PHILIPS BF747

DISCRETE SEMICONDUCTORS
DATA SHEET
BF747
NPN 1 GHz wideband transistor
Product specification
File under Discrete Semiconductors, SC14
September 1995
Philips Semiconductors
Product specification
NPN 1 GHz wideband transistor
BF747
FEATURES
DESCRIPTION
• Stable oscillator operation
Low cost NPN transistor in a plastic SOT23 package.
• High current gain
• Good thermal stability.
3
handbook, halfpage
APPLICATIONS
• It is intended for VHF and UHF TV-tuner applications
and can be used as a mixer and/or oscillator.
1
PINNING
PIN
Top view
DESCRIPTION
1
base
2
emitter
3
collector
2
MSB003
Marking code: E15.
Fig.1 SOT23.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
TYP. MAX. UNIT
VCEO
collector-emitter voltage
open base
−
20
V
VCBO
collector-base voltage
open emitter
−
30
V
VEBO
emitter-base voltage
open collector
−
3
V
ICM
peak collector current
−
50
mA
Ptot
total power dissipation
up to Ts = 70 °C; note 1
−
300
mW
fT
transition frequency
IC = 15 mA; VCE = 10 V; f = 500 MHz
1.2
1.6
GHz
Note
1. Ts is the temperature at the soldering point of the collector pin.
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN. MAX. UNIT
VCEO
collector-emitter voltage
open base
−
20
V
VCBO
collector-base voltage
open emitter
−
30
V
VEBO
emitter-base voltage
open collector
−
3
V
ICM
peak collector current
−
50
mA
Ptot
total power dissipation
−
300
mW
Tstg
storage temperature
−55
+150 °C
Tj
junction temperature
−
150
up to Ts = 70 °C; note 1
Note
1. Ts is the temperature at the soldering point of the collector pin.
September 1995
2
°C
Philips Semiconductors
Product specification
NPN 1 GHz wideband transistor
BF747
THERMAL CHARACTERISTICS
SYMBOL
PARAMETER
CONDITIONS
UNIT
260
K/W
up to Ts = 70 °C; note 1
thermal resistance from junction to soldering point
Rth j-s
VALUE
Note
1. Ts is the temperature at the soldering point of the collector pin.
CHARACTERISTICS
Tj = 25 °C unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
−
TYP.
−
MAX.
UNIT
100
nA
ICBO
collector cut-off current
IE = 0; VCB = 10 V
hFE
DC current gain
IC = 2 mA; VCE = 10 V
40
95
250
fT
transition frequency
IC = 15 mA; VCE = 10 V; f = 500 MHz
0.8
1.2
1.6
GHz
Cre
feedback capacitance
IE = ie = 0; VCB = 10 V; f = 1 MHz
−
0.5
−
pF
GUM
maximum unilateral power gain;
note 1
IC = 15 mA; VCE = 10 V; f = 100 MHz
−
20
−
dB
Note
2
1. GUM is the maximum unilateral power gain, assuming S12 is zero and G UM
MBB397
MBB401
400
S 21
= 10 log -------------------------------------------------------------- dB .
2
2


 1 – S 11   1 – S 22 
140
handbook, halfpage
handbook, halfpage
Ptot
(mW)
h FE
300
100
200
60
100
0
0
50
100
150
Ts (oC)
20
10 1
200
1
10
I C (mA)
10 2
VCE = 10 V.
Fig.3
Fig.2 Power derating curve.
September 1995
3
DC current gain as a function of
collector current.
Philips Semiconductors
Product specification
NPN 1 GHz wideband transistor
BF747
MBB400
1.2
Cre
(pF)
fT
(GHz)
0.8
1.0
0.4
0.6
0.2
10−1
0
0
4
8
12
16
20
VCB (V)
IE = ie = 0; f = 1 MHz.
Fig.4
MBB399
1.4
handbook, halfpage
handbook, halfpage
1
10
IC (mA)
102
VCE = 10 V; f = 500 MHz.
Feedback capacitance as a function of
collector-base voltage.
Fig.5
MBB408
MBB407
40
Transition frequency as a function of
collector current.
50
GUM
(dB)
40
handbook, halfpage
handbook, halfpage
GUM
(dB)
30
30
20
20
10
10
0
−10
10
0
0
10
20
IC (mA)
30
VCE = 10 V; f = 100 MHz.
Fig.6
103
f (MHz)
104
IC = 15 mA; VCE = 10 V.
Maximum unilateral power gain as a
function of collector current.
September 1995
102
Fig.7
4
Maximum unilateral power gain as a
function of frequency.
Philips Semiconductors
Product specification
NPN 1 GHz wideband transistor
BF747
MBB398
10
MBB409
8
handbook, halfpage
handbook, halfpage
F
(dB)
VCE sat
(V)
6
1
4
10−1
2
10−2
10−1
1
10
IC (mA)
0
10−1
102
10
IC (mA)
102
VCE = 10 V; ZS = ZL = 50 Ω.; f = 100 MHz.
