MJE18006G SWITCHMODEt NPN Bipolar Power Transistor For Switching Power Supply Applications The MJE18006G has an applications specific state−of−the−art die designed for use in 220 V line−operated SWITCHMODE Power supplies and electronic light ballasts. Features • Improved Efficiency Due to Low Base Drive Requirements: High and Flat DC Current Gain hFE Fast Switching ♦ No Coil Required in Base Circuit for Turn−Off (No Current Tail) Tight Parametric Distributions are Consistent Lot−to−Lot Standard TO−220 These Devices are Pb−Free and are RoHS Compliant* ♦ http://onsemi.com POWER TRANSISTOR 6.0 AMPERES 1000 VOLTS − 100 WATTS ♦ • • • TO−220AB CASE 221A−09 STYLE 1 MAXIMUM RATINGS Symbol Value Unit Collector−Emitter Sustaining Voltage Rating VCEO 450 Vdc Collector−Emitter Breakdown Voltage VCES 1000 Vdc Emitter−Base Voltage VEBO 9.0 Vdc 1 2 3 Collector Current − Continuous − Peak (Note 1) IC ICM 6.0 15 Adc Base Current − Continuous − Peak (Note 1) IB IBM 4.0 8.0 Adc PD 100 0.8 W W/_C MJE18006G TJ, Tstg −65 to 150 _C AY WW Total Device Dissipation @ TC = 25_C Derate above 25°C Operating and Storage Temperature MARKING DIAGRAM THERMAL CHARACTERISTICS Symbol Max Unit Thermal Resistance, Junction−to−Case Characteristics RqJC 1.25 _C/W Thermal Resistance, Junction−to−Ambient RqJA 62.5 _C/W Maximum Lead Temperature for Soldering Purposes 1/8″ from Case for 5 Seconds TL 260 _C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%. A Y WW G = Assembly Location = Year = Work Week = Pb−Free Package ORDERING INFORMATION Device MJE18006G Package Shipping TO−220 (Pb−Free) 50 Units / Rail *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2010 April, 2010 − Rev. 7 1 Publication Order Number: MJE18006/D MJE18006G ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise specified) Characteristic Symbol Min Typ Max Unit VCEO(sus) 450 − − Vdc Collector Cutoff Current (VCE = Rated VCEO, IB = 0) ICEO − − 100 mAdc Collector Cutoff Current (VCE = Rated VCES, VEB = 0) ICES − − − − − − 100 500 100 mAdc IEBO − − 100 mAdc Base−Emitter Saturation Voltage (IC = 1.3 Adc, IB = 0.13 Adc) Base−Emitter Saturation Voltage (IC = 3.0 Adc, IB = 0.6 Adc) VBE(sat) − − 0.83 0.94 1.2 1.3 Vdc Collector−Emitter Saturation Voltage (IC = 1.3 Adc, IB = 0.13 Adc) VCE(sat) − − − − 0.25 0.27 0.35 0.4 0.6 0.65 0.7 0.8 hFE 14 − 6.0 5.0 11 10 − 32 10 8.0 17 22 34 − − − − − − fT − 14 − MHz Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1.0 MHz) Cob − 75 120 pF Input Capacitance (VEB = 8.0 V) Cib − 1000 1500 pF VCE(dsat) − − 5.5 12 − − V OFF CHARACTERISTICS Collector−Emitter Sustaining Voltage (IC = 100 mA, L = 25 mH) (TC = 125_C) (TC = 125_C) Collector Cutoff Current (VCE = 800 V, VEB = 0) Emitter Cutoff Current (VEB = 9.0 Vdc, IC = 0) ON CHARACTERISTICS (TC = 125_C) (IC = 3.0 Adc, IB = 0.6 Adc) (TC = 125_C) DC Current Gain (IC = 0.5 Adc, VCE = 5.0 Vdc) (TC = 125_C) DC Current Gain (IC = 3.0 Adc, VCE = 1.0 Vdc) (TC = 125_C) (TC = 25 to 125_C) DC Current Gain (IC = 1.3 Adc, VCE = 1.0 Vdc) DC Current Gain (IC = 10 mAdc, VCE = 5.0 Vdc) Vdc DYNAMIC CHARACTERISTICS Current Gain Bandwidth (IC = 0.5 Adc, VCE = 10 Vdc, f = 1.0 MHz) Dynamic Saturation Voltage: Determined 1.0 ms and 3.0 ms respectively after rising IB1 reaches 90% of final IB1 (see Figure 18) (IC = 1.3 Adc IB1 = 130 mAdc VCC = 300 V) 1.0 ms (TC = 125°C) 3.0 ms (TC = 125°C) − − 3.0 7.0 − − (IC = 3.0 Adc IB1 = 0.6 Adc VCC = 300 V) 1.0 ms (TC = 125°C) − − 9.5 14.5 − − 3.0 ms (TC = 125°C) − − 2.0 7.5 − − ton − − 90 100 180 − ns toff − − 1.7 2.1 2.5 − ms ton − − 200 130 300 − ns toff − − 1.2 1.5 2.5 − ms tfi − − 100 120 180 − ns tsi − − 1.5 1.9 2.5 − ms tc − − 220 230 350 − ns tfi − − 85 120 150 − ns tsi − − 2.15 2.75 3.2 − ms tc − − 200 310 300 − ns SWITCHING CHARACTERISTICS: Resistive Load (D.C. v 10%, Pulse Width = 20 ms) Turn−On Time (IC = 3.0 Adc, IB1 = 0.6 Adc, IB2 = 1.5 Adc, VCC = 300 V) Turn−Off Time Turn−On Time (TC = 125°C) (TC = 125°C) (IC = 1.3 Adc, IB1 = 0.13 Adc, IB2 = 0.65 Adc, VCC = 300 V) Turn−Off Time (TC = 125°C) (TC = 125°C) SWITCHING CHARACTERISTICS: Inductive Load (Vclamp = 300 V, VCC = 15 V, L = 200 mH) Fall Time (IC = 1.5 Adc, IB1 = 0.13 Adc, IB2 = 0.65 Adc) Storage Time (TC = 125°C) Crossover Time Fall Time (TC = 125°C) (TC = 125°C) (IC = 3.0 Adc, IB1 = 0.6 Adc, IB2 = 1.5 Adc) Storage Time Crossover Time (TC = 125°C) (TC = 125°C) (TC = 125°C) 2. Proper strike and creepage distance must be provided. http://onsemi.com 2 MJE18006G TYPICAL STATIC CHARACTERISTICS 100 100 TJ = 125°C VCE = 1 V h FE , DC CURRENT GAIN h FE , DC CURRENT GAIN TJ = 125°C TJ = 25°C TJ = -20°C 10 1 0.01 0.1 1 TJ = -20°C 10 1 0.01 10 VCE = 5 V TJ = 25°C 0.1 1 10 IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) Figure 1. DC Current Gain @ 1 Volt Figure 2. DC Current Gain @ 5 Volts 2 10 1.5 IC = 1 A 1 2A 3A 5A V CE , VOLTAGE (VOLTS) V CE , VOLTAGE (VOLTS) TJ = 25°C 6A 0.5 1 IC/IB = 10 0.1 IC/IB = 5 0 0.01 0.1 1 0.01 0.01 10 TJ = 25°C TJ = 125°C 0.1 1 10 IB, BASE CURRENT (AMPS) IC COLLECTOR CURRENT (AMPS) Figure 3. Collector Saturation Region Figure 4. Collector−Emitter Saturation Voltage 1.3 10000 TJ = 25°C f = 1 MHz 1.1 1 0.9 0.8 0.7 TJ = 25°C 0.6 0.5 Cib 1000 C, CAPACITANCE (pF) V BE , VOLTAGE (VOLTS) 1.2 Cob 10 IC/IB = 5 IC/IB = 10 TJ = 125°C 0.4 0.01 100 0.1 1 1 10 1 10 100 IC, COLLECTOR CURRENT (AMPS) VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 5. Base−Emitter Saturation Region Figure 6. Capacitance http://onsemi.com 3 1000 MJE18006G TYPICAL SWITCHING CHARACTERISTICS (IB2 = IC/2 for all switching) 2000 4000 IB(off) = IC/2 VCC = 300 V PW = 20 ms 1000 IC/IB = 5 IB(off) = IC/2 VCC = 300 V PW = 20 ms TJ = 25°C TJ = 125°C 3500 3000 IC/IB = 5 IC/IB = 10 t, TIME (ns) t, TIME (ns) 1500 TJ = 125°C TJ = 25°C 500 2500 IC/IB = 10 2000 1500 1000 500 0 0 0 2 1 3 4 5 6 2 3 4 5 IC, COLLECTOR CURRENT (AMPS) Figure 7. Resistive Switching, ton Figure 8. Resistive Switching, toff 3500 5000 2500 IB(off) = IC/2 VCC = 15 V VZ = 300 V LC = 200 mH 4000 2000 1500 1000 6 IB(off) = IC/2 VCC = 15 V VZ = 300 V LC = 200 mH TJ = 25°C TJ = 125°C 4500 t si , STORAGE TIME (ns) IC/IB = 5 3000 t, TIME (ns) 1 0 IC, COLLECTOR CURRENT (AMPS) 3500 3000 IC = 1.3 A 2500 2000 1500 1000 500 0 TJ = 25°C TJ = 125°C 0 1 500 IC/IB = 10 2 3 4 5 0 6 IC = 3 A 3 4 5 6 7 8 9 10 11 12 13 14 IC COLLECTOR CURRENT (AMPS) hFE, FORCED GAIN Figure 9. Inductive Storage Time, tsi Figure 10. Inductive Storage Time, tsi(hFE) 250 350 15 tc 300 tc 200 t, TIME (ns) t, TIME (ns) 250 200 tfi 150 100 IB(off) = IC/2 VCC = 15 V VZ = 300 V LC = 200 mH 50 0 0 1 IB(off) = IC/2 VCC = 15 V VZ = 300 V LC = 200 mH 150 tfi 100 TJ = 25°C TJ = 125°C 2 3 4 5 50 6 TJ = 25°C TJ = 125°C 0 1 2 3 4 5 IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) Figure 11. Inductive Switching, tc and tfi IC/IB = 5 Figure 12. Inductive Switching, tc and tfi IC/IB = 10 http://onsemi.com 4 6 MJE18006G TYPICAL SWITCHING CHARACTERISTICS (IB2 = IC/2 for all switching) 350 160 300 t fi , FALL TIME (ns) IC = 3 A TC, CROSSOVER TIME (ns) 