HUF76129P3, HUF76129S3S Data Sheet 56A, 30V, 0.016 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs These N-Channel power MOSFETs are manufactured using the innovative UltraFET™ process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable and battery-operated products. September 1999 File Number 4395.6 Features • Logic Level Gate Drive • 56A, 30V • Ultra Low On-Resistance, rDS(ON) = 0.016Ω • Temperature Compensating PSPICE® Model • Temperature Compensating SABER© Model • Thermal Impedance SPICE Model • Thermal Impedance SABER Model • Peak Current vs Pulse Width Curve • UIS Rating Curve Formerly developmental type TA76129. • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Ordering Information Symbol PART NUMBER PACKAGE BRAND HUF76129P3 TO-220AB 76129P HUF76129S3S TO-263AB 76129S D G NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUF76129S3ST. S Packaging JEDEC TO-220AB JEDEC TO-263AB SOURCE DRAIN GATE DRAIN (FLANGE) DRAIN (FLANGE) GATE SOURCE 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation. SABER is a Copyright of Analogy, Inc. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 19999 HUF76129P3, HUF76129S3S Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 30 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 30 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS ±16 V Drain Current Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 56 35 34 Figure 4 A A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS Figures 6, 17, 18 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 0.83 W W/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -40 to 150 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 30 - - V VDS = 25V, VGS = 0V - - 1 µA VDS = 25V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS Gate to Source Leakage Current IGSS ID = 250µA, VGS = 0V (Figure 12) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 56A, VGS = 10V (Figure 9, 10) - 0.014 0.016 Ω ID = 35A, VGS = 5V (Figure 9) - 0.0175 0.021 Ω ID = 34A, VGS = 4.5V - 0.0195 0.023 Ω THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC (Figure 3) - - 1.20 oC/W Thermal Resistance Junction to Ambient RθJA TO-220 and TO-263 - - 62 oC/W tON VDD = 15V, ID ≅ 34A, RL = 0.441Ω, VGS = 4.5V, RGS = 6.8Ω (Figures 15, 21, 22) - - 160 ns - 14 - ns - 90 - ns td(OFF) - 28 - ns tf - 32 - ns tOFF - - 90 ns SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time 2 HUF76129P3, HUF76129S3S TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS - - 62 ns - 11 - ns - 30 - ns td(OFF) - 68 - ns tf - 35 - ns tOFF - - 155 ns - 37 45 nC - 19 23 nC - 1.4 1.7 nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 15V, ID ≅ 56A, RL = 0.268Ω, VGS = 10V, RGS = 8.2Ω (Figures 16, 21, 22) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge VDD = 15V, ID ≅ 35A, RL = 0.429Ω Ig(REF) = 1.0mA (Figures 14, 19, 20) Gate to Source Gate Charge Qgs - 4.50 - nC Gate to Drain “Miller” Charge Qgd - 10.30 - nC - 1350 - pF - 700 - pF - 160 - pF CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage MIN TYP MAX UNITS ISD = 35A - - 1.25 V trr ISD = 35A, dISD/dt = 100A/µs - - 60 ns QRR ISD = 35A, dISD/dt = 100A/µs - - 105 nC VSD Reverse Recovery Time Reverse Recovered Charge TEST CONDITIONS 1.2 60 1.0 50 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER Typical Performance Curves 0.8 0.6 0.4 0.2 VGS = 10V 40 VGS = 4.5V 30 20 10 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE 3 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE HUF76129P3, HUF76129S3S Typical Performance Curves (Continued) 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-1 10-2 t, RECTANGULAR PULSE DURATION (s) 100 101 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 2000 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK IDM, PEAK CURRENT (A) 1000 CURRENT AS FOLLOWS: I VGS = 10V 150 - TC = I25 125 VGS = 5V 100 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 50 