ONSEMI MJE18006G

MJE18006G
SWITCHMODEt
NPN Bipolar Power Transistor
For Switching Power Supply Applications
The MJE18006G has an applications specific state−of−the−art die
designed for use in 220 V line−operated SWITCHMODE Power
supplies and electronic light ballasts.
Features
• Improved Efficiency Due to Low Base Drive Requirements:
High and Flat DC Current Gain hFE
Fast Switching
♦ No Coil Required in Base Circuit for Turn−Off (No Current Tail)
Tight Parametric Distributions are Consistent Lot−to−Lot
Standard TO−220
These Devices are Pb−Free and are RoHS Compliant*
♦
http://onsemi.com
POWER TRANSISTOR
6.0 AMPERES
1000 VOLTS − 100 WATTS
♦
•
•
•
TO−220AB
CASE 221A−09
STYLE 1
MAXIMUM RATINGS
Symbol
Value
Unit
Collector−Emitter Sustaining Voltage
Rating
VCEO
450
Vdc
Collector−Emitter Breakdown Voltage
VCES
1000
Vdc
Emitter−Base Voltage
VEBO
9.0
Vdc
1
2
3
Collector Current
− Continuous
− Peak (Note 1)
IC
ICM
6.0
15
Adc
Base Current
− Continuous
− Peak (Note 1)
IB
IBM
4.0
8.0
Adc
PD
100
0.8
W
W/_C
MJE18006G
TJ, Tstg
−65 to 150
_C
AY WW
Total Device Dissipation @ TC = 25_C
Derate above 25°C
Operating and Storage Temperature
MARKING DIAGRAM
THERMAL CHARACTERISTICS
Symbol
Max
Unit
Thermal Resistance, Junction−to−Case
Characteristics
RqJC
1.25
_C/W
Thermal Resistance, Junction−to−Ambient
RqJA
62.5
_C/W
Maximum Lead Temperature for Soldering
Purposes 1/8″ from Case for 5 Seconds
TL
260
_C
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.
A
Y
WW
G
= Assembly Location
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
Device
MJE18006G
Package
Shipping
TO−220
(Pb−Free)
50 Units / Rail
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2010
April, 2010 − Rev. 7
1
Publication Order Number:
MJE18006/D
MJE18006G
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise specified)
Characteristic
Symbol
Min
Typ
Max
Unit
VCEO(sus)
450
−
−
Vdc
Collector Cutoff Current (VCE = Rated VCEO, IB = 0)
ICEO
−
−
100
mAdc
Collector Cutoff Current (VCE = Rated VCES, VEB = 0)
ICES
−
−
−
−
−
−
100
500
100
mAdc
IEBO
−
−
100
mAdc
Base−Emitter Saturation Voltage (IC = 1.3 Adc, IB = 0.13 Adc)
Base−Emitter Saturation Voltage (IC = 3.0 Adc, IB = 0.6 Adc)
VBE(sat)
−
−
0.83
0.94
1.2
1.3
Vdc
Collector−Emitter Saturation Voltage
(IC = 1.3 Adc, IB = 0.13 Adc)
VCE(sat)
−
−
−
−
0.25
0.27
0.35
0.4
0.6
0.65
0.7
0.8
hFE
14
−
6.0
5.0
11
10
−
32
10
8.0
17
22
34
−
−
−
−
−
−
fT
−
14
−
MHz
Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1.0 MHz)
Cob
−
75
120
pF
Input Capacitance (VEB = 8.0 V)
Cib
−
1000
1500
pF
VCE(dsat)
−
−
5.5
12
−
−
V
OFF CHARACTERISTICS
Collector−Emitter Sustaining Voltage (IC = 100 mA, L = 25 mH)
(TC = 125_C)
(TC = 125_C)
Collector Cutoff Current (VCE = 800 V, VEB = 0)
Emitter Cutoff Current (VEB = 9.0 Vdc, IC = 0)
ON CHARACTERISTICS
(TC = 125_C)
(IC = 3.0 Adc, IB = 0.6 Adc)
(TC = 125_C)
DC Current Gain (IC = 0.5 Adc, VCE = 5.0 Vdc)
(TC = 125_C)
DC Current Gain (IC = 3.0 Adc, VCE = 1.0 Vdc)
(TC = 125_C)
(TC = 25 to 125_C)
DC Current Gain (IC = 1.3 Adc, VCE = 1.0 Vdc)
DC Current Gain (IC = 10 mAdc, VCE = 5.0 Vdc)
