DATA SHEET MOS INTEGRATED CIRCUIT µPD75516 4-BIT SINGLE-CHIP MICROCOMPUTER DESCRIPTION The µPD75516 is a product in the 75X series(of 4-bit single-chip microcomputers). The 75X series has an architecture which is comparable to that of 8-bit microcomputers. The µPD75516 possesses high class processing capacities as a 4-bit single-chip microcomputer with built-in A/D converter and serial interface, including the capability to process data in lengths of 1, 4 and 8 bits in addition to its high speed operation. Details of functions are described in the User's Manual shown below. Be sure to read in design. µPD75516 User's Manual: IEM–5049 FEATURES ● ● ● ● ● ● ● ● ● A large Built-in Built-in Built-in number of I/O Lines: 64 lines (Internal pull-up/pull- down resistor specifiable: 47) 8-bit serial interface: 2 channels NEC standard serial bus interface (SBI) 8-bit AD converter: 8 channels High speed operation and a instruction execution time variation function which is effective for saving power. • 0.95 µs/1.91 µs/15.3 µs (at 4.19 MHz operation), 122 µs (at 32.768 kHz operation) Program memory (ROM) capacity: 16256 × 8 bits Data memory (RAM) capacity: 512 × 4 bits Powerful timer function: 4 channels • 8-bit timer/event counter • Watch timer • 8-bit basic interval timer • Timer/pulse generator: 14-bit PWM with variable output Ultra low power consumption clock operation is possible (5 µA TYP.: During operation at 3 V) Devices with built-in PROM are available (µ PD75P516) USES VCRs and CD players, telephones, cameras, etc. The information in this document is subject to change without notice. Document No. IC-2471D (O. D. No. IC-7580D) Date Published November 1993 P Printed in Japan The mark ★ shows major revised points. © NEC Corporation 1989 µPD75516 ORDERING INFORMATION Ordering Code Package µ PD75516GF-×××-3B9 Remarks Quality Grade 80-pin plastic QFP (14 × 20 mm) Standard "×××" means the specified ROM code. Please refer to “Quality grade on NEC Semiconductor Devices” (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications. LIST OF µPD75516 FUNCTIONS Item On-chip memory Function ROM 16256 × 8 bits RAM 512 × 4bits General registers (4 bits × 8 or 8 bits × 4) × 4 banks Instruction cycle • 0.95 µs/1.91 µs/15.3 µs (Main system clock: 4.19 MHz operation) • 122 µs (Subsystem clock: 32.768 kHz operation) Total 64 CMOS input 16 (dual function and analog input as INT, SIO, PPO, software pull-up capability: 7) CMOS input/output 28 (LED drive: 4) • Software pull-up capability : 16 • Mask option pull-down capability: 4 Input/ output ports N-ch open-drain input/output 2 20 (LED drive: 8; 10 V withstand voltage, mask option pull-up capability: 20) A/D converter 8-bit resolution × 8 channels (successive approximation type) • Operating voltage: VDD = 3.5 to 6.0 V Timer/counters 4 channels Serial Interface 2 channels Vectored interrupt External: 3, internal: 4 Test input External: 1, internal: 1 Instruction set • Bit data set/reset/test/Boolean operations • 4-bit data transfer, operation, increment/ decrement, compare • 8-bit data transfer, operation, increment/ decrement, compare System clock oscillator • Ceramic/crystal oscillator for main system clock oscillation: 4.19 MHz • Crystal oscillator for subsystem clock oscillation: 32.768 kHz Operating voltage VDD = 2.7 to 6.0 V Package 80-pin plastic QFP (14 × 20 mm) •Timer/event counter • Basic interval timer • Timer/pulse generator (14-bit PWM output capability) • Watch timer • NEC standard serial bus interface (SBI)/3-wire SIO: 1 channel • Normal clocked serial interface (3-wire SIO): 1 channel µPD75516 CONTENTS 1. PIN CONFIGURATION ................................................................................................................................ 4 2. EXAMPLE OF SYSTEM CONFIGURATION ..............................................................................................5 3. INTERNAL BLOCK DIAGRAM .................................................................................................................... 6 4. PIN FUNCTIONS ......................................................................................................................................... 7 4.1 4.2 4.3 4.4 4.5 PORT PINS ........................................................................................................................................................... 7 NON-PORT PINS .................................................................................................................................................. 9 PIN INPUT/OUTPUT CIRCUIT LIST ................................................................................................................. 10 RECOMMENDED CONNECTIONS OF UNUSED PINS .................................................................................. 13 MASK OPTION SELECTION ............................................................................................................................. 14 5. MEMORY CONFIGURATION ................................................................................................................... 15 6. PERIPHERAL HARDWARE FUNCTIONS ................................................................................................. 18 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 PORTS ................................................................................................................................................................. 18 CLOCK GENERATOR ......................................................................................................................................... 19 CLOCK OUTPUT CIRCUIT ................................................................................................................................. 20 BASIC INTERVAL TIMER .................................................................................................................................. 21 WATCH TIMER ................................................................................................................................................... 22 TIMER/EVENT COUNTER ................................................................................................................................. 22 TIMER/PULSE GENERATOR ............................................................................................................................ 