IC/IB = 10.
Fig.8
1
Collector-emitter saturation voltage as a
function of collector current.
Fig.9
MBB410
0
Common emitter noise figure as a function
of collector current.
MBB413
80
handbook, halfpage
handbook, halfpage
b11 f = 1000 MHz
800
(mS)
600
400
−20
b21
(mS) −5 mA
−10 mA
60
200
IE = −2 mA
−40
40
IE = −2 mA
200
−5 mA
300
500
−60
600
800
f = 1000 MHz
20
−10 mA
−80
10
20
30
40
0
−50
50
60
g11 (mS)
VCB = 10 V.
−30
−20
−10
0
10
g21 (mS)
VCB = 10 V.
Fig.10 Common base input admittance (Y11).
September 1995
−40
Fig.11 Common base forward admittance (Y21).
5
Philips Semiconductors
Product specification
NPN 1 GHz wideband transistor
BF747
MBB411
0
b12
(mS)
−0.5
MBB412
8
handbook, halfpage
handbook, halfpage
b22
(mS)
IE = −10 mA
−5 mA
−2 mA
f = 1000 MHz
6
200
300
−1.0
IE =
−2 mA −5 mA
−10 mA
800
500
600
−1.5
4
600
500
800
300
2
−2.0
200
f = 1000 MHz
−2.5
−0.7
−0.5
−0.3
g12 (mS)
0
−0.1
0
VCB = 10 V.
0.8
1.2
1.6
g22 (mS)
VCB = 10 V.
Fig.12 Common base reverse admittance (Y12).
September 1995
0.4
Fig.13 Common base output admittance (Y22).
6
Philips Semiconductors
Product specification
NPN 1 GHz wideband transistor
BF747
50
handbook, full pagewidth
25
100
10
250
3 GHz
+j
10
0
25
50
100
∞
250
−j
40 MHz
250
10
100
25
MBB403
50
IC = 15 mA; VCE = 10 V; ZO = 50 Ω..
Fig.14 Common emitter input reflection coefficient (S11).
90o
handbook, full pagewidth
120o
60o
40 MHz
150o
30o
+ϕ
180o
20
16
8
4
2
0o
3 GHz
−ϕ
30o
150o
60o
120o
90o
MBB405
IC = 15 mA; VCE = 10 V.
Fig.15 Common emitter forward transmission coefficient (S21).
September 1995
7
Philips Semiconductors
Product specification
NPN 1 GHz wideband transistor
BF747
90o
handbook, full pagewidth
120o
60o
3 GHz
150o
30o
+ϕ
0.1
180o
0.2
0.3
0.4
0.5
40 MHz
0o
−ϕ
30o
150o
60o
120o
90o
MBB406
IC = 15 mA; VCE = 10 V.
Fig.16 Common emitter reverse transmission coefficient (S12).
50
handbook, full pagewidth
25
100
10
250
+j
0
10
25
50
100
250
−j
∞
40 MHz
250
10
3 GHz
100
25
50
MBB404
IC = 15 mA; VCE = 10 V; ZO = 50 Ω..
Fig.17 Common emitter output reflection coefficient (S22).
September 1995
8
Philips Semiconductors
Product specification
NPN 1 GHz wideband transistor
Table 1
BF747
Common base Y-parameters, IE = −2 mA; VCB = 10 V, typical values.
Y21
Y11
f (MHz)
Y12
Y22
REAL
(mS)
IMAG.
(mS)
REAL
(mS)
IMAG.
(mS)
REAL
(mS)
IMAG.
(mS)
REAL
(mS)
IMAG.
(mS)
40
69.0
−10.2
−68.0
12.3
−0.02
−0.1
−0.01
0.3
100
60.4
−20.6
−58.0
25.6
−0.06
−0.3
−0.08
0.7
200
45.0
−27.4
−39.1
34.5
−0.10
−0.6
0.19
1.4
300
34.3
−26.4
−25.4
34.0
−0.20
−0.8
0.29
1.9
400
27.7
−23.3
−17.2
31.1
−0.20
−1.0
0.37
2.5
500
24.0
−20.4
−11.7
27.6
−0.20
−1.2
0.45
3.0
600
21.5
−18.0
−7.8
25.0
−0.20
−1.4
0.53
3.6
700
20.0
−15.6
−5.3
22.6
−0.20
−1.6
0.60
4.2
800
18.6
−14.0
−3.0
20.2
−0.20
−1.8
0.69
4.7
900
18.3
−12.8
−1.3
18.7
−0.20
−2.0
0.82
5.3
1000
17.8
−11.7
−0.1
17.1
−0.20
−2.2
0.95
5.9
Table 2
Common base Y-parameters, IE = −5 mA; VCB = 10 V, typical values.
