ 94 / 186 / 94 µm
16
S2 Zdiff 108 Ohm @ 80 / 200 / 80 µm
S3 Zo 75 Ohm @ 385 µm LB-Breite
www.we-online.de
Seite 15
01/10/2013
Impedance measuremant Polar
Technology TDR
(Polar Instruments)
Transition
TC -> PCB
www.we-online.de
Seite 16
01/10/2013
Impedance measurement test coupons
with TC
Single
23 mm
150 x 23 mm
max. 6 structures
TC‘s needed because:
Differentiell
28 mm
150 x 28 mm
max. 2 structures
-
150 mm
clear contacting of test
adapters
defined measuring
length
PCB‘s per production panel?
Must be considered in the panelisation!
In worst case maybe less PCBs on production
panel!
www.we-online.de
Seite 17
01/10/2013
Impedance report
contents
• customer and job information
• requirements for measurements
• results of measurement
• kleinst mögliche Toleranz +/- 10%
impedance
inseide tolerance:
• PCB‘S + testreport will be sended out to
customer
www.we-online.de
Seite 18
01/10/2013
Why did Würth Elektronik qualified the prepreg type 2113?
www.we-online.de
Seite 19
Signal Integrity
HDI
Discontinuities in possible wiring schemes
Version 2:
Microvia / Buried Via
Version 1:
PTH
open ends
antenna
Blind and Buried Vias
result in reduced discontinuities!
www.we-online.de
Seite 20
01/10/2013
Signal Integrity
HDI
Via in Pad Technology
BGA area
completely copper on outer layers
(no tracks on the outer layers)
signals on outer layers protected
from external sources
www.we-online.de
Seite 21
Design example HDI GND on outer layers
suggestion: do not use PTHs if you are
already using buried vias
Layer 1 GND
Layer 2 Signal 1
Layer 3 Signal 2
Layer 4 GND
Layer 1 GND
Layer 2 Signal 1
Layer 3 Signal 2
Layer 4 GND
www.we-online.de
Seite 22
Design example HDI GND on outer layers
S
Wlow
Wup
layer 1 / 12 GND
Prepreg
T = 30 µm
layer 2 / 11 Sig
T = 16 µm
layer 3 / 10 Sig
H1 = 130 µm
H2 = 81 µm
H3 = 100 µm
Core
layer 4 / 9 GND
Layer 2 / 11
Layer 3 / 10
Edge Coupled
Offset strip line
Edge Coupled
Offset strip line
Distance layer 1 / 12 GND
130 µm
211 µm
Distance layer 4 / 9 GND
181 µm
100 µm
Cu Thickness T
30 µm
16 µm
Upper trace width Wup
82 µm
95 µm
Lower trace width Wlow
100 µm
100 µm
Separation S
214 µm
152 µm
3.8 / 3.5 / 3.8
3.8 / 3.5 / 3.8
100,0 Ω
100,0 Ω
Type
Substrate Dielectric εr
Impedance
www.we-online.de
Seite 23
01/10/2013
Signal integrity
HDI
Example:
INTEL Atom
Pitch 0.593 mm diagonal
Nearly without any restriction for impedances
layer distances up to ca. 100 µm
track width 90 µm
up to pitch 0,6 mm
For smaller pitches e.g. 0,4 mm and 0,5 mm µVia layer distances max. 60-70 µm
www.we-online.de
Seite 24
01/10/2013
summery: Design example HDI GND on outer layers
using the outer layer as GND, gives:
direct connection from the solder pad to the first and
second inner layer by staggered mircovias
optimal x – y routing avoids crosstalk between the lines
a very good shielding avoiding EMC problems
using 100 µm dielectric thickness for µVias, gives:
Nearly no restrictions for impedance defined structures
www.we-online.de
Seite 25
Material costs of high frequency materials
Comparative material costs
(100 pieces)
1500%
1000%
FR4 Standard 100%
High Performance
www.we-online.de
Seite 26
Prepreg
100 µm
Mid Performance 2
0%
Kern
0.25
Mid Performance 1
500%
Kern
0.10
FR4 low CTE
01/10/2013
Signal integrity forecast materials
next steps
Looking for project partners
Qualification of mid-performance materials for production
Materials for frequencies from 2,5 GHz - ca. 10 GHz or 15 GHz
Lower material costs compared to high performance materials
e.g. EMC Elite EM888, Isola FR408 HR, Megtron2, Megtron6
If needed please contact Würth Elektronik
www.we-online.de
Seite 27
01/10/2013
Dientleistungen
Summary
 Signal Integrity:
Higher transmission rates and frequencies increasingly more
often require impedance matching.
Due to this, we offer our service to you!
For higher transmission rates it can often be the case that high
frequency materials are necessary.
In the future cost effective high frequency materials will also be
necessary.
We are well prepared!
www.we-online.de
Seite 28
01/10/2013
Understanding the connections is the secret to success!
Many thanks for your interest!
Philipp Reeb
WÜRTH ELEKTRONIK GmbH & Co. KG
Produkt Management
Signalintegrität
Circuit Board Technology
T.: +49 7622 397 277
M.:+
E. [email protected]
W. www.we-online.de
01/10/2013
www.we-online.de
Page 29