24 SERIAL INTERFACE ........................................................................................................................................... 25 A/D CONVERTER .............................................................................................................................................. 29 BIT SEQUENTIAL BUFFER ............................................................................................................................... 30 7. INTERRUPT FUNCTIONS ......................................................................................................................... 31 8. STANDBY FUNCTIONS ............................................................................................................................ 33 9. RESET FUNCTIONS .................................................................................................................................. 34 10. INSTRUCTION SET ................................................................................................................................... 36 11. ELECTRICAL SPECIFICATIONS ............................................................................................................... 45 12. CHARACTERISTIC CURVES ..................................................................................................................... 59 13. PACKAGE INFORMATION ....................................................................................................................... 65 14. RECOMMENDED SOLDERING CONDITIONS ....................................................................................... 66 APPENDIX A. DEVELOPMENT TOOLS ........................................................................................................ 67 APPENDIX B. RELATED DOCUMENTS ....................................................................................................... 68 3 µPD75516 AN1 AN2 AN3 AN4/P150 AN5/P151 AN6/P152 AN7/P153 AVSS P120 P121 P122 P123 P130 P131 P132 P133 1. PIN CONFIGURATION 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 KR3/P63 KR2/P62 KR1/P61 KR0/P60 P53 P52 P51 P50 VSS P43 P42 P41 P40 P33 P32 P31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 µPD75516GF-×××-3B9 AV0 AVREF VDD * VDD P113 P112 P111 P110 P103 P102 P101 P100 P93 P92 P91 P90 SI1/P83 SO1/P82 SCK1/P81 PPO/P80 KR7/P73 KR6/P72 KR5/P71 KR4/P70 IC: Internally Connected (Connect to VSS directly.) * 4 Be sure to supply power to both VDD pins. P140 P141 P142 P143 RESET X2 X1 IC XT2 XT1 VSS P00/INT4 P01/SCK0 P02/SO0/SB0 P03/SI0/SB1 P10/INT0 P11/INT1 P12/INT2 P13/TI0 P20/PTO0 P21 P22/PCL P23/BUZ P30 µPD75516 2. EXAMPLE OF SYSTEM CONFIGURATION VTR (Voltage Synthesizer Tuner) µ PD75516 Remote Control IC SIO INT0 Input Port Mechanism Mechanism Control Servo IC Mechanism Computer/ Timer Output Port Port4, 5 Key Matrix OSD Analog Input Tuner PPO LPF SIO FIP Driver FIP KR0–KR7 System Clock Watch Clock 5 INTBT TIMER/EVENT COUNTER #0 TI0/P13 PTO0/P20 PROGRAM COUNTER (14) CY ALU SP (8) INTT0 BANK WATCH TIMER BUZ/P23 INTW GENERAL REG. TIMER PULSE GENERATOR PPO/P80 INTTPG SI0/SB1/P03 SO0/SB0/P02 SCK0/P01 SERIAL INTERFACE0 ROM PROGRAM MEMORY 16256×8 BITS DECODE AND CONTROL RAM DATA MEMORY 512× 4 BITS INTCSI SI1/P83 SO1/P82 SCK1/P81 SERIAL INTERFACE1 fx/2N INT0/P10 INT1/P11 INT2/P12 INT4/P00 KR0/P60KR7/P73 INTERRUPT CONTROL CLOCK GENERATOR SUB MAIN STAND BY CONTROL CPU CLOCK Φ P00-P03 PORT1 4 P10-P13 PORT2 4 P20-P23 PORT3 4 P30-P33 PORT4 4 P40-P43* PORT5 4 P50-P53* PORT6 4 P60-P63 PORT7 4 P70-P73 PORT8 4 P80-P83 PORT9 4 P90-P93 PORT10 4 P100-P103 PORT11 4 P110-P113 PORT12 4 P120-P123 * PORT13 4 P130-P133 * PORT14 4 P140-P143 * PORT15 4 P150-P153 PCL/P22 XT1XT2 X1 X2 RESET VDD VSS A/D CONVERTER * PORTs 4 , 5 and 12 to 14 are 10 V middle-high voltage N-ch open-drain input/output ports. µPD75516 AVREF AV SS CLOCK DIVIDER 4 8 BIT SEQ. BUFFER(16) AN0-AN3 AN4/P150-AN7/P15 CLOCK OUTPUT CONTROL PORT0 3. INTERNAL BLOCK DIAGRAM 6 BASIC INTERVAL TIMER µPD75516 4. PIN FUNCTIONS 4.1 PORT PINS (1/2) Pin Name I/O P00 DualFunction Pin Input / Output 8-Bit After Reset Circuit Type *1 I/O Function INT4 P01 Input SCK0 P02 SO0/SB0 P03 SI0/SB1 P10 B 4-bit input port (PORT0). Internal pull-up resistor can be specified in 3-bit units by software for P01 to P03. Input INT1 P12 INT2 P13 TI0 P20 PTO0 P21 Input/ output P22 P23 — PCL F –B M–C 4-bit input port (PORT1). Internal pull-up resistor can be specified in 4-bit units by software. 4-bit input/ output port (PORT2). Internal pull-up resistor can be specified in 4-bit units by software. × Input B –C × Input E–B × Input E–C High level (when a pullup resistor is incorporated) or high impedance M BUZ P30 *2 P31 *2 P32 *2 — Input/ output — — — P33 *2 P40 to P43 Input/ output Programmable 4-bit input/ output port (PORT3). Input/ output specifiable in 1-bit units. Internal pull-up resistor can be specified in 4-bit units by software. — N-ch open-drain 4-bit input/output port (PORT4). Pull-up resistor can be incorporated in 1-bit units (mask option). 10 V withstand voltage with open-drain. — N-ch open-drain 4-bit input/ output port (PORT5). Pull-up resistor can be incorporated in 1-bit units (mask option). 10 V withstand voltage with open-drain. High level (when a pullup resistor is incorporated) or high impedance M Programmable 4-bit input/output port (PORT6). Input/output specifiable in 1-bit units. Internal pull-up resistor can be specified in 4-bit units by software. Input F–C Input F –A *2 ● *2 P50 to P53 Input/ output KR0 P60 P61 P62 KR1 KR2 KR3 P70 KR4 P72 P73 * 1. 2. Input/ output P63 P71 F –A Input Noise removing function available INT0 P11 × Input/ output KR5 KR6 ● 4-bit input/output port (PORT7). Internal pull-up resistor can be specified in 4-bit units by software. KR7 Schmitt trigger inputs are circled. Can drive LED directly. 7 µPD75516 4.1 PORT PINS (2/2) Pin Name I/O DualFunction Pin 8-Bit After Reset I/O PPO P80 P81 SCK1 Input P82 SO1 P83 SI1 Input / Output Circuit Type * E 4-bit input port (PORT8). × Input F E B P90 to P93 Input/ output 4-bit input/output port (PORT9) Pull-up resistor can be incorporated in 1-bit units (mask option). P100 to P103 Input/ output 4-bit input/output port (PORT10). P110 to P113 Input/ output 4-bit input/output port (PORT11). P120 to P123 Input/ output N-ch open-drain 4-bit input/ output port (PORT12). Pull-up resistor can be incorporated in 1-bit units (mask option). 