180 IB(off) = IC/2 VCC = 15 V VZ = 300 V LC = 200 mH 140 120 IC = 1.3 A 100 80 250 200 IC = 1.3 A 150 100 TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C 50 60 3 4 5 6 7 8 9 10 11 hFE, FORCED GAIN 12 13 14 IB(off) = IC/2 VCC = 15 V VZ = 300 V LC = 200 mH IC = 3 A 15 3 Figure 13. Inductive Fall Time 4 5 6 7 8 9 10 11 hFE, FORCED GAIN 12 13 14 15 Figure 14. Inductive Crossover Time GUARANTEED SAFE OPERATING AREA INFORMATION 1,0 100 5 ms 10 ms 1 ms 1 ms POWER DERATING FACTOR I C , COLLECTOR CURRENT (AMPS) DC (MJE18006) 10 EXTENDED SOA 1 0.1 0.01 10 100 0,6 0,4 THERMAL DERATING 0,2 0,0 20 1000 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) I C , COLLECTOR CURRENT (AMPS) 7 TC ≤ 125°C IC/IB ≥ 4 LC = 500 mH 5 4 3 2 -5 V 1 VBE(off) = 0 V 0 0 200 400 -1, 5 V 600 800 40 60 80 100 120 140 160 TC, CASE TEMPERATURE (°C) Figure 17. Forward Bias Power Derating Figure 15. Forward Bias Safe Operating Area 6 SECOND BREAKDOWN DERATING 0,8 1000 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 16. Reverse Bias Switching Safe Operating Area There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC − VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC ≥ 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown in Figure 15 may be found at any case temperature by using the appropriate curve on Figure 17. TJ(pk) may be calculated from the data in Figure 20. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn−off with the base−to−emitter junction reverse−biased. The safe level is specified as a reverse−biased safe operating area (Figure 16). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. http://onsemi.com 5 MJE18006G 10 5 VCE 4 dyn 1 ms 3 8 2 VOLTS 90% IC tfi IC 9 tsi 7 dyn 3 ms 1 6 0 5 -1 tc VCLAMP 10% IC 10% VCLAMP 4 90% IB -2 1 ms -3 -4 90% IB1 2 3 ms IB -5 0 IB 3 1 0 1 2 3 4 TIME 5 6 7 0 8 1 Figure 18. Dynamic Saturation Voltage Measurements 2 3 4 TIME 5 6 7 8 Figure 19. Inductive Switching Measurements +15 V 1 mF 150 W 3W 100 W 3W IC PEAK 100 mF MTP8P10 VCE PEAK VCE MTP8P10 MPF930 RB1 IB1 MUR105 Iout MPF930 +10 V IB A IB2 50 W RB2 MJE210 COMMON 150 W 3W 500 mF V(BR)CEO(sus) L = 10 mH RB2 = ∞ VCC = 20 VOLTS IC(pk) = 100 mA MTP12N10 1 mF -Voff INDUCTIVE SWITCHING L = 200 mH RB2 = 0 VCC = 15 VOLTS RB1 SELECTED FOR DESIRED IB1 RBSOA L = 500 mH RB2 = 0 VCC = 15 VOLTS RB1 SELECTED FOR DESIRED IB1 Table 1. Inductive Load Switching Drive Circuit TYPICAL THERMAL RESPONSE r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED) 1 D = 0.5 0.2 0.1 P(pk) 0.1 0.05 0.02 t1 t2 DUTY CYCLE, D = t1/t2 SINGLE PULSE 0.01 0.01 0.1 1 10 RqJC(t) = r(t) RqJC RqJC = 1.25°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) - TC = P(pk) RqJC(t) 100 t, TIME (ms) Figure 20. Typical Thermal Response (ZqJC(t)) for MJE18006 http://onsemi.com 6 1000 MJE18006G PACKAGE DIMENSIONS TO−220AB CASE 221A−09 ISSUE AF SEATING PLANE −T− B F T C S 4 DIM A B C D F G H J K L N Q R S T U V Z A Q U 1 2 3 H K Z L R V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. J G D N INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.161 0.095 0.105 0.110 0.155 0.014 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 ----0.080 STYLE 1: PIN 1. 2. 3. 4. MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 4.09 2.42 2.66 2.80 3.93 0.36 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 ----2.04 BASE COLLECTOR EMITTER COLLECTOR SWITCHMODE is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 7 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MJE18006/D