PD-96288 INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • Low VCE (ON) trench IGBT technology Low switching losses Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) temperature co-efficient Ultra fast soft recovery co-pak diode Tight parameter distribution Lead-Free IRG7PH35UDPbF IRG7PH35UD-EP C VCES = 1200V I NOMINAL = 20A G TJ(max) = 150°C E Benefits • High efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to low VCE (ON) and low switching losses • Rugged transient performance for increased reliability • Excellent current sharing in parallel operation C Applications • • • • VCE(on) typ. = 1.9V n-channel C GC E U.P.S. Welding Solar Inverter Induction Heating GC E TO-247AC IRG7PH35UDPbF G Gate TO-247AD IRG7PH35UD-EP C Collector E Emitter Absolute Maximum Ratings Parameter Max. Units V VCES Collector-to-Emitter Voltage 1200 IC @ TC = 25°C Continuous Collector Current 50 IC @ TC = 100°C Continuous Collector Current 25 INOMINAL Nominal Current 20 ICM Pulse Collector Current, VGE=15V 60 ILM Clamped Inductive Load Current, VGE=20V IF @ TC = 25°C Diode Continous Forward Current c A 80 50 IF @ TC = 100°C Diode Continous Forward Current IFM Diode Maximum Forward Current VGE Continuous Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 180 PD @ TC = 100°C Maximum Power Dissipation 70 TJ Operating Junction and TSTG Storage Temperature Range 25 d 80 V W -55 to +150 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter f RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) 1 Min. Typ. Max. ––– ––– 0.70 ––– ––– 0.65 ––– 0.24 ––– ––– 40 ––– Units °C/W www.irf.com 02/08/10 IRG7PH35UDPbF/IRG7PH35UD-EP Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 1200 — — V ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 1.2 — V/°C VCE(on) Collector-to-Emitter Saturation Voltage — 1.9 2.2 V — 2.3 — 3.0 — 6.0 VGE(th) Gate Threshold Voltage V Threshold Voltage temp. coefficient — -16 — gfe ICES Forward Transconductance — 22 — S Collector-to-Emitter Leakage Current — 2.0 100 µA — 2000 — — 2.8 3.6 — 2.5 — — — ±100 IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current e VGE = 0V, IC = 1mA (25°C-150°C) IC = 20A, VGE = 15V, TJ = 25°C IC = 20A, VGE = 15V, TJ = 150°C ∆VGE(th)/∆TJ VFM Conditions VGE = 0V, IC = 250µA VCE = VGE, IC = 600µA mV/°C VCE = VGE, IC = 600µA (25°C - 150°C) VCE = 50V, IC = 20A, PW = 30µs VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 150°C V IF = 20A IF = 20A, TJ = 150°C nA VGE = ±30V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Total Gate Charge (turn-on) Min. Typ. Max. — 85 130 Qge Gate-to-Emitter Charge (turn-on) — 15 20 Qgc Gate-to-Collector Charge (turn-on) — 35 50 Eon Turn-On Switching Loss — 1060 1300 Eoff Turn-Off Switching Loss — 620 850 Etotal Total Switching Loss — 1680 2150 td(on) Turn-On delay time — 30 50 tr Rise time — 15 30 td(off) Turn-Off delay time — 160 180 tf Fall time — 80 105 Eon Turn-On Switching Loss — 1750 — Eoff Turn-Off Switching Loss — 1120 — Etotal Total Switching Loss — 2870 — Units Conditions IC = 20A nC VGE = 15V VCC = 600V IC = 20A, VCC = 600V, VGE = 15V µJ RG = 10Ω, L = 200uH, LS = 150nH, TJ = 25°C Energy losses include tail & diode reverse recovery IC = 20A, VCC = 600V, VGE = 15V ns RG = 10Ω, L = 200uH, LS = 150nH, TJ = 25°C IC = 20A, VCC = 600V, VGE=15V µJ RG=10Ω, L=200uH, LS=150nH, TJ = 150°C e Energy losses