10 V withstand voltage with open-drain. P130 to P133 Input/ output N-ch open-drain 4-bit input/ output port (PORT13). Pull-up resistor can be incorporated in 1-bit units (mask option). 10 V withstand voltage with open-drain. × P140 to P143 Input/ output N-ch open-drain 4-bit input/ output port (PORT14). Pull-up resistor can be incorporated in 1-bit units (mask option). 10 V withstand voltage with open-drain. × P150 to P153 Input 4-bit input/output port (PORT15). × * 8 Function × Low level (when a pull down resistor is incorporated) or high impedance V Input E Input E High level (when a pullup resistor is incorporated) or high impedance M × AN4 to AN7 Schmitt trigger inputs are circled. × High level (when a pullup resistor is incorporated) or high impedance High level (when a pullup resistor is incorporated) or high impedance Input M M Y-A µPD75516 4.2 NON-PORT PINS Function After Reset Input / Output Circuit Type * P13 External event pulse input pin to the timer/event counter. — B –C Output P20 Timer/event counter output pin. Input E–B PCL Output P22 Clock output pin. Input E–B BUZ Output P23 Fixed frequency output pin (for buzzer or system clock trimming). Input E–B SCK0 Input/ output P01 Serial clock input/output pin. Input F –A SO0/SB0 Input/ output P02 Serial data output pin. Serial bus input/output pin. Input F –B SI0/SB1 Input/ output P03 Serial data input pin. Serial bus input/output pin. Input M–C INT4 Input P00 Edge-detected vectored interrupt input pin (valid for detection of rising and falling edges). — B — B–C — B –C Pin Name I/O TI0 Input PTO0 INT0 DualFunction Pin P10 Input P11 INT1 Edge-detected testable input pin (rising edge detection). Clocked Asynchronous INT2 Input P12 KR0 to KR3 Input P60 to P63 Serial falling edge detection testable input pin. Input F –C KR4 to KR7 Input P70 to P73 Serial falling edge detection testable input pin. Input F –A SCK1 Input/ output P81 Serial clock input/output pin. Input F SO1 Output P82 Serial data output pin. Input E P83 Serial data input pin. Input B SI1 Input AN0 to AN3 AN4 to AN7 Asynchronous Y — Input A/D converter analog input pin. — P150 to P153 Y-A AVREF Input — A/D converter reference voltage input pin. — Z AVSS — — A/D converter reference GND potential pin. — — X1, X2 Input — Main system clock oscillation crystal/ceramic connection pin. An external clock is input to X1 and an antiphase clock is input to X2. — — XT1 Input — Subsystem clock oscillation crystal connection pin. An external clock is input to XT1 and XT2 is leave open. — — System reset input pin. — B Input E XT2 — RESET Input — PPO Output P80 IC — — Internally Connected. Connect to VSS directly. — — VDD — — Positive power supply pin. — — GND potential pin. — — VSS * Edge-detected vectored interrupt input pin (detected edge selection possible). — — Timer/pulse generator pulse output pin. Schmitt trigger inputs are circled. 9 µPD75516 4.3 PIN INPUT/OUTPUT CIRCUIT LIST Use of simplified forms of the input/output circuit for each pin of the µPD75516 are shown as follows. Fig. 4–1 Pin Input/Output Circuit List (1/3) TYPE A TYPE D VDD VDD data P-ch IN N-ch P-ch OUT output disable N-ch Push-Pull Output which can be Set to Output High Impedance (with Both P-ch and N-ch Set to OFF) CMOS Specified Input Buffer TYPE B TYPE E data IN/OUT Type D output disable IN Type A Schmitt Trigger Input Having Hysteresis Characteristics TYPE B-C Input/Output Circuit Consisting of Type D Push-Pull Output and Type A Input Buffer TYPE B VDD VDD P.U.R. P.U.R. P-ch P.U.R. enable P.U.R. enable P-ch data output disable P.U.R. : Pull-Up Resistor Schmitt Trigger Input Having Hysteresis Characteristics 10 IN/OUT Type D IN Type A P.U.R. : Pull-Up Resistor µPD75516 Fig. 4–1 Pin Input/Output Circuit List (2/3) TYPE E-C TYPE F-B VDD VDD P.U.R. P.U.R. P.U.R. enable P-ch data P-ch VDD output disable (P-ch) P-ch IN/OUT IN/OUT Type D data output disable output disable output disable (N-ch) Type A N-ch Type B P.U.R. : Pull-Up Resistor P.U.R. : Pull-Up Resistor TYPE F TYPE F-C VDD P.U.R. data IN/OUT Type D output disable P.U.R. enable P-ch data IN/OUT Type D output disable Type B Type B Input/Output Circuit Consisting of Type D Push-Pull Output and Type B Schmitt Trigger input TYPE F-A P.U.R. : Pull-Up Resistor P.U.R. (Mask Option) P.U.R. P.U.R. enable VDD TYPE M VDD P-ch N-ch (+10 V Withstand Voltage) data data IN/OUT Type D IN/OUT output disable output disable Type B Middle-High Voltage Input Buffer (+10 V Withstand Voltage) P.U.R. : Pull-Up Resistor P.U.R. : Pull-Up Resistor 11 µPD75516 Fig. 4–1 Pin Input/Output Circuit List (3/3) TYPE M-C TYPE Y-A VDD In Instruction P.U.R. P.U.R. enable P-ch VDD IN/OUT data IN VDD N-ch P-ch N-ch + - Sampling C output disable AVss AVss input enable P.U.R. : Pull-Up Resistor TYPE V Reference Voltage (from the Series Resistance String Voltage Tap) TYPE Z data IN/OUT AVREF Type D output disable Type A Reference Voltage P.D.R. (Mask Option) P.D.R.: Pull-Down Resistor TYPE Y VDD IN VDD P-ch N-ch + Sampling C AVss AVss input enable 12 Reference Voltage (from the Series Resistance String Voltage Tap) AVSS µPD75516 4.4 RECOMMENDED CONNECTIONS OF UNUSED PINS Table 4-1 Recommended Connection of Unused Pins Pin P00/INT4 Recommended Connection Connect to V SS P01/SCK0 P02/SO0/SB0 Connect to VSS or VDD P03/SI1/SB1 P10/INT0 to P12/INT2 Connect to V SS P13/TI0 P20/PTO0 P21 P22/PCL P23/BUZ Input state : Connect to VSS or VDD P30 to P33 P40 to P43 Ouput state : Leave open P50 to P53 P60/KR0 to P63/KR3 P70/KR4 to P73/KR7 P80/PPO P81/SCK1 Connect to V SS or VDD P82/SO1 P83/SI1 P90 to P93 P100 to P103 Input state : Connect to VSS or VDD P110 to P113 P120 to P123 Ouput state : Leave open P130 to P133 P140 to P143 P150/AN4 to P153/AN7 Connect to V SS AN0 to AN3 XT1 Connect to V SS or VDD XT2 Leave open AVREF AVSS Connect to V SS IC 13 µPD75516 4.5 MASK OPTION SELECTION The following mask options are available for the pins. (1) Specification of internal pull-up/pull-down resistor Table 4-2 Pull-Up/Pull-Down Resistor Selection Pins Mask Option P40 to P43, P50 to P53, P120 to P123, ➀ With pull-up resistor ➁ Without pull-up resistor (specifiable bit-wise) P130 to P133, (specifiable bit-wise) P140 to P143 ➀ With pull-down resistor P90 to P93 ➁ Without pull-down resistor (specifiable bit-wise) (specifiable bit-wise) (2) Specification of internal feedback resistor for subsystem clock oscillation Table 4-3 Feedback Resistor Selection Pins Mask Option ➀ XT1, XT2 Note 14 With feedback resistor (subsystem clock used) ➁ Without feedback resistor (subsystem clock not used) When the subsystem clock is not used, operation is not affected if a feedback resistor is incorporated, but the supply current IDD is increased. µPD75516 5. MEMORY CONFIGURATION • Program memory (ROM) ...... 