Y11
f (MHz)
Y21
Y12
Y22
REAL
(mS)
IMAG.
(mS)
REAL
(mS)
IMAG.
(mS)
REAL
(mS)
IMAG.
(mS)
REAL
(mS)
IMAG.
(mS)
40
132.6
−35.7
−130.5
38.8
−0.06
−0.2
−0.06
0.4
100
96.3
−62.0
−91.1
67.9
−0.20
−0.5
0.21
0.8
200
54.7
−57.8
−46.0
64.7
−0.30
−0.7
0.38
1.4
300
37.5
−46.9
−26.4
53.8
−0.40
−0.8
0.47
2.0
400
29.2
−38.6
−16.6
45.8
−0.40
−1.0
0.58
2.5
500
25.3
−32.8
−11.0
39.8
−0.40
−1.3
0.63
3.1
600
22.0
−28.4
−6.3
35.0
−0.40
−1.4
0.71
3.6
700
20.3
−25.2
−3.3
31.4
−0.40
−1.6
0.80
4.2
800
18.7
−22.6
−0.6
27.6
−0.40
−1.9
0.88
4.7
900
17.8
−20.7
1.4
25.2
−0.40
−2.1
1.01
5.3
1000
17.3
−19.1
3.0
23.0
−0.40
−2.3
1.15
6.0
September 1995
9
Philips Semiconductors
Product specification
NPN 1 GHz wideband transistor
Table 3
BF747
Common base Y-parameters, IE = −10 mA; VCB = 10 V, typical values.
Y21
Y11
f (MHZ)
Y12
Y22
REAL
(mS)
IMAG.
(mS)
REAL
(mS)
IMAG.
(mS)
REAL
(mS)
IMAG.
(mS)
REAL
(mS)
IMAG.
(mS)
40
189.0
−79.6
−185.5
83.0
−0.10
−0.3
−0.09
0.4
100
108.5
−99.0
−101.4
105.4
−0.30
−0.5
0.30
0.9
200
55.2
−76.2
−44.6
82.8
−0.50
−0.7
0.44
1.4
300
37.1
−59.0
−24.3
65.7
−0.50
−0.9
0.60
2.0
400
28.8
−47.6
−14.6
54.4
−0.60
−1.0
0.69
2.5
500
24.7
−40.2
−8.6
46.7
−0.60
−1.3
0.75
3.1
600
21.2
−35.0
−3.4
40.8
−0.60
−1.5
0.84
3.6
700
19.3
−31.0
−0.2
36.2
−0.60
−1.7
0.93
4.2
800
17.2
−27.5
2.6
31.1
−0.60
−1.9
1.00
4.7
900
16.4
−25.2
4.6
28.3
−0.60
−2.1
1.15
5.3
1000
15.8
−23.0
6.0
25.5
−0.60
−2.3
1.31
6.0
Table 4
Common base Y-parameters, IE = −15 mA; VCB = 10 V, typical values.
Y11
f (MHz)
REAL
(mS)
Y21
IMAG.
(mS)
REAL
(mS)
Y12
Y22
IMAG.
(mS)
REAL
(mS)
IMAG.
(mS)
REAL
(mS)
IMAG.
(mS)
40
206.5
−113.8
−202.6
118.1
−0.20
−0.3
0.2
0.5
100
104.3
−114.0
−96.4
120.1
−0.40
−0.5
0.4
0.9
200
53.1
−81.1
−41.7
87.7
−0.50
−0.7
0.6
1.4
300
35.9
−62.1
−22.0
68.6
−0.60
−0.8
0.7
2.0
400
28.1
−50.0
−12.5
56.9
−0.60
−1.1
0.8
2.5
500
23.4
−42.3
−6.1
48.2
−0.60
−1.3
0.8
3.1
600
20.1
−36.4
−1.2
41.6
−0.60
−1.5
0.9
3.6
700
18.2
−32.0
2.0
36.7
−0.60
−1.7
1.0
4.2
800
16.2
−28.2
4.5
31.3
−0.60
−1.9
1.1
4.7
900
15.5
−25.7
6.5
28.1
−0.60
−2.1
1.3
5.3
1000
14.7
−23.5
7.9
24.9
−0.60
−2.3
1.4
5.9
September 1995
10
Philips Semiconductors
Product specification
NPN 1 GHz wideband transistor
BF747
PACKAGE OUTLINE
3.0
2.8
handbook, full pagewidth
0.150
0.090
0.55
0.45
B
1.9
0.95
2
1
0.1
max
10 o
max
0.2 M A
A
1.4
1.2
2.5
max
10 o
max
3
1.1
max
30 o
max
0.48
0.38
0.1 M A B
MBC846
TOP VIEW
Dimensions in mm.
Fig.18 SOT23.
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
September 1995
11