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101 FIGURE 4. PEAK CURRENT CAPABILITY TJ = MAX RATED TC = 25oC 100µs 100 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 100 1ms 10 10ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1000 IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 1000 1 STARTING TJ = 25oC STARTING TJ = 150oC 10 BVDSS MAX = 30V 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100 1 0.001 NOTE: FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 4 0.01 1 0.1 tAV, TIME IN AVALANCHE (ms) 10 100 Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY HUF76129P3, HUF76129S3S Typical Performance Curves 80 80 -40oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 5V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 150oC VGS = 4.5V ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) (Continued) 25oC 60 40 20 VGS = 4V 60 VGS = 10V 40 VGS = 3.5V 20 VGS = 3V VDD = 15V 0 0 0 1 2 3 4 VGS, GATE TO SOURCE VOLTAGE (V) 5 0 FIGURE 7. TRANSFER CHARACTERISTICS 30 NORMALIZED DRAIN TO SOURCE ON RESISTANCE rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 1.6 25 ID = 35A 20 ID = 20A 15 10 2 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 4 5 1.4 1.2 1.0 -0 60 120 TJ, JUNCTION TEMPERATURE (oC) 180 FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.15 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA 1.1 NORMALIZED GATE THRESHOLD VOLTAGE 3 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 56A 0.8 -60 10 4 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 1.0 0.9 0.8 0.7 0.6 -60 2 FIGURE 8. SATURATION CHARACTERISTICS PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX ID = 56A 1 VDS, DRAIN TO SOURCE VOLTAGE (V) 0 60 120 TJ, JUNCTION TEMPERATURE (oC) 180 FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 5 ID = 250µA 1.10 1.05 1.00 0.95 0.90 -60 0 60 160 TJ , JUNCTION TEMPERATURE (oC) 180 FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE HUF76129P3, HUF76129S3S Typical Performance Curves 1600 10 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD CISS VGS , GATE TO SOURCE VOLTAGE (V) C, CAPACITANCE (pF) 2000 (Continued) 1200 COSS 800 400 CRSS 0 0 5 15 10 8 6 4 30 WAVEFORMS IN DESCENDING ORDER: ID = 56A ID = 35A ID = 20A 2 0 25 20 VDD = 15V 10 0 VDS , DRAIN TO SOURCE VOLTAGE (V) 40 NOTE: Refer to Intersil Application Notes 7254 and 7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 400 300 VGS = 4.5V, VDD = 15V, ID = 34A, RL = 0.441Ω VGS = 10V, VDD = 15V, ID = 56A, RL = 0.268Ω 250 tr 300 200 SWITCHING TIME (ns) SWITCHING TIME (ns) 30 20 Qg, GATE CHARGE (nC) tf 100 td(ON) td(OFF) td(OFF) 200 tf 150 100 tr 50 td(ON) 0 10 0 20 30 40 0 50 RGS, GATE TO SOURCE RESISTANCE (Ω) 0 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT 6 FIGURE 18. UNCLAMPED ENERGY WAVEFORMS HUF76129P3, HUF76129S3S Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 10 VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 0 10% DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT 7 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM HUF76129P3, HUF76129S3S PSPICE Electrical Model SUBCKT HUF76129 2 1 3 ; REV August 1998 CA 12 8 1.95e-9 CB 15 14 2.06e-9 CIN 6 8 1.18e-9 LDRAIN DPLCAP DRAIN 2 5 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD DBREAK + RSLC2 5 51 ESLC 11 - EBREAK 11 7 17 18 33.5 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LDRAIN 2 5 1e-9 LGATE 1 9 4.02e-9 LSOURCE 3 7 3.45e-9 + 17 EBREAK 18 50 - IT 8 17 1 LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1.3e-3 RGATE 9 20 3.5 RLDRAIN 2 5 10 RLGATE 1 9 40.2 RLSOURCE 3 7 34.5 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 8e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B RLDRAIN RSLC1 51 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 - - IT 14 + + EGS 19 VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*1000),3.5))} .MODEL DBODYMOD D (IS = 1e-12 IKF = 10 RS = 5.6e-3 TRS1 = 5e-4 TRS2 = 1e-6 CJO = 2.23e-9 TT = 2e-7 M = 4e-1 N = 9.9e-1 XTI =4.75 ) .MODEL DBREAKMOD D (RS = 1.5e-1 IS = 1e-14 TRS1 = 9e-4 TRS2 = -2e-5 IKF = 1e-1) .MODEL DPLCAPMOD D (CJO = 1.12e-9 IS = 1e-30 N = 10 M = 6.7e-1 VJ = 1.45) .MODEL MMEDMOD NMOS (VTO = 2 KP = 5.