12160 × 8 bits (0000H to 2F7FH) • 0000H, 0001H : Vector table in which the program start addresses by reset are written. • 0002H to 000DH : Vector table in which the program start addresses by interrupt are written. • 0020H to 007FH : Table area referred by the GETI instruction. • Data memory • Data area ... 512 × 4 bits (000H to 1FFH) • Peripheral hardware area ... 128 × 4 bits (F80H to FFFH) 15 µPD75516 Fig. 5–1 Program Memory Map Address 7 0000H 6 MBE RBE 0 Internal Reset Start Address (High-Order 6 Bits) Internal Reset Start Address (Low-Order 8 Bits) MBE 0002H RBE INTBT/INT4 Start Address (High-Order 6 Bits) INTBT/INT4 Start Address (Low-Order 8 Bits) 0004H MBE RBE INT0 Start Address (High-Order 6 Bits) CALLF ! faddr Instruction Entry Address INT0 Start Address (Low-Order 8 Bits) 0006H MBE RBE INT1 Start Address (High-Order 6 Bits) CALL !addr Instruction Subroutine Entry Address INT1 Start Address (Low-Order 8 Bits) 0008H MBE RBE INTCSI0 Start Address (High-Order 6 Bits) INTCSI0 Start Address (Low-Order 8 Bits) 000AH MBE RBE BRCB ! caddr Instruction Branch Address INTT0 Start Address (High-Order 6 Bits) INTT0 Start Address (Low-Order 8 Bits) MBE 000CH RBE BR !addr Instruction Branch Address BR $addr Instruction Relative Branch Address (-15 to -1, +2 to +16) INTTPG Start Address (High-Order 6 Bits) INTTPG Start Address (Low-Order 8 Bits) ≈ ≈ 0020H GETI Instruction Reference Table 007FH 0080H 07FFH 0800H ≈ ≈ ≈ ≈ ≈ ≈ BRCB !caddr Instruction Branch Address ≈ ≈ BRCB !caddr Instruction Branch Address ≈ ≈ Branch Destination Address and Subroutine Entry Address by GETI Instruction 0FFFH 1000H 1FFFH 2000H 2FFFH 3000H BRCB !caddr Instruction Branch Address 3F7FH Remarks 16 In cases other than above, the program can branch to an address for which only the lower 8–bit of the PC have been changed, by a BR PCDE or BR PCXA instruction. µPD75516 Fig. 5–2 Data Memory Map Data Memory General Register Area Memory Bank 000H (32 × 4) 01FH 008H Stack Area Data Area Static RAM (512 × 4) 256 × 4 0 256 × 4 1 0FFH 100H 1FFH Not On-Chip F80H 128 × 4 Peripheral Hardware Area 15 FFFH 17 µPD75516 6. PERIPHERAL HARDWARE FUNCTIONS 6.1 PORTS There are the following 3 types of I/O ports. • • CMOS input (PORT0, 1, 8, 15) CMOS input/output (PORT2, 3, 6, 7, 9, 10, 11) • N-ch open-drain input/output (PORT4, 5, 12, 13, 14) : 20 Total : 16 : 28 64 Table 6–1 Port Functions Port (Pin name) Function PORT 0 4-bit input Operation/Features Can always be read or tested regardless of the operating mode of the dual function pin. PORT 1 Can be set in the input or output mode as a 4-bit unit. PORT 2 4-bit input/output PORT 3 * PORT 4 * PORT 5 * 4-bit input/output PORT 7 18 Shares the use of the pin with KR0 to KR3. Shares the use of the pin with KR4 to KR7. With a mask option, the internal pull-up resistance can be specified in 1-bit units. 4-bit input/output Can be set in input or output mode in 4-bit units. PORT 11 * Can be set in input or output mode in 1/4-bit With ports 6 and 7 as a units pair, data can be input and output in 8-bit units. Can be set in input or output mode in 4-bit units Can be set in input or output mode in 4-bit units. PORT 10 PORT 15 With ports 4 and 5 as a With a mask option, the internal pair, data can be input pull-up resistance can be speciand output in 8-bit units. fied in 1-bit units. 4-bit input/output PORT 9 PORT 14 Shares the use of the pin with PTO0, PCL, BUZ Shares the use of the pin with PPO, SCK1, SO1 and SI1. 4-bit input PORT 13 Shares the use of the pin with INT0 to INT2 and TI0. Can always be read or tested regardless of the operating mode of the dual function pin. PORT 8 PORT 12 Shares the use of the pin with INT4, SCK0, SO0/SB0, SI0/SB1. Can be set in the input or the output mode in 1/4-bit units 4-bit input/output Can be set in input or (N-ch open-drain 10 V output mode in 4-bit withstand voltage) units PORT 6 Remarks 4-bit input/output Can be set in input or output mode in 4-bit (N-ch open-drain 10 V units. withstand voltage) 4-bit input Can drive a LED directly. Can always be read or tested regardless of the operating mode of the dual function pin. With a mask option, the internal pull-up resistance can be specified in 1-bit units. Shares the use of the pin with AN4 to AN7. µPD75516 6.2 CLOCK GENERATOR The clock generator operation is determined by the processor clock control register (PCC) and the system clock control register (SCC). 2 kinds of clocks such as a main system clock and a subsystem clock are available. In addition, the instruction execution time can be changed. • 0.95 µs, 1.91 µs, 15.3 µs (Main system clock: 4.19 MHz operation) • 122 µs (Subsystem clock: 32.768 kHz operation) Fig. 6–1 Clock Generator Block Diagram • Basic Interval Timer (BT) • Timer/Event Counter • Serial Interface • Watch Timer • Clock Output Circuit • A/D Converter • INT0 Noise Eliminator XT1 Timer/Pulse Generator X1 X2 Watch Timer Main System fX Clock Oscillation Circuit 1/8~1/4096 1/ 2 Oscillation Stop Frequency Divider Selector SCC 1/ 16 Frequency Divider Selector XT2 Subsystem f XT Clock Oscillation Circuit SCC3 SCC0 1/4 PCC Internal Bus Φ • CPU • Clock Output Circuit • INT0 Noise Eliminator PCC0 PCC1 4 HALT F/F HALT* STOP* PCC2 S PCC3 R PCC2 and PCC3 Clear STOP F/F Q Q Wait Release Signal from BT S RESET Signal R * Instruction execution Remarks Standby Release Signal from Interrupt Control Circuit 1. fX = Main system clock frequency 2. 3. 4. 5. fXT = Subsystem clock frequency Φ = CPU clock PCC: Processor clock control register SCC: System clock control register 6. One clock cycle (tCY) of Φ is 1 machine cycle of the instruction. With tCY, refer to "AC CHARACTERISTICS" in 11. "Electrical Specifications". 