RF3V49092, RF3S49092SM Data Sheet 20A/10A, 12V, 0.060/0.140 Ohm, Logic Level, Complementary Power MOSFET These complementary power MOSFETs are manufactured using an advanced MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits, gives optimum utilization of silicon, resulting in outstanding performance. It is designed for use in applications such as switching regulators, switching converters, motor drivers, relay drivers, and low voltage bus switches. This product achieves full rated conduction at a gate bias in the 3V to 5V range, thereby facilitating true on-off power control directly from logic level (5V) integrated circuits. November 1999 File Number 4600.1 Features • 20A, 12V (N-Channel) 10A, 12V (P-Channel) • rDS(ON) = 0.060Ω (N-Channel) rDS(ON) = 0.140Ω (P-Channel) • Temperature Compensating PSPICE® Model • On-Resistance vs Gate Drive Voltage Curves • Peak Current vs Pulse Width Curve • UIS Rating Curve Symbol Formerly developmental type TA49092. S2 Ordering Information PART NUMBER G2 PACKAGE BRAND RF3V49092 TS-001AA F3V49092 RF3S49092SM MO-169AB F3S49092 D1 NOTE: When ordering, use the entire part number. For ordering the MO-169AB in tape and reel, add the suffix 9A to the part number, i.e., RF3S49092SM9A. G1 S1 Packaging JEDEC TS-001AA (ALTERNATE) JEDEC MO-169AB S1 G1 D S2 G2 G2 S2 4-30 D G1 S1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. 1-888-INTERSIL or 321-727-9207 | Copyright © Intersil Corporation 1999 RF3V49092, RF3S49092SM Absolute Maximum Ratings TC = 25oC Unless Otherwise Specified N-CHANNEL P-CHANNEL UNITS -12 V 12 Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ, Note 1) . . . . . . . . .VDGR 12 -12 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±10 ±10 V Drain Current Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed (Figures 5, 26) . . . . . . . . . . . . . . . . . . . . . . . . . IDM 20 Refer to Peak Current Curve 10 Refer to Peak Current Curve A Pulsed Avalanche Rating (Figures 6, 27). . . . . . . . . . . . . EAS Refer to UIS Curve Refer to UIS Curve Power Dissipation TC = 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 0.33 50 0.33 W W/oC Operating and Storage Temperature . . . . . . . . . . . . TJ, TSTG -55 to 175 -55 to 175 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . .Tpkg 300 260 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications (N-Channel) PARAMETER TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V, (Figure 13) 12 - - V Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA, (Figure 12) 1 - - V TC = 25o C - - 1 µA TC = 150o C - - 50 µA Zero Gate Voltage Drain Current Gate to Source Leakage Current Drain to Source On Resistance Turn-On Time IDSS IGSS rDS(ON) tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDS = 12V, VGS = 0V VGS = ±10V - - ±100 nA ID = 20A, VGS = 5V, (Figure 9, 11) - - 0.060 Ω VDD = 6V, ID ≈ 20A, RL = 0.24Ω, VGS = 5V, RGS = 25Ω (Figure 10) - - 100 ns - 18 - ns tr - 60 - ns td(OFF) - 50 - ns tf - 60 - ns tOFF - - 140 ns - 20 25 nC - 12 15 nC - 0.9 1.2 nC - 750 - pF - 700 - pF - 275 - pF Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA VDD = 9.6V, ID = 20A, RL = 0.42Ω (Figure 15) VDS = 10V, VGS = 0V, f = 1MHz (Figure 14) - - 3.00 oC/W - - 62 oC/W MIN TYP MAX UNITS ISD = 20A - - 1.5 V ISD = 20A, dISD/dt = 100A/µs - - 100 ns TS-001AA, and MO-169AB N-Channel Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Voltage VSD Reverse Recovery Time trr 4-31 TEST CONDITIONS