include tail & diode reverse recovery td(on) Turn-On delay time — 30 — tr Rise time — 15 — IC = 20A, VCC = 600V, VGE = 15V td(off) Turn-Off delay time — 190 — tf Fall time — 210 — Cies Input Capacitance — 1940 — Coes Output Capacitance — 120 — VCC = 30V Cres Reverse Transfer Capacitance — 40 — f = 1.0Mhz TJ = 150°C, IC = 80A RBSOA Reverse Bias Safe Operating Area FULL SQUARE ns RG = 10Ω, L = 200uH, LS = 150nH TJ = 150°C pF VGE = 0V VCC = 960V, Vp =1200V Rg = 10Ω, VGE = +20V to 0V Erec trr Reverse Recovery Energy of the Diode — 790 — µJ TJ = 150°C Diode Reverse Recovery Time — 105 — ns VCC = 600V, IF = 20A Irr Peak Reverse Recovery Current — 40 — A VGE = 15V, Rg = 10Ω, L =1.0mH, Ls = 150nH Notes: VCC = 80% (VCES), VGE = 20V, RG = 50Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rθ is measured at TJ of approximately 90°C. 2 www.irf.com IRG7PH35UDPbF/IRG7PH35UD-EP 45 For both: Duty cycle : 50% Tj = 150°C Tc = 100°C Gate drive as specified Power Dissipation = 70W 40 35 Load Current ( A ) 30 Square Wave: VCC 25 20 I 15 10 Diode as specified 5 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 60 200 50 150 Ptot (W) IC (A) 40 30 100 20 50 10 0 25 50 75 100 125 0 150 0 T C (°C) 20 40 60 80 100 120 140 160 T C (°C) Fig. 2 - Maximum DC Collector Current vs. Case Temperature Fig. 3- Power Dissipation vs. Case Temperature 1000 1000 100 100 IC (A) DC 1 100µsec 1msec 0.1 IC (A) 10µsec 10 10 Tc = 25°C Tj = 150°C Single Pulse 0.01 1 1 10 100 1000 VCE (V) Fig. 4 - Forward SOA TC = 25°C, TJ ≤ 150°C; VGE =15V www.irf.com 10000 10 100 1000 10000 VCE (V) Fig. 5 - Reverse Bias SOA TJ = 150°C; VGE = 20V 3 IRG7PH35UDPbF/IRG7PH35UD-EP 80 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 60 ICE (A) 50 70 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 60 50 ICE (A) 70 40 40 30 30 20 20 10 10 0 0 0 2 4 6 8 0 10 2 4 Fig. 6- Typ. IGBT Output Characteristics TJ = -40°C; tp = 30µs 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 70 60 -40°C 25°C 150°C 70 60 50 IF (A) 50 ICE (A) 10 Fig. 7 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 30µs 80 40 40 30 30 20 20 10 10 0 0 0 2 4 6 8 0 10 1 2 Fig. 8 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 30µs 7 7 6 6 VCE (V) 8 ICE = 10A ICE = 20A 4 4 5 6 Fig. 9 - Typ. Diode Forward Characteristics tp = 380µs 8 5 3 VF (V) VCE (V) VCE (V) 8 VCE (V) VCE (V) ICE = 40A 5 ICE = 10A ICE = 20A ICE = 40A 4 3 3 2 2 1 1 4 8 12 16 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = -40°C 4 6 20 5 10 15 20 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 25°C www.irf.com IRG7PH35UDPbF/IRG7PH35UD-EP 80 8 ICE = 10A ICE = 20A ICE = 40A VCE (V) 6 5 70 IC, Collector-to-Emitter Current (A) 7 4 3 2 60 50 40 TJ = 150°C 30 20 T J = 25°C 10 0 1 5 10 15 4 20 5 VGE (V) 7 8 9 10 Fig. 13 - Typ. Transfer Characteristics VCE = 50V, tp = 30µs Fig. 12 - Typical VCE vs. VGE TJ = 150°C 4000 6 VGE, Gate-to-Emitter Voltage (V) 1000 tdOFF Swiching Time (ns) Energy (µJ) 3000 EON 2000 EOFF tF 100 tdON 10 tR 1000 0 1 0 10 20 30 40 0 10 20 IC (A) 30 40 IC (A) Fig. 14 - Typ. Energy Loss vs. IC TJ = 150°C; L = 680µH; VCE = 600V, RG = 10Ω; VGE = 15V Fig. 15 - Typ. Switching Time vs. IC TJ = 150°C; L = 680µH; VCE = 600V, RG = 10Ω; VGE = 15V 10000 3500 3000 Energy (µJ) Swiching Time (ns) EON 2500 2000 EOFF 1500 td OFF 1000 tF 100 tdON 1000 0 20 40 60 80 100 RG (Ω) Fig. 16 - Typ. Energy