19 ★ µPD75516 6.3 CLOCK OUTPUT CIRCUIT The clock output circuit is a circuit which outputs a clock pulse from P22/PCL pin and is used to supply clock pulses to remote control outputs or peripheral LSI's. • Clock output (PCL) : Φ , 524, 262, 65.5 kHz (4.19 MHz operation) • Buzzer output (BUZ) : 2 kHz (4.19 MHz, or 32.768 kHz operation) Fig. 6–2 Clock Output Circuit Configuration Form Clock Generator Φ f x /23 Output Buffer Selector f x /24 PCL/P22 6 f x /2 PORT2.2 CLOM CLOM CLOM CLOM CLOM 2 3 1 0 P22 Output Latch Bit 2 of PMGB Port 2 Input/ Output Mode Specification Bit 4 Internal Bus Remarks 20 Consideration is given so that a low amplitude pulse is not output when switching between clock output enable and disable. µPD75516 6.4 BASIC INTERVAL TIMER The basic interval timer includes the following functions. • It operates as an interval timer which generates reference time interrupts. • It can be applied as a watchdog timer which detects when a program is out of control. • Selects and counts wait times when the standby mode is released. • It reads count contents. Fig. 6–3 Basic Interval Timer Configuration From Clock Generator fX/2 fX/2 Clear 5 7 fX/2 Set Basic Interval Timer (8-Bit Frequency Divider) MPX fX/2 Clear 9 BT 12 BT Interrupt Request Flag IRQBT Vectored Interrupt Request Signal 3 BTM3 SET1* BTM2 BTM1 Wait Release Signal during Standby Release BTM0 BTM 8 4 Internal Bus * Instruction execution. 21 µPD75516 6.5 WATCH TIMER The µPD75516 incorporates one channel of watch timer which has the following functions. • Sets test flags (IRQW) at 0.5-second intervals. The standby mode can be released with IRQW. • 0.5-second time intervals can be created in either the main system clock or the subsystem clock. • In the rapid feed mode, time intervals which are 128 times normal (3.91 ms) can be set, making this function convenient for program debugging and testing. • A fixed frequency (2.048 kHz) can be output to the P23/BUZ pin for use in generating buzzer sounds and trimming system clock oscillator frequencies. • The frequency divider can be cleared, so this watch can be started at 0 second. Fig. 6–4 Watch Timer Block Diagram fW (256 Hz : 3.91 ms) 7 2 From Clock Generator fW 128 (32.768 kHz) Selector fW 14 2 fW Frequency Divider (32.768 kHz) fXT (32.768 kHz) INTW IRQW Set Signal Selector 2Hz 0.5 sec fW 16 (2.048 kHz) Clear Output Buffer P23/BUZ WM WM7 PORT2.3 0 0 0 0 WM2 WM1 WM0 8 P23 Output Latch Bit 2 of PMGB Port 2 Input/Output Mode Bit Test Instruction Internal Bus Remarks 6.6 Values in parentheses are when fX = 4.194304 MHz and fXT = 32.768 kHz. TIMER/EVNET COUNTER The µPD75516 incorporates one channel of timer/event counter which has the following functions. • Operates as a programmable interval timer. • Outputs square waves in the desired frequency to the PTO0 pin. • Operates as an event counter. • Divides the TI0 pin input into N divisions and outputs it to the PTO0 pin (frequency divider operation). • Supplies a serial shift clock to the serial interface circuit. • Count status read function. 22 Fig. 6–5 Timer/Event Counter Block Diagram Internal Bus 8 SET1 * 8 8 TM0 TM07 TM06 TM05 TM04 TM03 TM02 TMOD0 TM01 TM00 8 PORT1.3 Match Input Buffer 8 Reset P13/TI0 T0 Count Register (8) From Clock Generator CP PORT2.0 Bit 2 of PGMB Port 2 P20 Input/ Output Output Latch Mode To Serial Interface TOUT F/F Comparator (8) MPX TOE0 TO Enable Flag Modulo Register (8) P20/PTO0 Output Buffer INTT0 IRQT0 Set Signal Clear Timer Operation Start RESET IRQT0 Clear Signal * Instruction execution µPD75516 23 µPD75516 6.7 TIMER/PULSE GENERATOR The µPD75516 incorporates one channel of timer/pulse generator which can be used as a timer or a pulse generator. The timer/pulse generator has the following functions. (a) Functions available in the timer mode • 8-bit interval timer operation (IRQTPG generation) enabling the clock source to be varied at 5 levels • Square wave output to PPO pin (b) Functions available in the PWM pulse generate mode • 14-bit accuracy PWM pulse output to the PPO pin (Used as a digital-to analog converter and applicable to tuning) • Interrupt generation of fixed time interval If pulse output is not necessary, the PPO pin can be used as a 1-bit output port. Note If the STOP mode is set while the timer/pulse generator is in operation, miss-operation may result. To prevent that from occurring, preset the timer/pulse generator to the stop state using its mode register. Fig. 6–6 Block Diagram of Timer/Pulse Generator (Timer Mode) Internal Bus 8 8 MODL Modulo Register L (8) MODH Modulo Register H (8) TPGM3 (Set to "1") INTTPG IRQTPG Set Signal Modulo Lach H (8) 8 Output Buffer Match Comparator (8) Selector T F/F PPO Frequency Divider fX 1/2 TPGM1 CP Prescalar Select Latch (5) Clear 24 Set 8 Count Register (8) Clear TPGM4TPGM5 TPGM7 µPD75516 Fig. 6–7 Timer/Pulse Generator Block Diagram (PWM Pulse Generator Mode) Internal Bus 8 8 MODH Modulo Register H (8) MODL Modulo Register L (8) TPGM3 MODL7-2 (6) MODH (8) Modulo Latch (14) Output Buffer TPGM1 fx PWM Pulse Generator Selector 1/2 PPO Frequency Divider INTTPG TPGM5 (IRQTPG Set Signal) TPGM7 15 ( 2 = 7.81 ms : fX = 4.19 MHz operation) fX 6.8 SERIAL INTERFACE The µPD75516 has two serial interface channels on chip. The differences between channel 0 and channel 1 are shown in Table 6–2. Table 6–2 Differences between Channels 0 and 1 Serial Transfer Mode and Function Clock selection Channel 0 fX/24 , fX/23 , TOUT F/F, external clock 3-wire serial I/O Transfer mode MSB first/LSB first switchable Transfer end flag 2-wire serial I/O Serial transfer end interrupt request flag (IRQCSI0) Use enabled Channel 1 fX/24, fX/23, external clock MSB first Serial transfer end flag (EOT) None Serial bus interface (SBI) (1) Serial interface (channel 0) functions The following 4 modes are available to the µPD75516 serial interface (channel 0). • Operation stop mode • 3-wire serial I/O mode • 2-wire serial I/O mode • SBI mode (serial bus interface mode) 25 26 Fig. 6–8 Serial Interface (Channel 0) Block Diagram Internal Bus 8/4 Bit Test CSIM0 8 8 Bit Manipulation Slave Address Register (SVA) Addres Comparator (8) (8) RELT CMDT SO0 SET CLR Latch D Q ACKT ACKE BSYE Shift Register (SIO0) SBIC Match Signal (8) P03/SI/SB1 Selector Bit Test 8 Selector P02/SO/SB0 Busy/ Acknowledge Output Circuit Bus