Vdc
DYNAMIC CHARACTERISTICS
Current Gain Bandwidth (IC = 0.5 Adc, VCE = 10 Vdc, f = 1.0 MHz)
Dynamic Saturation Voltage:
Determined 1.0 ms and
3.0 ms respectively after
rising IB1 reaches 90% of
final IB1
(see Figure 18)
(IC = 1.3 Adc
IB1 = 130 mAdc
VCC = 300 V)
1.0 ms
(TC = 125°C)
3.0 ms
(TC = 125°C)
−
−
3.0
7.0
−
−
(IC = 3.0 Adc
IB1 = 0.6 Adc
VCC = 300 V)
1.0 ms
(TC = 125°C)
−
−
9.5
14.5
−
−
3.0 ms
(TC = 125°C)
−
−
2.0
7.5
−
−
ton
−
−
90
100
180
−
ns
toff
−
−
1.7
2.1
2.5
−
ms
ton
−
−
200
130
300
−
ns
toff
−
−
1.2
1.5
2.5
−
ms
tfi
−
−
100
120
180
−
ns
tsi
−
−
1.5
1.9
2.5
−
ms
tc
−
−
220
230
350
−
ns
tfi
−
−
85
120
150
−
ns
tsi
−
−
2.15
2.75
3.2
−
ms
tc
−
−
200
310
300
−
ns
SWITCHING CHARACTERISTICS: Resistive Load (D.C. v 10%, Pulse Width = 20 ms)
Turn−On Time
(IC = 3.0 Adc, IB1 = 0.6 Adc,
IB2 = 1.5 Adc, VCC = 300 V)
Turn−Off Time
Turn−On Time
(TC = 125°C)
(TC = 125°C)
(IC = 1.3 Adc, IB1 = 0.13 Adc,
IB2 = 0.65 Adc, VCC = 300 V)
Turn−Off Time
(TC = 125°C)
(TC = 125°C)
SWITCHING CHARACTERISTICS: Inductive Load (Vclamp = 300 V, VCC = 15 V, L = 200 mH)
Fall Time
(IC = 1.5 Adc, IB1 = 0.13 Adc,
IB2 = 0.65 Adc)
Storage Time
(TC = 125°C)
Crossover Time
Fall Time
(TC = 125°C)
(TC = 125°C)
(IC = 3.0 Adc, IB1 = 0.6 Adc,
IB2 = 1.5 Adc)
Storage Time
Crossover Time
(TC = 125°C)
(TC = 125°C)
(TC = 125°C)
2. Proper strike and creepage distance must be provided.
http://onsemi.com
2
MJE18006G
TYPICAL STATIC CHARACTERISTICS
100
100
TJ = 125°C
VCE = 1 V
h FE , DC CURRENT GAIN
h FE , DC CURRENT GAIN
TJ = 125°C
TJ = 25°C
TJ = -20°C
10
1
0.01
0.1
1
TJ = -20°C
10
1
0.01
10
VCE = 5 V
TJ = 25°C
0.1
1
10
IC, COLLECTOR CURRENT (AMPS)
IC, COLLECTOR CURRENT (AMPS)
Figure 1. DC Current Gain @ 1 Volt
Figure 2. DC Current Gain @ 5 Volts
2
10
1.5
IC = 1 A
1
2A
3A
5A
V CE , VOLTAGE (VOLTS)
V CE , VOLTAGE (VOLTS)
TJ = 25°C
6A
0.5
1
IC/IB = 10
0.1
IC/IB = 5
0
0.01
0.1
1
0.01
0.01
10
TJ = 25°C
TJ = 125°C
0.1
1
10
IB, BASE CURRENT (AMPS)
IC COLLECTOR CURRENT (AMPS)
Figure 3. Collector Saturation Region
Figure 4. Collector−Emitter Saturation Voltage
1.3
10000
TJ = 25°C
f = 1 MHz
1.1
1
0.9
0.8
0.7 TJ = 25°C
0.6
0.5
Cib
1000
C, CAPACITANCE (pF)
V BE , VOLTAGE (VOLTS)
1.2
Cob
10
IC/IB = 5
IC/IB = 10
TJ = 125°C
0.4
0.01
100
0.1
1
1
10
1
10
100
IC, COLLECTOR CURRENT (AMPS)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 5. Base−Emitter Saturation Region
Figure 6. Capacitance
http://onsemi.com
3
1000
MJE18006G
TYPICAL SWITCHING CHARACTERISTICS
(IB2 = IC/2 for all switching)
2000
4000
IB(off) = IC/2
VCC = 300 V
PW = 20 ms
1000
IC/IB = 5
IB(off) = IC/2
VCC = 300 V
PW = 20 ms
TJ = 25°C
TJ = 125°C
3500
3000
IC/IB = 5
IC/IB = 10
t, TIME (ns)
t, TIME (ns)
1500
TJ = 125°C
TJ = 25°C
500
2500
IC/IB = 10
2000
1500
1000
500
0
0
0
2
1
3
4
5
6
2
3
4
5
IC, COLLECTOR CURRENT (AMPS)
Figure 7. Resistive Switching, ton
Figure 8. Resistive Switching, toff
3500
5000
2500
IB(off) = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 mH
4000
2000
1500
1000
6
IB(off) = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 mH