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.6) .MODEL MSTROMOD NMOS (VTO = 2.3 KP = 80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.62 KP =2e-2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 36) .MODEL RBREAKMOD RES (TC1 = 9.8e-4 TC2 = -1e-10) .MODEL RDRAINMOD RES (TC1 = 2e-2 TC2 = 1e-7) .MODEL RSLCMOD RES (TC1 = 1e-6 TC2 = 1.05e-6) .MODEL RSOURCEMOD RES (TC1 = 5e-4 TC2 = 1e-5) .MODEL RVTHRESMOD RES (TC1 = -2e-3 TC2 = -1.1e-5) .MODEL RVTEMPMOD RES (TC1 = -1.65e-3 TC2 = 1.45e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.3 VOFF = -2.0) VON = -2.0 VOFF = -4.3) VON = -0.8 VOFF = 0.5) VON = 0.5 VOFF = -0.8) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 8 HUF76129P3, HUF76129S3S Saber Electrical Model nom temp=25 deg c 30v LL Ultrafet REV August 1998 template huf76129 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is=1.e-12, xti=4.75, cjo=2.23e-9,tt=20e-8, m=4e-1, n=9.9e-1) d..model dbreakmod = (is=1e-14) d..model dplcapmod = (cjo=1.12e-9,is=1e-30,n=10,m=6.7e-1, vj=1.45,) m..model mmedmod = (type=_n,vto=2,kp=5.75,is=1e-30, tox=1) DPLCAP m..model mstrongmod = (type=_n,vto=2.3,kp=80,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.62,kp=2e-2,is=1e-30, tox=1) 10 sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4.3,voff=-2) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2,voff=-4.3) sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.8,voff=0.5) RSLC2 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-0.8) c.ca n12 n8 = 1.95e-9 c.cb n15 n14 = 2.06e-9 c.cin n6 n8 = 1.18e-9 LDRAIN RSLC1 51 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 GATE 1 72 RDRAIN 6 8 EVTHRES + 19 8 EVTEMP RGATE + 18 22 9 20 21 MWEAK MSTRO CIN DBODY EBREAK + 17 18 MMED RLGATE 71 11 16 6 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 4.02e-9 l.lsource n3 n7 = 3.45e-9 RDBODY DBREAK 50 + LGATE RLDRAIN RDBREAK ISCL ESG DRAIN 2 5 - 8 LSOURCE 7 RSOURCE RLSOURCE m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=9.8e-4,tc2=-1e-9 res.rdbody n71 n5 =5.6e-3, tc1=5e-4, tc2=1e-6 res.rdbreak n72 n5 =1.5e-1, tc1=9e-4, tc2=-2e-5 res.rdrain n50 n16 = 1.3e-3, tc1=2e-2,tc2=1e-7 res.rgate n9 n20 = 3.5 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 40.2 res.rlsource n3 n7 = 34.5 res.rslc1 n5 n51 = 1e-6, tc1=1e-6,tc2=-1.05e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 8e-3, tc1=5e-4,tc2=1e-5 res.rvtemp n18 n19 = 1, tc1=-1.65e-3,tc2=1.45e-9 res.rvthres n22 n8 = 1, tc1=-2e-3,tc2=-1.1e-5 S1A 12 S2A 13 8 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/1000))** 3.5 )) } } VBAT 5 8 EDS - - IT 14 + + spe.ebreak n11 n7 n17 n18 = 33.5 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 9 RBREAK 15 14 13 - + 8 22 RVTHRES SOURCE 3 HUF76129P3, HUF76129S3S SPICE Thermal Model th JUNCTION REV August 1998 HUF76129 CTHERM1 th 6 1.10e-5 CTHERM2 6 5 2.70e-2 CTHERM3 5 4 3.90e-2 CTHERM4 4 3 1.00e-2 CTHERM5 3 2 2.30e-2 CTHERM6 2 tl 1.80 RTHERM1 CTHERM1 6 RTHERM1 th 6 1.00e-4 RTHERM2 6 5 5.00e-4 RTHERM3 5 4 2.90e-2 RTHERM4 4 3 4.80e-1 RTHERM5 3 2 2.80e-1 RTHERM6 2 tl 1.00e-1 RTHERM2 CTHERM2 5 Saber Thermal Model RTHERM3 CTHERM3 Saber thermal model HUF76129 4 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th c2 =1.10e-5 ctherm.ctherm2 c2 c3 =2.70e-2 ctherm.ctherm3 c3 c4 =3.90e-2 ctherm.ctherm4 c4 c5 =1.00e-2 ctherm.ctherm5 c5 c6 =2.30e-2 ctherm.ctherm6 c6 tl=1.80 RTHERM4 CTHERM4 3 RTHERM5 rtherm.rtherm1 th c2 =1.00e-4 rtherm.rtherm2 c2 c3 =5.00e-4 rtherm.rtherm3 c3 c4 =2.90e-2 rtherm.rtherm4 c4 c5 =4.80e-1 rtherm.rtherm5 c5 c6 =2.80e-1 rtherm.rtherm6 c6 tl=1.00e-1 } CTHERM5 2 RTHERM6 CTHERM6 tl CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 10