Release/ Command/ Acknowledge Detection Circuit P01/SCK0 Serial Clock Counter P01 Output Latch RELD CMDD ACKD INTCSI0 INTCSI0 Control IRQCSI0 Set Signal Circuit 3 Serial Clock Control Circuit MPX fX/24 fX/2 6 fX/2 TOUT F/F (From Timer/ Event Counter) External SCK0 µPD75516 µPD75516 (2) Serial interface (channel 1) functions The following 2 modes are available to the µPD75516 serial interface (channel 1). • Operation stop mode • 3-wire serial I/O mode 27 28 Fig. 6–9 Serial Interface (Channel 1) Block Diagram Internal Bus 8 SIO1 Write Signal (Serial Start Signal) bit0 P83/SI1 Bit Manipulation 7 bit7 Bit Manipulation 8 0 CSIM1 SIO1 Shift Register 1 (8) Serial Operating Mode Register 1 (8) P82/SO1 Clear Serial Transfer End Flag (EOT) Overflow Serial Clock Counter (3) Set Clear P81/SCK1 R Q S fx/23 MPX fx/24 µPD75516 µPD75516 6.9 A/D CONVERTER The µPD75516 incorporates an 8–bit resolution A/D converter with 8–channel analog inputs (AN0 to AN7). The A/D converter employs successive approximation. Fig. 6–10 A/D Converter Block Diagram Internal Bus 8 0 ADM6 ADM5 ADM4 SOC EOC ADM1 0 ADM 8 AN0 Control Circuit Simple & Hold Circuit AN1 AN2 + AN3 Multiplexer SA Register (8) – AN4 Comparator AN5 AN6 8 AN7 Tap Decoder AV REF R/2 R R R R/2 AV SS 29 µPD75516 6.10 BIT SEQUENTIAL BUFFER: 16 BITS The bit sequential buffer is a special data memory for bit manipulation. In particular it facilitates bit manipulation switch the address and bit specifications sequentially modified, and is thus useful for bit–wise processing of data comprising many bits. Fig. 6–11 Bit Sequential Buffer Format Address Bit 3 Symbol L Register FC2H FC3H 2 1 0 3 BSB3 L=F 2 1 FC1H 0 3 BSB2 L=C L=B 2 1 0 FC0H 3 2 BSB1 L=8 L=7 1 0 BSB0 L=4 L=3 DECS L INCS L Remarks 30 In pmem.@L addressing, the specified bit shifts in accordance with the L register. L=0 µPD75516 7. INTERRUPT FUNCTIONS The µPD75516 has nine types of interrupt sources and can generate multiple interrupts with priority order. 2 kind of test sources are also available. INT2 of these test sources is an edge detection testable input. The µPD75516 interrupt control circuit has the following functions: • Hardware-controller vectored interrupt function which can control interrupt acknowledge with the interrupt enable flag (IE×××) and the interrupt master enable flag (IME). • Function of setting any interrupt start address. • Multiple interrupt function which can specify priority order with the interrupt priority select register (IPS). • Interrupt request flag (IRQ×××) test function (Interrupt generation can be checked by software). • Standby mode release function (Interrupt to be released by interrupt enable flag can be selected). 31 32 Fig. 7-1 Interrupt Control Circuit Block Diagram Internal Bus 4 2 2 2 IM2 IM1 IM0 Noise Eliminator INT4 /P00 INT0 /P10 INT1 /P11 (IME) Decoder IRQBT Both Edges Detection Circuit Edge Detection Circuit IRQCSI0 INTTPG Vector Table Address Generator Circuit IRQTPG IRQW Selector INTW KR7/P73 Priority Control Circuit IRQT0 INTT0 Falling Edge Detection Circuit VRQn IRQ1 INTCSI0 KR0/P60 IRQ4 IRQ0 Edge Detection Circuit Rising Edge Detection Circuit IST Interrupt Enable Flag (IE XXX ) INT BT INT2 /P12 IPS 2 IRQ2 Standby Release Signal IM2 µPD75516 µPD75516 8. STANDBY FUNCTIONS Two standby modes (STOP mode and HALT mode) are available for the µPD75516 to decrease power consumption in the program standby mode. Table 8-1 Operation Status in Standby Mode STOP Mode HALT Mode STOP instruction HALT instruction System clock when set Setting enabled only with main system clock. Setting enabled with either main system clock or subsystem clock. Clock generator Oscillator stops only with main system clock. Stops only with CPU clock Φ (Oscillation continued). Basic interval timer Operation stopped. Operation (IRQBT set at reference time intervals). Serial interface (channel 0) Operation enabled only when external SCK0 input is selected for serial clock. Operation enabled when the main system clock oscillates or with external SCK0. Serial interface (channel 1) Operation enabled only when external SCK1 input is selected for serial clock. Operation enabled only when the main system clock oscillates. Timer/event counter Operation enabled only when TI0 pin input is specified for count clock. Operation enabled only when the main system clock oscillates. Watch timer Operation enabled only fXT is selected for Operation enabled. count clock. A/D converter Operation stopped. Operation enabled only when the main system clock oscillates. Timer/pulse generator Operation stopped. Operation enabled only when the main system clock oscillates. Operating state Set instruction External interrupt CPU Release signal INT1, 2, and 4 operation enabled. INT0 operation disabled. Operation stopped. Interrupt request signal or RESET input from operational hardware enabled by interrupt enable flag. 33 µPD75516 9. RESET FUNCTION The µPD75516 is reset and the hardware is initialized as shown in Table 9-1 by RESET input. The reset operation timing is shown in Fig. 9-1. Fig. 9-1 Reset Operation by RESET Input Wait (31.3 ms/4.19 MHz) RESET Input Operating Mode or Standby Mode HALT Mode Operating Mode Internal Reset Operation Table 9-1 Status of Each Hardware after Resetting (1/2) Hardware Program counter (PC) Carry flag (CY) PSW RESET Input in Standby Mode RESET Input during Operation Low-order 6 bits of program memory address 0000H are set in PC13 to 8 and the contents of address 0001H are set in PC7 to 0. Same as the left Held Undefined Skip flag (SK0 to 2) 0 0 Interrupt status flag (IST0, 1) 0 0 Bank enable flag (MBE, RBE) Bit 6 of program memory address 0000H is set in RBE, and bit 7 is set in MBE. Same as the left Stack pointer (SP) Undefined Undefined Data memory (RAM) Held* Undefined General register (X, A, H, L, D, E, B, C) Held Undefined Bank selection register (MBS, RBS) 0, 0 0, 0 Undefined Undefined Mode register (BTM) 0 0 Counter (T0) 0 0 FFH FFH 0 0 TOE0, TOUT F/F 0, 0 0, 0 Timer/pulse generator Modulo register Held Held Mode register 0 0 Watch timer Mode register (WM) 0 0 Basic interval timer Timer/event counter Counter (BT) Modulo register (TMOD0) Mode register (TM0) * Data of data memory addresses 0F8H to 0FDH becomes undefined by RESET input. 