IRF IRG7PH35UDPBF

PD-96288
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
•
•
•
•
•
•
•
•
Low VCE (ON) trench IGBT technology
Low switching losses
Square RBSOA
100% of the parts tested for ILM 
Positive VCE (ON) temperature co-efficient
Ultra fast soft recovery co-pak diode
Tight parameter distribution
Lead-Free
IRG7PH35UDPbF
IRG7PH35UD-EP
C
VCES = 1200V
I NOMINAL = 20A
G
TJ(max) = 150°C
E
Benefits
• High efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
low VCE (ON) and low switching losses
• Rugged transient performance for increased reliability
• Excellent current sharing in parallel operation
C
Applications
•
•
•
•
VCE(on) typ. = 1.9V
n-channel
C
GC E
U.P.S.
Welding
Solar Inverter
Induction Heating
GC E
TO-247AC
IRG7PH35UDPbF
G
Gate
TO-247AD
IRG7PH35UD-EP
C
Collector
E
Emitter
Absolute Maximum Ratings
Parameter
Max.
Units
V
VCES
Collector-to-Emitter Voltage
1200
IC @ TC = 25°C
Continuous Collector Current
50
IC @ TC = 100°C
Continuous Collector Current
25
INOMINAL
Nominal Current
20
ICM
Pulse Collector Current, VGE=15V
60
ILM
Clamped Inductive Load Current, VGE=20V
IF @ TC = 25°C
Diode Continous Forward Current
c
A
80
50
IF @ TC = 100°C
Diode Continous Forward Current
IFM
Diode Maximum Forward Current
VGE
Continuous Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
180
PD @ TC = 100°C
Maximum Power Dissipation
70
TJ
Operating Junction and
TSTG
Storage Temperature Range
25
d
80
V
W
-55 to +150
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
f
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
1
Min.
Typ.
Max.
–––
–––
0.70
–––
–––
0.65
–––
0.24
–––
–––
40
–––
Units
°C/W
www.irf.com
02/08/10
IRG7PH35UDPbF/IRG7PH35UD-EP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Units
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
1200
—
—
V
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
1.2
—
V/°C
VCE(on)
Collector-to-Emitter Saturation Voltage
—
1.9
2.2
V
—
2.3
—
3.0
—
6.0
VGE(th)
Gate Threshold Voltage
V
Threshold Voltage temp. coefficient
—
-16
—
gfe
ICES
Forward Transconductance
—
22
—
S
Collector-to-Emitter Leakage Current
—
2.0
100
µA
—
2000
—
—
2.8
3.6
—
2.5
—
—
—
±100
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
e
VGE = 0V, IC = 1mA (25°C-150°C)
IC = 20A, VGE = 15V, TJ = 25°C
IC = 20A, VGE = 15V, TJ = 150°C
∆VGE(th)/∆TJ
VFM
Conditions
VGE = 0V, IC = 250µA
VCE = VGE, IC = 600µA
mV/°C VCE = VGE, IC = 600µA (25°C - 150°C)
VCE = 50V, IC = 20A, PW = 30µs
VGE = 0V, VCE = 1200V
VGE = 0V, VCE = 1200V, TJ = 150°C
V
IF = 20A
IF = 20A, TJ = 150°C
nA
VGE = ±30V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Total Gate Charge (turn-on)
Min.
Typ.
Max.
—
85
130
Qge
Gate-to-Emitter Charge (turn-on)
—
15
20
Qgc
Gate-to-Collector Charge (turn-on)
—
35
50
Eon
Turn-On Switching Loss
—
1060
1300
Eoff
Turn-Off Switching Loss
—
620
850
Etotal
Total Switching Loss
—
1680
2150
td(on)
Turn-On delay time
—
30
50
tr
Rise time
—
15
30
td(off)
Turn-Off delay time
—
160
180
tf
Fall time
—
80
105
Eon
Turn-On Switching Loss
—
1750
—
Eoff
Turn-Off Switching Loss
—
1120
—
Etotal
Total Switching Loss
—
2870
—
Units
Conditions
IC = 20A
nC
VGE = 15V
VCC = 600V
IC = 20A, VCC = 600V, VGE = 15V
µJ
RG = 10Ω, L = 200uH, LS = 150nH, TJ = 25°C
Energy losses include tail & diode reverse recovery
IC = 20A, VCC = 600V, VGE = 15V
ns
RG = 10Ω, L = 200uH, LS = 150nH, TJ = 25°C
IC = 20A, VCC = 600V, VGE=15V
µJ
RG=10Ω, L=200uH, LS=150nH, TJ = 150°C
e
Energy losses include tail & diode reverse recovery
td(on)
Turn-On delay time
—
30
—
tr
Rise time
—
15
—
IC = 20A, VCC = 600V, VGE = 15V
td(off)
Turn-Off delay time
—
190
—
tf
Fall time
—
210
—
Cies
Input Capacitance
—
1940
—
Coes
Output Capacitance
—
120
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
40
—
f = 1.0Mhz
TJ = 150°C, IC = 80A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
ns
RG = 10Ω, L = 200uH, LS = 150nH
TJ = 150°C
pF
VGE = 0V
VCC = 960V, Vp =1200V
Rg = 10Ω, VGE = +20V to 0V
Erec
trr
Reverse Recovery Energy of the Diode
—
790
—
µJ
TJ = 150°C
Diode Reverse Recovery Time
—
105
—
ns
VCC = 600V, IF = 20A
Irr
Peak Reverse Recovery Current
—
40
—
A
VGE = 15V, Rg = 10Ω, L =1.0mH, Ls = 150nH
Notes:
 VCC = 80% (VCES), VGE = 20V, RG = 50Ω.