RF3V49092, RF3S49092SM Electrical Specifications (P-Channel) PARAMETER TC = 25o C, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V, (Figure 34) -12 - - V Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA, (Figure 33) Zero Gate Voltage Drain Current Gate to Source Leakage Current Drain to Source On Resistance -1 - - V TC = 25o C - - -1 µA TC = 150o C - - -50 µA VGS = ±10V - - ±100 nA ID = 10A, VGS = -5V, (Figures 30, 32) - - 0.140 Ω VDD = -6V, ID ≈ 10A, RL = 0.62Ω, VGS = -5V, RGS = 25Ω (Figure 31) - - 115 ns - 25 - ns tr - 65 - ns td(OFF) - 40 - ns tf - 45 - ns tOFF - - 110 ns - 19 24 nC - 10 14 nC - 0.8 1.1 nC - 775 - pF - 550 - pF - 150 - pF IDSS IGSS rDS(ON) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDS = -12V, VGS = 0V Total Gate Charge Qg(TOT) VGS = 0V to -10V Gate Charge at -5V Qg(-5) VGS = 0V to -5V Threshold Gate Charge Qg(TH) VGS = 0V to -1V Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA VDD = -9.6V, ID = 10A, RL = 1.0Ω (Figure 36) VDS = -10V, VGS = 0V, f = 1MHz (Figure 35) - - 3.00 oC/W - - 62 oC/W MIN TYP MAX UNITS ISD = -10A - - -1.5 V ISD = -10A, dISD/dt = -100A/µs - - 100 ns TS-001AA, and MO-169AB P-Channel Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Voltage VSD Reverse Recovery Time trr TEST CONDITIONS Typical Performance Curves (N-Channel) 25 1.0 ID , DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 TC , CASE TEMPERATURE (oC) 150 FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE 4-32 175 20 15 10 5 0 25 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 175 FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE RF3V49092, RF3S49092SM Typical Performance Curves (N-Channel) ZθJC, NORMALIZED THERMAL IMPEDANCE 1 (Continued) DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE TJ = MAX RATED, TC = 25oC 5ms 10ms 10 100ms 1s DC OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 1 1000 IDM, PEAK CURRENT CAPABILITY (A) ID, DRAIN CURRENT (A) 100 I TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 50 ID , DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) 10-4 STARTING TJ = 25oC 10 STARTING TJ = 150oC If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 1 10 0.1 tAV, TIME IN AVALANCHE (ms) 10 0 101 VGS = 10V VGS = 5V VGS = 4.5V 40 VGS = 4V 30 20 VGS = 3V 10 PULSE DURATION = 80µs, TC = 25oC DUTY CYCLE = 0.5% MAX 0 100 Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 4-33 10-3 10-2 10-1 t, PULSE WIDTH (s) FIGURE 5. PEAK CURRENT CAPABILITY 100 1 0.01 175 - TC 150 VGS = 5V 10 -5 10 50 = I25 100 FIGURE 4. FORWARD BIAS SAFE OPERATING AREA NOTE: TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 0 1 2 3 4 5 VDS, DRAIN TO SOURCE VOLTAGE (V) 6 FIGURE 7. SATURATION CHARACTERISTICS 7 RF3V49092, RF3S49092SM Typical Performance Curves (N-Channel) 50 25oC (Continued) 200 VDD = 6V rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) ID, DRAIN CURRENT (A) 175oC 40 -55oC 30 20 10 I D = 5A I D = 10A 100 50 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 0 0 1 2 3 4 5 VGS, GATE TO SOURCE VOLTAGE (V) 6 0 0 7 FIGURE 8. TRANSFER CHARACTERISTICS tr 100 t D(OFF) 80 tf 60 40 20 t D(ON) 20 30 40 NORMALIZED DRAIN TO SOURCE ON RESISTANCE SWITCHING TIME (ns) 120 10 PULSE DURATION = 80µs, VGS = 5V, ID = 20A DUTY CYCLE = 0.5% MAX 1.4 1.2 1.0 0.8 0.6 -80 50 -40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 10. SWITCHING TIME vs GATE RESISTANCE 200 1.0 0.8 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 4-34 