34 µPD75516 Table 9-1 Hardware Statuses after Reset (2/2) RESET Input in Standby Mode RESET Input during Operation Held Undefined Operating mode register 0 (CSIM0) 0 0 SBI control register (SBIC) 0 0 Held Undefined 1 1 04H (EOC = 1) 04H (EOC = 1) 7FH 7FH Processor clock control register (PCC) 0 0 System clock control register (SCC) 0 0 Clock output mode register (CLOM) 0 0 Held Undefined Operating mode register 1 (CSIM1) 0 0 Serial transfer end flag (EOT) 0 0 Interrupt request flag (IRQ×××) Reset (0) Reset (0) Interrupt enable flag (IE×××) 0 0 Interrupt master enable flag (IME) 0 0 0, 0, 0 0, 0, 0 Output buffer Off Off Output latch Clear (0) Clear (0) Input/output mode register (PMGA, B, C) 0 0 Pull-up resistor specify register (POGA) 0 0 Held Undefined Hardware Shift register (SIO0) Serial interface (channel 0) Slave address register (SVA) P01/SCK0 output latch Mode register (ADM), EOC A/D converter SA register Clock generator and clock output circuit Shift register (SIO1) Serial interface (channel 1) Interrupt function INT0, 1, and 2 mode registers (IM0, 1, 2) Digital port Bit sequential buffer (BSB0 to BSB3) 35 µPD75516 10. INSTRUCTION SET (1) Operand identifier and description Enter an operand in the operand column of each instruction using the description method relating to the operand identifier of the instruction (For details, refer to "RA75X Assembler Package User's Manual – Language Volume" (EEU–730)). If more than one description method is available, select one. Capital alphabetic letters, plus and minus signs are keywords. Describe them as they are. In the case of immediate data, describe appropriate numerical values or labels. Identifier * 36 Description Method reg reg1 X, A, B, C, D, E, H, L X, B, C, D, E, H, L rp rp1 rp2 rp’ rp’1 XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA’, BC’, DE’, HL’ BC, DE, HL, XA’, BC’, DE’, HL’ rpa rpa1 HL, HL+, HL-, DE, DL DE, DL n4 n8 4-bit immediate data or label 8-bit immediate data or label mem bit 8-bit immediate data or label* 2-bit immediate data or label fmem pmem FB0H to FBFH and FF0H to FFFH immediate data or labels FC0H to FFFH immediate data or labels addr caddr faddr 0000H to 3F7FH immediate data or labels 12-bit immediate data or label 11-bit immediate data or label taddr 20H to 7FH immediate data (bit0 = 0) or label PORTn IE××× RBn MBn PORT0 to PORT15 IEBT, IECSI0, IET0, IE0, IE1, IE2, IE4, IEW, IETPG RB0 to RB3 MB0, MB1, MB2, MB15 For 8-bit data processing, only even addresses can be specified. µPD75516 (2) Legend for operation description A : A register; 4-bit accumulator B : B register C D E H : : : : C register D register E register H register L X XA BC : : : : L register X register Register pair (XA); 8-bit accumulator Register pair (BC) DE HL XA’ BC’ : : : : Register pair (DE) Register pair (HL) Expanded register pair (XA’) Expanded register pair (BC’) DE’ HL’ PC SP : : : : Expanded register pair (DE’) Expanded register pair (HL’) Program counter Stack pointer CY PSW MBE RBE : : : : Carry flag; Bit accumulator Program status word Memory bank enable flag Register bank enable flag PORTn IME IPS IE××× : : : : Port n (n Interrupt Interrupt Interrupt RBS MBS PCC . : : : : Register bank select register Memory bank select register Processor clock control register Address and bit delimiter (××) ××H : Contents addressed by ×× : Hexadecimal data = 0 to 15) master enable flag priority select register enable flag 37 µPD75516 (3) Description of symbols in the addressing area column *1 MB = MBE • MBS (MBS = 0, 1, 15) *2 MB = 0 *3 MBE = 0 : MB = 0 (00H to 7FH) MB = 15 (80H to FFH) MBE = 1 : MB = MBS (MBS = 0, 1, 15) *4 MB = 15, fmem = FB0H to FBFH, FF0H to FFFH *5 MB = 15, pmem = FC0H to FFFH *6 addr = 0000H to 3F7FH *7 addr = (Current PC) – 15 to (Current PC) – 1, (Current PC) + 2 to (Current PC) + 16 *8 caddr = 0000H 1000H 2000H 3000H *9 faddr = 0000H to 07FFH *10 taddr = 0020H to 007FH Remarks 1. 2. 3. 4. (4) to to to to 0FFFH 1FFFH 2FFFH 3F7FH (PC13, 12 (PC13, 12 (PC13, 12 (PC13, 12 = = = = 00B) or 01B) or 10B) or 11B) Data Memory Addressing Program Memory Addressing MB indicates accessible memory bank. In *2, MB = 0 irrespective of MBE and MBS. In *4 and *5, MB = 15 irrespective of MBE and MBS. *6 to *10 indicate addressable areas. Description of the machine cycle column S indicates the number of machine cycles required for skip operation by an instruction having skip function. The S value varies as follows: • When not skipped ...................................................................................................... S = 0 • When 1-byte or 2-byte instructions are skipped .................................................... S = 1 • When 3-byte instructions are skipped (BR !adder, CALL !adder instruction) ... S = 2 Note GETI instruction is skipped in one machine cycle. One machine cycle is equal to one cycle (= tCY) of CPU clock Φ and three time periods are available according to PCC setting. 38 µPD75516 Note 1 Mnemonic Operands No. of Machine Bytes Cycle Operation Addressing Area Skip Condition A, #n4 1 1 A←n4 Stack A reg1, #n4 2 2 reg1←n4 XA, #n8 2 2 XA←n8 Stack A HL, #n8 2 2 HL←n8 Stack B rp2, #n8 2 2 rp2←n8 A, @HL 1 1 A←(HL) *1 A, @HL+ 1 2+S A←(HL), then L←L+1 *1 L=0 A, @HL– 1 2+S A←(HL), then L←L–1 *1 L = FH A, @rpa1 1 1 A←(rpa1) *2 XA, @HL 2 2 XA←(HL) *1 @HL, A 1 1 (HL)←A *1 @HL, XA 2 2 (HL)←XA *1 A, mem 2 2 A←(mem) *3 XA, mem 2 2 XA←(mem) *3 mem, A 2 2 (mem)←A *3 mem, XA 2 2 (mem)←XA *3 A, reg 2 2 A←reg XA, rp' 2 2 XA←rp' reg1, A 2 2 reg1←A rp'1, XA 2 2 rp'1←XA A, @HL 1 1 A↔(HL) *1 A, @HL+ 1 2+S A↔(HL), then L←L+1 *1 L=0 A, @HL– 1 2+S A↔(HL), then L←L–1 *1 L = FH A, @rpa1 1 1 A↔(rpa1) *2 XA, @HL 2 2 XA↔(HL) *1 A, mem 2 2 A↔(mem) *3 XA, mem 2 2 XA↔(mem) *3 A, reg1 1 1 A↔reg1 XA, rp' 2 2 XA↔rp' XA, @PCDE 1 3 XA←(PC13–8+DE)ROM XA, @PCXA 1 3 XA←(PC13–8+XA)ROM Transfer MOV XCH Note 2 MOVT Note 1. Instruction Group 2. Table reference 39 µPD75516 Bit transfer Note Mnemonic No. of Machine Bytes Cycle Operation Addressing Area ADDC SUBS CY, fmem.bit 2 2 CY←(fmem.bit) *4 CY, pmem.@L 2 2 CY←(pmem7–2+L3–2.bit(L1–0)) *5 CY, @H+mem.bit 2 2 CY←(H+mem3–0.bit) *1 fmem.bit, CY 2 2 (fmem.bit)←CY *4 pmem.