‚ Pulse width limited by max. junction temperature.
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
„ Rθ is measured at TJ of approximately 90°C.
2
www.irf.com
IRG7PH35UDPbF/IRG7PH35UD-EP
45
For both:
Duty cycle : 50%
Tj = 150°C
Tc = 100°C
Gate drive as specified
Power Dissipation = 70W
40
35
Load Current ( A )
30
Square Wave:
VCC
25
20
I
15
10
Diode as specified
5
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
60
200
50
150
Ptot (W)
IC (A)
40
30
100
20
50
10
0
25
50
75
100
125
0
150
0
T C (°C)
20
40
60
80
100 120 140 160
T C (°C)
Fig. 2 - Maximum DC Collector Current vs.
Case Temperature
Fig. 3- Power Dissipation vs. Case
Temperature
1000
1000
100
100
IC (A)
DC
1
100µsec
1msec
0.1
IC (A)
10µsec
10
10
Tc = 25°C
Tj = 150°C
Single Pulse
0.01
1
1
10
100
1000
VCE (V)
Fig. 4 - Forward SOA
TC = 25°C, TJ ≤ 150°C; VGE =15V
www.irf.com
10000
10
100
1000
10000
VCE (V)
Fig. 5 - Reverse Bias SOA
TJ = 150°C; VGE = 20V
3
IRG7PH35UDPbF/IRG7PH35UD-EP
80
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
60
ICE (A)
50
70
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
60
50
ICE (A)
70
40
40
30
30
20
20
10
10
0
0
0
2
4
6
8
0
10
2
4
Fig. 6- Typ. IGBT Output Characteristics
TJ = -40°C; tp = 30µs
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
70
60
-40°C
25°C
150°C
70
60
50
IF (A)
50
ICE (A)
10
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 30µs
80
40
40
30
30
20
20
10
10
0
0
0
2
4
6
8
0
10
1
2
Fig. 8 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 30µs
7
7
6
6
VCE (V)
8
ICE = 10A
ICE = 20A
4
4
5
6
Fig. 9 - Typ. Diode Forward Characteristics
tp = 380µs
8
5
3
VF (V)
VCE (V)
VCE (V)
8
VCE (V)
VCE (V)
ICE = 40A
5
ICE = 10A
ICE = 20A
ICE = 40A
4
3
3
2
2
1
1
4
8
12
16
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = -40°C
4
6
20
5
10
15
20
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 25°C
www.irf.com
IRG7PH35UDPbF/IRG7PH35UD-EP
80
8
ICE = 10A
ICE = 20A
ICE = 40A
VCE (V)
6
5
70
IC, Collector-to-Emitter Current (A)
7
4
3
2
60
50
40
TJ = 150°C
30
20
T J = 25°C
10
0
1
5
10
15
4
20
5
VGE (V)
7
8
9
10
Fig. 13 - Typ. Transfer Characteristics
VCE = 50V, tp = 30µs
Fig. 12 - Typical VCE vs. VGE
TJ = 150°C
4000
6
VGE, Gate-to-Emitter Voltage (V)
1000
tdOFF
Swiching Time (ns)
Energy (µJ)
3000
EON
2000
EOFF
tF
100
tdON
10
tR
1000
0
1
0
10
20
30
40
0
10
20
IC (A)
30
40
IC (A)
Fig. 14 - Typ. Energy Loss vs. IC
TJ = 150°C; L = 680µH; VCE = 600V, RG = 10Ω; VGE = 15V
Fig. 15 - Typ. Switching Time vs. IC
TJ = 150°C; L = 680µH; VCE = 600V, RG = 10Ω; VGE = 15V
10000
3500
3000
Energy (µJ)
Swiching Time (ns)
EON
2500
2000
EOFF
1500
td OFF
1000
tF
100
tdON
1000
0
20
40
60
80
100
RG (Ω)
Fig. 16 - Typ. Energy Loss vs. RG
TJ = 150°C; L = 680µH; VCE = 600V, ICE = 20A; VGE = 15V
www.irf.com
tR
10
500
0
20
40
60
80
100
RG (Ω)
Fig. 17 - Typ. Switching Time vs. RG
TJ = 150°C; L = 680µH; VCE = 600V, ICE = 20A; VGE = 15V
5
IRG7PH35UDPbF/IRG7PH35UD-EP
50
60
RG = 5.0Ω
45
40
RG = 10Ω
40
IRR (A)
IRR (A)
50
RG = 47Ω
30
35
30
RG = 100Ω
20
25
20
10
10
15
20
25
30
35
0
40
20
40
IF (A)