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 0.6 -80 10 1.6 VDD = 6V, ID = 20A, RL = 0.24Ω 0 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 140 0 I D = 20A 150 ID = 250µA 1.1 1.0 0.9 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) 200 FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE RF3V49092, RF3S49092SM Typical Performance Curves (N-Channel) (Continued) 10 VGS = 0V, f = 1MHz 900 CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD VGS , GATE TO SOURCE VOLTAGE (V) C, CAPACITANCE (pF) 1200 CISS COSS 600 CRSS 300 8 6 4 0 2 4 6 8 WAVEFORMS IN DESCENDING ORDER: ID = 20A ID = 10A ID = 5A 2 0 0 VDD = 9.6V 0 15 10 Qg, GATE CHARGE (nC) 5 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 20 25 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms (N-Channel) VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 17. UNCLAMPED ENERGY WAVEFORMS tON tOFF td(ON) td(OFF) VDS tf tr VDS 90% 90% RL VGS + DUT RGS VGS - VDD 90% VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT 4-35 10% 10% 0 10% 50% 50% PULSE WIDTH FIGURE 19. RESISTIVE SWITCHING WAVEFORMS RF3V49092, RF3S49092SM Test Circuits and Waveforms (N-Channel) (Continued) VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Ig(REF) 0 FIGURE 20. GATE CHARGE TEST CIRCUIT FIGURE 21. GATE CHARGE WAVEFORMS Typical Performance Curves (P-Channel) -15 1.0 ID , DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 -10 -5 0.2 0 0 25 125 50 75 100 TC , CASE TEMPERATURE (oC) 150 0 25 175 ZθJC, NORMALIZED THERMAL IMPEDANCE FIGURE 22. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE 50 100 125 75 TC, CASE TEMPERATURE (oC) 150 175 FIGURE 23. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE DUTY CYCLE - DESCENDING ORDER 0.5 1 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 t, RECTANGULAR PULSE DURATION (s) FIGURE 24. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 4-36 100 101 RF3V49092, RF3S49092SM ID, DRAIN CURRENT (A) -100 (Continued) TJ = MAX RATED, TC = 25oC 5ms 10ms 100ms 1s DC -10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) -1 -1 -10 -200 IDM, PEAK CURRENT CAPABILITY (A) Typical Performance Curves (P-Channel) TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: -100 I VGS = -5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION -1 10-5 -50 FIGURE 25. FORWARD BIAS SAFE OPERATING AREA 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 101 -40 PULSE DURATION = 80µs, TC = 25oC DUTY CYCLE = 0.5% MAX I D, DRAIN CURRENT (A) VGS = -10V IAS, AVALANCHE CURRENT (A) 100 FIGURE 26. PEAK CURRENT CAPABILITY -100 STARTING TJ = 25oC -10 STARTING TJ = 150oC If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] -1 0.01 NOTE: -30 VGS = -5V -20 VGS = -4.5V VGS = -4V -10 VGS = -3V 0 100 10 0.1 1 tAV, TIME IN AVALANCHE (ms) 0 -1 -2 -3 -4 -5 -6 -7 VDS, DRAIN TO SOURCE VOLTAGE (V) Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 28. SATURATION CHARACTERISTICS FIGURE 27. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 500 -40 VDD = -6V 25oC -30 ID = -3A 175oC rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) ID, DRAIN CURRENT (A) 175 - TC 150 -10 VDS, DRAIN TO SOURCE VOLTAGE (V) - 55oC -20 -10 0 -2 -4 -6 -8 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 29. TRANSFER CHARACTERISTICS 4-37 ID = -10A 400 I D = -6A 300 200 100 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 0 = I25 VGS = -10V -10 0 0 -4 -6 -8 -2 VGS, GATE TO SOURCE VOLTAGE (V) -10 FIGURE 30. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT RF3V49092, RF3S49092SM Typical Performance Curves (P-Channel) (Continued) 1.6 120 tr SWITCHING TIME (ns) 100 tf 80 60 tD(OFF) 40 tD(ON) 20 0 0 20 10 30 40 PULSE DURATION = 80µs, VGS = -5V, ID = -10A DUTY CYCLE = 0.5% MAX NORMALIZED DRAIN TO SOURCE ON RESISTANCE VDD = -6V, ID = -10A, RL = 0.62Ω 1.4 1.2 1.0 0.8 -80 50 -40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 31. SWITCHING TIME AS A FUNCTION OF GATE RESISTANCE 1.2 0.8 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) C, CAPACITANCE (pF) CISS COSS 600 CRSS 300 0 -2 -4 -6 -8 VDS, DRAIN TO SOURCE VOLTAGE (V) 1.0 0.9 -80 -40 0 40 80 160 120 200 TJ , JUNCTION TEMPERATURE (oC) VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD 900 1.1 200 FIGURE 33. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 1200 ID = -250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.0 -10 FIGURE 34. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE -10 VGS , GATE TO SOURCE VOLTAGE (V) NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = -250µA 0 200 FIGURE 32. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 0.6 -80 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) VDD = -9.6V -8 -6 -4 WAVEFORMS IN DESCENDING ORDER: ID = -10A ID = -6A ID = -3A -2 0 0 3 9 6 Qg, GATE CHARGE (nC) 12 15 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 35. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE 4-38 FIGURE 36. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT RF3V49092, RF3S49092SM Test Circuits and Waveforms (P-Channel) VDS tAV L 0 VARY tP TO OBTAIN REQUIRED PEAK IAS - RG + VDD DUT 0V VDD tP VGS IAS IAS VDS tP 0.01Ω BVDSS FIGURE 37. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 38. UNCLAMPED ENERGY WAVEFORMS tON tOFF td(OFF) td(ON) tr VDS 0 RL tf 10% 10% VGS VDS VDD + VGS 90% 90% VGS 0 10% DUT RGS 50% 50% PULSE WIDTH 90% FIGURE 39. SWITCHING TIME TEST CIRCUIT FIGURE 40. RESISTIVE SWITCHING WAVEFORMS VDS RL VDS Qg(TH) 0 VGS= -1V VGS - Qg(-5) + DUT VGS= -5V -VGS VDD VGS= -10V VDD Ig(REF) Qg(TOT) 0 Ig(REF) FIGURE 41. GATE CHARGE TEST CIRCUIT 4-39 FIGURE 42. GATE CHARGE WAVEFORMS RF3V49092, RF3S49092SM Soldering Precautions The soldering process creates a considerable thermal stress on any semiconductor component. The melting temperature of solder is higher than the maximum rated temperature of the device. The amount of time the device is heated to a high temperature should be minimized to assure device reliability. Therefore, the following precautions should always be observed in order to minimize the thermal stress to which the devices are subjected. 1. Always preheat the device. 2. The delta temperature between the preheat and soldering should always be less than 100oC. Failure to preheat the device can result in excessive thermal stress which can damage the device. 3. The maximum temperature gradient should be less than 5oC per second when changing from preheating to soldering. 4. The peak temperature in the soldering process should be at least 30oC higher than the melting point of the solder chosen. 5. The maximum soldering temperature and time must not exceed 260oC for 10 seconds on the leads and case of the device. 6. After soldering is complete, the device should be allowed to cool naturally for at least three minutes, as forced cooling will increase the temperature gradient and may result in latent failure due to mechanical stress. 