TJ = 25°C
TJ = 125°C
4500
t si , STORAGE TIME (ns)
IC/IB = 5
3000
t, TIME (ns)
1
0
IC, COLLECTOR CURRENT (AMPS)
3500
3000
IC = 1.3 A
2500
2000
1500
1000
500
0
TJ = 25°C
TJ = 125°C
0
1
500
IC/IB = 10
2
3
4
5
0
6
IC = 3 A
3
4
5
6
7
8
9
10
11
12
13
14
IC COLLECTOR CURRENT (AMPS)
hFE, FORCED GAIN
Figure 9. Inductive Storage Time, tsi
Figure 10. Inductive Storage Time, tsi(hFE)
250
350
15
tc
300
tc
200
t, TIME (ns)
t, TIME (ns)
250
200
tfi
150
100
IB(off) = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 mH
50
0
0
1
IB(off) = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 mH
150
tfi
100
TJ = 25°C
TJ = 125°C
2
3
4
5
50
6
TJ = 25°C
TJ = 125°C
0
1
2
3
4
5
IC, COLLECTOR CURRENT (AMPS)
IC, COLLECTOR CURRENT (AMPS)
Figure 11. Inductive Switching, tc and tfi
IC/IB = 5
Figure 12. Inductive Switching, tc and tfi
IC/IB = 10
http://onsemi.com
4
6
MJE18006G
TYPICAL SWITCHING CHARACTERISTICS
(IB2 = IC/2 for all switching)
350
160
300
t fi , FALL TIME (ns)
IC = 3 A
TC, CROSSOVER TIME (ns)
180
IB(off) = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 mH
140
120
IC = 1.3 A
100
80
250
200
IC = 1.3 A
150
100
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
50
60
3
4
5
6
7
8
9 10 11
hFE, FORCED GAIN
12
13
14
IB(off) = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 mH
IC = 3 A
15
3
Figure 13. Inductive Fall Time
4
5
6
7
8
9 10 11
hFE, FORCED GAIN
12
13
14
15
Figure 14. Inductive Crossover Time
GUARANTEED SAFE OPERATING AREA INFORMATION
1,0
100
5 ms
10 ms
1 ms
1 ms
POWER DERATING FACTOR
I C , COLLECTOR CURRENT (AMPS)
DC (MJE18006)
10
EXTENDED
SOA
1
0.1
0.01
10
100
0,6
0,4
THERMAL DERATING
0,2
0,0
20
1000
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
I C , COLLECTOR CURRENT (AMPS)
7
TC ≤ 125°C
IC/IB ≥ 4
LC = 500 mH
5
4
3
2
-5 V
1
VBE(off) = 0 V
0
0
200
400
-1, 5 V
600
800
40
60
80
100
120
140
160
TC, CASE TEMPERATURE (°C)
Figure 17. Forward Bias Power Derating
Figure 15. Forward Bias Safe Operating Area
6
SECOND BREAKDOWN
DERATING
0,8
1000
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 16. Reverse Bias Switching Safe Operating Area
There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC − VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate. The data of Figure 15 is
based on TC = 25°C; TJ(pk) is variable depending on power
level. Second breakdown pulse limits are valid for duty
cycles to 10% but must be derated when TC ≥ 25°C. Second
breakdown limitations do not derate the same as thermal
limitations. Allowable current at the voltages shown in
Figure 15 may be found at any case temperature by using the
appropriate curve on Figure 17. TJ(pk) may be calculated
from the data in Figure 20. At any case temperatures, thermal
limitations will reduce the power that can be handled to
values less than the limitations imposed by second
breakdown. For inductive loads, high voltage and current
must be sustained simultaneously during turn−off with the
base−to−emitter junction reverse−biased. The safe level is
specified as a reverse−biased safe operating area (Figure 16).