Fig. 18 - Typ. Diode IRR vs. IF
TJ = 150°C
55
6000
50
5000
40A
QRR (µC)
IRR (A)
100
5.0Ω
4000
40
35
10Ω
47Ω
3000
20A
100Ω
2000
30
10A
1000
25
0
20
200
400
600
0
800 1000 1200 1400 1600
200 400 600 800 10001200140016001800
diF /dt (A/µs)
diF /dt (A/µs)
2000
RG = 5.0 Ω
RG = 10 Ω
RG = 47Ω
1500
RG = 100Ω
1000
500
0
10
15
Fig. 21 - Typ. Diode QRR vs. diF/dt
VCC = 600V; VGE = 15V; TJ = 150°C
VGE(th) , Gate Threshold Voltage (Normalized)
Fig. 20 - Typ. Diode IRR vs. diF/dt
VCC = 600V; VGE = 15V; IF = 20A; TJ = 150°C
Energy (µJ)
80
Fig. 19 - Typ. Diode IRR vs. RG
TJ = 150°C
45
20
25
IF (A)
30
35
Fig. 22 - Typ. Diode ERR vs. IF
TJ = 150°C
6
60
RG (Ω)
40
5.0
IC = 600µA
4.0
3.0
2.0
1.0
25
50
75
100
125
150
175
T J , Temperature (°C)
Fig. 23 - Typical Gate Threshold Voltage
(Normalized) vs. Junction Temperature
www.irf.com
IRG7PH35UDPbF/IRG7PH35UD-EP
16
VGE, Gate-to-Emitter Voltage (V)
10000
Capacitance (pF)
Cies
1000
100
Coes
Cres
14
VCES = 600V
VCES = 400V
12
10
8
6
4
2
0
10
0
100
200
300
400
500
0
600
20
40
60
80
100
Q G, Total Gate Charge (nC)
VCE (V)
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 20A; L = 2.4mH
Fig. 23 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
τJ
0.01
0.01
1E-005
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
R4
R4
τC
τ
τ2
τ1
τ3
τ2
τ4
τ3
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
R1
R1
τ4
τi (sec)
0.017
0.000013
0.218
0.000141
0.299
0.002184
0.177
0.013107
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
τJ
0.001
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ
τ2
τ1
τ2
τ3
τ4
τ3
Ci= τi/Ri
Ci i/Ri
τ4
τi (sec)
Ri (°C/W)
R4
R4
0.015
0.000043
0.235
0.000408
0.281
0.003593
0.130
0.020382
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRG7PH35UDPbF/IRG7PH35UD-EP
L
L
DUT
0
80 V +
VCC
-
1K
DUT
VCC
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp /
DUT
R=
VCC
ICM
L
-5V
VCC
DUT
DUT /
DRIVER
VCC
Rg
Rg
Fig.C.T.4 - Resistive Load Circuit
Fig.C.T.3 - Switching Loss Circuit
C force
100K
D1
22K
C sense
G force
DUT
0.0075µF
E sense
E force
Fig.C.T.5 - BVCES Filter Circuit
8
www.irf.com
IRG7PH35UDPbF/IRG7PH35UD-EP
800
35
700
30
600
25
500
50
400
20
400
40
300
15
90% ICE
VCE (V)
500
5% V CE
200
5% ICE
100
0
-100
-0.5
Eoff Loss
0
0.5
200
5
100
0
0
1.5
60
TEST CURRENT
90% test current
30
20
10% test
current
5% V CE
10
0
Eon Loss
-100
-0.3
2
70
tr
300
10
-5
1
80
ICE (A)
600
ICE (A)
tf
700
VCE (V)
40
800
-0.1
0.1
0.3
-10
0.5
time (µs)
time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
30
EREC
20
t RR
10
VF (V)
0
-10
-20
Peak
IRR
10%
Peak
IRR
-30
-40
-50
-0.25
-0.05
0.15
0.35
0.55
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
9
IRG7PH35UDPbF/IRG7PH35UD-EP
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)3(
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRG7PH35UDPbF/IRG7PH35UD-EP
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
(;$03/( 7+,6,6$1,5*3%.'(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
3$57180%(5
,17(51$7,21$/
5(&7,),(5
/2*2
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/2010
www.irf.com
11