7. During cooling, mechanical stress or shock should be avoided. 4-40 RF3V49092, RF3S49092SM PSPICE Electrical Model SUBCKT RF3V49092 2 1 3; N-Channel Model rev 9/6/94 CA 12 8 9.77e-10 CB 15 14 9.19e-10 CIN 6 8 7.81e-10 DPLCAP 5 10 DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD DBREAK RDRAIN EBREAK 11 7 17 18 14.89 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1 ESG + GATE 1 IT 8 17 1 16 EBREAK VTO + 21 DBODY MOS2 MOS1 CIN 8 RSOURCE 7 LSOURCE 3 SOURCE S2A S1A 12 + 17 18 6 RIN MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 S1A S1B S2A S2B 11 6 8 EVTO 9 20 + 18 8 LGATE RGATE LDRAIN 2 5 1e-9 LGATE 1 9 1.233e-9 LSOURCE 3 7 0.452e-9 RBREAK 17 18 RBKMOD 1 RDRAIN 5 16 RDSMOD 4.91e-3 RGATE 9 20 2.74 RIN 6 8 1e9 RSOURCE 8 7 RDSMOD 5e-3 RVTO 18 19 RVTOMOD 1 DRAIN 2 LDRAIN 13 8 S1B RBREAK 15 14 13 17 18 S2B RVTO 13 CA CB + EGS 6 8 EDS + 14 5 8 IT 19 VBAT + 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 0.3215 .MODEL DBDMOD D (IS = 7.00e-13 RS = 2.15e-2 TRS1 = 0.5e-3 TRS2 = 3.68e-6 CJO = 1.28e-9 TT = 1.8e-8) .MODEL DBKMOD D (RS = 1.28e-1 TRS1 = 1.69e-3 TRS2 = -2.0e-6) .MODEL DPLCAPMOD D (CJO = 0.84e-9 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 1.63 KP = 11.55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 9.15e-4 TC2 = 3.13e-7) .MODEL RDSMOD RES (TC1 = 7.00e-4 TC2 = 5.00e-6) .MODEL RVTOMOD RES (TC1 = -2.155e-3 TC2 = -2.7e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.05 VOFF= -4.05) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.05 VOFF= -6.05) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.72 VOFF= 4.28) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 4.28 VOFF= -0.72) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991. 4-41 RF3V49092, RF3S49092SM PSPICE Electrical Model SUBCKT RF3V49092 2 1 3 ; P-Channel Model rev 11/8/94 CA 12 8 8.75e-10 CB 15 14 8.65e-10 CIN 6 8 7.65e-10 ESG 5 + 8 6 10 DRAIN 2 LDRAIN DBODY 5 7 DBDMOD DBREAK 7 11 DBKMOD DPLCAP 10 6 DPLCAPMOD RDRAIN DPLCAP EBREAK 5 11 17 18 -23.75 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 5 10 8 6 1 EVTO 20 6 8 18 1 VTO GATE 1 IT 8 17 1 + 21 EVTO 20 + 8 18 LGATE RGATE 9 MOS1 RBREAK 17 18 RBKMOD 1 RDRAIN 5 16 RDSMOD 7.36e-3 RGATE 9 20 6.1 RIN 6 8 1e9 RSOURCE 8 7 RDSMOD 4.56e-2 RVTO 18 19 RVTOMOD 1 RSOURCE 7 LSOURCE 3 SOURCE S2A S1A 12 11 DBREAK CIN 8 MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 MOS2 6 RIN LDRAIN 2 5 1e-9 LGATE 1 9 1.233e-9 LSOURCE 3 7 0.452e-9 S1A S1B S2A S2B DBODY + EBREAK 17 18 16 13 8 S1B RBREAK 15 14 13 17 18 S2B RVTO 13 CA CB + EGS 6 8 EDS + 14 5 8 IT 19 VBAT + 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 -0.558 .MODEL DBDMOD D (IS = 3.0e-13 RS = 4.4e-2 TRS1 = 1.0e-3 TRS2 = -7.37e-6 CJO = 1.27e-9 TT = 2.2e-8) .MODEL DBKMOD D (RS = 7.84e-2 TRS1 = -4.27e-3 TRS2 = 5.77e-5) .MODEL DPLCAPMOD D (CJO = 2.85e-10 IS = 1e-30 N = 10) .MODEL MOSMOD PMOS (VTO = -2.1423 KP = 9.206 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 9.61e-4 TC2 = -1.09e-6) .MODEL RDSMOD RES (TC1 = 2.10e-3 TC2 = 6.99e-6) .MODEL RVTOMOD RES (TC1 = -1.82e-3 TC2 = 1.47e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 5.47 VOFF= 3.47) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 3.47 VOFF= 5.47) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 1.05 VOFF= -3.95) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.95 VOFF= 1.05) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991. All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com 4-42