This rating is verified under clamped conditions so that the
device is never subjected to an avalanche mode.
http://onsemi.com
5
MJE18006G
10
5
VCE
4
dyn 1 ms
3
8
2
VOLTS
90% IC
tfi
IC
9
tsi
7
dyn 3 ms
1
6
0
5
-1
tc
VCLAMP
10% IC
10% VCLAMP
4
90% IB
-2
1 ms
-3
-4
90% IB1
2
3 ms
IB
-5
0
IB
3
1
0
1
2
3
4
TIME
5
6
7
0
8
1
Figure 18. Dynamic Saturation Voltage Measurements
2
3
4
TIME
5
6
7
8
Figure 19. Inductive Switching Measurements
+15 V
1 mF
150 W
3W
100 W
3W
IC PEAK
100 mF
MTP8P10
VCE PEAK
VCE
MTP8P10
MPF930
RB1
IB1
MUR105
Iout
MPF930
+10 V
IB
A
IB2
50 W
RB2
MJE210
COMMON
150 W
3W
500 mF
V(BR)CEO(sus)
L = 10 mH
RB2 = ∞
VCC = 20 VOLTS
IC(pk) = 100 mA
MTP12N10
1 mF
-Voff
INDUCTIVE SWITCHING
L = 200 mH
RB2 = 0
VCC = 15 VOLTS
RB1 SELECTED FOR
DESIRED IB1
RBSOA
L = 500 mH
RB2 = 0
VCC = 15 VOLTS
RB1 SELECTED
FOR DESIRED IB1
Table 1. Inductive Load Switching Drive Circuit
TYPICAL THERMAL RESPONSE
r(t), TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
1
D = 0.5
0.2
0.1
P(pk)
0.1
0.05
0.02
t1
t2
DUTY CYCLE, D = t1/t2
SINGLE PULSE
0.01
0.01
0.1
1
10
RqJC(t) = r(t) RqJC
RqJC = 1.25°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) - TC = P(pk) RqJC(t)
100
t, TIME (ms)
Figure 20. Typical Thermal Response (ZqJC(t)) for MJE18006
http://onsemi.com
6
1000
MJE18006G
PACKAGE DIMENSIONS
TO−220AB
CASE 221A−09
ISSUE AF
SEATING
PLANE
−T−
B
F
T
C
S
4
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
T
U
V
Z
A
Q
U
1 2 3
H
K
Z
L
R
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
J
G
D
N
INCHES
MIN
MAX
0.570
0.620
0.380
0.405
0.160
0.190
0.025
0.035
0.142
0.161
0.095
0.105
0.110
0.155
0.014
0.025
0.500
0.562
0.045
0.060
0.190
0.210
0.100
0.120
0.080
0.110
0.045
0.055
0.235
0.255
0.000
0.050
0.045
----0.080
STYLE 1:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
14.48
15.75
9.66
10.28
4.07
4.82
0.64
0.88
3.61
4.09
2.42
2.66
2.80
3.93
0.36
0.64
12.70
14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
5.97
6.47
0.00
1.27
1.15
----2.04
BASE
COLLECTOR
EMITTER
COLLECTOR
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
7
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MJE18006/D