Loss vs. RG TJ = 150°C; L = 680µH; VCE = 600V, ICE = 20A; VGE = 15V www.irf.com tR 10 500 0 20 40 60 80 100 RG (Ω) Fig. 17 - Typ. Switching Time vs. RG TJ = 150°C; L = 680µH; VCE = 600V, ICE = 20A; VGE = 15V 5 IRG7PH35UDPbF/IRG7PH35UD-EP 50 60 RG = 5.0Ω 45 40 RG = 10Ω 40 IRR (A) IRR (A) 50 RG = 47Ω 30 35 30 RG = 100Ω 20 25 20 10 10 15 20 25 30 35 0 40 20 40 IF (A) Fig. 18 - Typ. Diode IRR vs. IF TJ = 150°C 55 6000 50 5000 40A QRR (µC) IRR (A) 100 5.0Ω 4000 40 35 10Ω 47Ω 3000 20A 100Ω 2000 30 10A 1000 25 0 20 200 400 600 0 800 1000 1200 1400 1600 200 400 600 800 10001200140016001800 diF /dt (A/µs) diF /dt (A/µs) 2000 RG = 5.0 Ω RG = 10 Ω RG = 47Ω 1500 RG = 100Ω 1000 500 0 10 15 Fig. 21 - Typ. Diode QRR vs. diF/dt VCC = 600V; VGE = 15V; TJ = 150°C VGE(th) , Gate Threshold Voltage (Normalized) Fig. 20 - Typ. Diode IRR vs. diF/dt VCC = 600V; VGE = 15V; IF = 20A; TJ = 150°C Energy (µJ) 80 Fig. 19 - Typ. Diode IRR vs. RG TJ = 150°C 45 20 25 IF (A) 30 35 Fig. 22 - Typ. Diode ERR vs. IF TJ = 150°C 6 60 RG (Ω) 40 5.0 IC = 600µA 4.0 3.0 2.0 1.0 25 50 75 100 125 150 175 T J , Temperature (°C) Fig. 23 - Typical Gate Threshold Voltage (Normalized) vs. Junction Temperature www.irf.com IRG7PH35UDPbF/IRG7PH35UD-EP 16 VGE, Gate-to-Emitter Voltage (V) 10000 Capacitance (pF) Cies 1000 100 Coes Cres 14 VCES = 600V VCES = 400V 12 10 8 6 4 2 0 10 0 100 200 300 400 500 0 600 20 40 60 80 100 Q G, Total Gate Charge (nC) VCE (V) Fig. 24 - Typical Gate Charge vs. VGE ICE = 20A; L = 2.4mH Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 τJ 0.01 0.01 1E-005 τJ τ1 R2 R2 R3 R3 Ri (°C/W) R4 R4 τC τ τ2 τ1 τ3 τ2 τ4 τ3 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 R1 R1 τ4 τi (sec) 0.017 0.000013 0.218 0.000141 0.299 0.002184 0.177 0.013107 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 τJ 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 R1 R1 τJ τ1 R2 R2 R3 R3 τC τ τ2 τ1 τ2 τ3 τ4 τ3 Ci= τi/Ri Ci i/Ri τ4 τi (sec) Ri (°C/W) R4 R4 0.015 0.000043 0.235 0.000408 0.281 0.003593 0.130 0.020382 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRG7PH35UDPbF/IRG7PH35UD-EP L L DUT 0 80 V + VCC - 1K DUT VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT R= VCC ICM L -5V VCC DUT DUT / DRIVER VCC Rg Rg Fig.C.T.4 - Resistive Load Circuit Fig.C.T.3 - Switching Loss Circuit C force 100K D1 22K C sense G force DUT 0.0075µF E sense E force Fig.C.T.5 - BVCES Filter Circuit 8 www.irf.com IRG7PH35UDPbF/IRG7PH35UD-EP 800 35 700 30 600 25 500 50 400 20 400 40 300 15 90% ICE VCE (V) 500 5% V CE 200 5% ICE 100 0 -100 -0.5 Eoff Loss 0 0.5 200 5 100 0 0 1.5 60 TEST CURRENT 90% test current 30 20 10% test current 5% V CE 10 0 Eon Loss -100 -0.3 2 70 tr 300 10 -5 1 80 ICE (A) 600 ICE (A) tf 700 VCE (V) 40 800 -0.1 0.1 0.3 -10 0.5 time (µs) time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 30 EREC 20 t RR 10 VF (V) 0 -10 -20 Peak IRR 10% Peak IRR -30 -40 -50 -0.25 -0.05 0.15 0.35 0.55 time (µS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com 9 IRG7PH35UDPbF/IRG7PH35UD-EP TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRG7PH35UDPbF/IRG7PH35UD-EP TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information (;$03/( 7+,6,6$1,5*3%.'( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH 3$57180%(5 ,17(51$7,21$/ 5(&7,),(5 /2*2 + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/2010 www.irf.com 11