@L, CY 2 2 (pmem 7–2+L3–2.bit(L 1–0))←CY *5 @H+mem.bit, CY 2 2 (H+mem3–0.bit)←CY *1 A, #n4 1 1+S A←A+n4 carry XA, #n8 2 2+S XA←XA+n8 carry A, @HL 1 1+S A←A+(HL) XA, rp' 2 2+S XA←XA+rp' carry rp'1, XA 2 2+S rp'1←rp'1+XA carry A, @HL 1 1 A, CY←A+(HL)+CY XA, rp' 2 2 XA, CY←XA+rp'+CY rp'1, XA 2 2 rp'1, CY←rp'1+XA+CY A, @HL 1 1+S A←A–(HL) XA, rp' 2 2+S XA←XA–rp' borrow rp'1, XA 2 2+S rp'1←rp'1–XA borrow A, @HL 1 1 A, CY←A–(HL)–CY SUBC XA, rp' 2 2 XA, CY←XA–rp'–CY rp'1, XA 2 2 rp'1, CY←rp'1–XA–CY A, #n4 2 2 A←A n4 A, @HL 1 1 A←A (HL) XA, rp' 2 2 XA←XA rp' rp'1, XA 2 2 rp'1←rp'1 XA A, #n4 2 2 A←A n4 A, @HL 1 1 A←A (HL) XA, rp' 2 2 XA←XA rp'1, XA 2 2 rp'1←rp'1 A, #n4 2 2 A←A n4 A, @HL 1 1 A←A (HL) XA, rp' 2 2 XA←XA rp'1, XA 2 2 rp'1←rp'1 *1 *1 *1 *1 *1 OR rp' XA *1 XOR 40 Instruction Group rp' XA carry *1 AND Note Skip Condition MOV1 ADDS Operation Operand borrow µPD75516 Carry flag manipulation Compare Increment/decrement Note 2 Note 1 Mnemonic Note Operands No. of Machine Bytes Cycle Operation Addressing Area Skip Condition RORC A 1 1 CY←A0, A 3←CY, An–1←An NOT A 2 2 A←A reg 1 1+S reg←reg+1 reg = 0 rp1 1 1+S rp1←rp1+1 rp1 = 00H @HL 2 2+S (HL)←(HL)+1 *1 (HL) = 0 mem 2 2+S (mem)←(mem)+1 *3 (mem) = 0 reg 1 1+S reg←reg–1 reg = FH rp' 2 2+S rp'←rp'–1 rp' = FFH reg, #n4 2 2+S Skip if reg = n4 reg = n4 @HL, #n4 2 2+S Skip if (HL) = n4 *1 (HL) = n4 A, @HL 1 1+S Skip if A = (HL) *1 A = (HL) XA, @HL 2 2+S Skip if XA = (HL) *1 XA = (HL) A, reg 2 2+S Skip if A = reg A = reg XA.rp' 2 2+S Skip if XA = rp' XA = rp' SET1 CY 1 1 CY←1 CLR1 CY 1 1 CY←0 SKT CY 1 1+S NOT1 CY 1 1 INCS DECS SKE Skip if CY = 1 CY = 1 CY←CY 1. Instruction Group 2. Accumulator manipulation 41 µPD75516 Note Mnemonic SET1 CLR1 Memory bit manipulation SKT SKF SKTCLR AND1 OR1 XOR1 Operands No. of Machine Bytes Cycle Operation Addressing Area mem.bit 2 2 (mem.bit)←1 *3 fmem.bit 2 2 (fmem.bit)←1 *4 pmem.@L 2 2 (pmem7–2+L3–2.bit(L1–0))←1 *5 @H + mem.bit 2 2 (H+mem3–0.bit)←1 *1 mem.bit 2 2 (mem.bit)←0 *3 fmem.bit 2 2 (fmem.bit)←0 *4 pmem.@L 2 2 (pmem7–2+L3–2.bit(L1–0))←0 *5 @H+mem.bit 2 2 (H+mem3–0.bit)←0 *1 mem.bit 2 2+S Skip if (mem.bit) = 1 *3 (mem.bit) = 1 fmem.bit 2 2+S Skip if (fmem.bit) = 1 *4 (fmem.bit) = 1 pmem.@L 2 2+S Skip if (pmem7–2+L3–2.bit(L1–0)) = 1 *5 (pmem.@L) = 1 @H+mem.bit 2 2+S Skip if (H+mem3–0.bit) = 1 *1 (@H+mem.bit) = 1 mem.bit 2 2+S Skip if (mem.bit) = 0 *3 (mem.bit) = 0 fmem.bit 2 2+S Skip if (fmem.bit) = 0 *4 (fmem.bit) = 0 pmem.@L 2 2+S Skip if (pmem7–2+L3–2.bit(L1–0)) = 0 *5 (pmem.@L) = 0 @H+mem.bit 2 2+S Skip if (H+mem3–0.bit) = 0 *1 (@H+mem.bit) = 0 fmem.bit 2 2+S Skip if (fmem.bit) = 1 and clear *4 (fmem.bit) = 1 pmem.@L 2 2+S Skip if (pmem7–2+L3–2.bit(L1–0))=1 and clear *5 (pmem.@L) = 1 @H+mem.bit 2 2+S Skip if (H+mem3–0.bit)=1 and clear *1 (@H+mem.bit)=1 CY, fmem.bit 2 2 CY←CY (fmem.bit) *4 CY, pmem.@L 2 2 CY←CY (pmem7–2+L3–2.bit(L 1–0)) *5 CY, @H+mem.bit 2 2 CY←CY (H+mem3–0.bit) *1 CY, fmem.bit 2 2 CY←CY (fmem.bit) *4 CY, pmem.@L 2 2 CY←CY (pmem7–2+L3–2.bit(L1–0)) *5 CY, @H+mem.bit 2 2 CY←CY (H+mem3–0.bit) *1 CY, fmem.bit 2 2 CY←CY (fmem.bit) *4 CY, pmem.@L 2 2 CY←CY (pmem7–2+L3–2.bit(L1–0)) *5 CY, @H+mem.bit 2 2 CY←CY (H+mem3–0.bit) *1 PC13–0←addr Branch BR Note 42 (Optimum instruction is selected from among BR !addr, BRCB !caddr and BR $addr by an assembler.) addr — — !addr 3 3 PC13–0←addr *6 $addr 1 2 PC13–0←addr *7 !caddr 2 2 PC13–0←PC13,12+caddr11–0 *8 PCDE 2 3 PC13–0←PC13–8+DE PCXA 2 3 PC13–0←PC13–8+XA BR BRCB Skip Condition Instruction Group *6 µPD75516 Note Mnemonic Operands No. of Machine Bytes Cycle Addressing Area Operation CALL !addr 3 3 (SP–4) (SP–1) (SP–2)←PC11–0 (SP–3)← MBE, RBE, PC13, 12 PC13–0←addr, SP←SP–4 *6 CALLF !faddr 2 2 (SP–4) (SP–1) (SP–2)←PC11–0 (SP–3)← MBE, RBE, PC13, 12 PC13–0←00, faddr, SP←SP–4 *9 1 3 Skip Condition MBE, RBE, PC13, 12←(SP+1) PC11–0←(SP) (SP+3) (SP+2) SP←SP+4 RETS 1 3+S RETI 1 3 PC13, 12←(SP+1) PC11–0←(SP) (SP+3) (SP+2) PSW←(SP+4) (SP+5), SP←SP+6 rp 1 1 (SP–1) (SP–2)←rp, SP←SP–2 BS 2 2 (SP–1)←MBS, (SP–2)←RBS, SP←SP–2 rp 1 1 rp←(SP+1) (SP), SP←SP+2 BS 2 2 MBS←(SP+1), RBS←(SP), SP←SP+2 2 2 IME(IPS.3)←1 2 2 IE×××←1 2 2 IME(IPS.3)←0 IE××× 2 2 IE×××←0 Input/output MBE, RBE, PC13, 12←(SP+1) PC11–0←(SP) (SP+3) (SP+2) SP←SP+4 then skip unconditionally A, PORTn 2 2 A←PORTn IN XA, PORTn 2 2 XA←PORTn+1, PORTn PORTn, A 2 2 PORTn←A PORTn, XA 2 2 PORTn+1, PORTn←XA Special CPU control Subroutine stack control RET HALT 2 2 Set HALT Mode (PCC.2←1) STOP 2 2 Set STOP Mode (PCC.3←1) NOP 1 1 No Operation RBn 2 2 RBS←n MBn 2 2 MBS←n (n = 0, 1, 15) Unconditional PUSH Interrupt control POP * EI IE××× DI OUT * * (n = 0 to 15) (n = 4, 6) (n = 2 to 7, 9 to 14) (n = 4, 6) (n = 0 to 3) SEL MBE = 0 or MBE = 1 and MBE = 15 must be set for execution of IN/OUT instruction Note Instruction Group 43 µPD75516 Special Note * GETI * Operands taddr No. of Machine Bytes Cycle 1 3 Operation • TBR instruction PC13–0←(taddr)4–0+(taddr+1) ---------------------------------------------------• TCALL instruction (SP–4)(SP–1)(SP–2)←PC11–0 (SP–3)← MBE, RBE, PC13, 12 PC13–0←(taddr)5–0+(taddr+1) SP←SP–4 ---------------------------------------------------• (taddr) (taddr+1) instruction executed in the case of instruction except TBR and TCALL instructions Addressing Area Skip Condition ------------------------ *10 -----------------------Depends on instructions referred to. TBR and TCALL instructions are assembled pseudo-instructions to define the GETI instruction table. Note 44 Mnemonic Instruction Group µPD75516 11. ELECTRICAL SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C) PARAMETER SYMBOL Power supply voltage VDD –0.3 to +7.0 V VI1 Except ports 4, 5 and 12 to 14 –0.3 to VDD +0.3 V Ports 4, 5 and 12 to Internal pull-up resistor –0.3 to VDD +0.3 V 14 Open-drain –0.3 to +11 V –0.3 to VDD +0.3 V Input voltage VI2 Output voltage VO Output current high IOH TEST CONDITIONS –15 mA All pins –30 mA Peak value 30 mA Effective value 15 mA Peak value 100 mA Effective value 60 mA Peak value 100 mA Effective value 60 mA Peak value 40 mA Effective value 25 mA Total of ports 0, 2, 3 and 4 VOL* Total of ports 5 to 11 Total of ports 12 to 14 * UNIT 1 pin 1 pin Output current low RATING Operating temperature Topt –40 to +85 °C Storage temperature Tstg –65 to +150 °C Calculate the effective value with the formula [Effective value] = [Peak value] × √duty. OPERATING VOLTAGE SYMBOL PARAMETER A/D converter Timer/pulse generator Other circuits TEST CONDITIONS MIN. MAX. UNIT Power supply voltage VDD 3.5 6.0 V Ambient temperature Ta –10 +70 °C Power supply voltage VDD 4.5 6.0 V Ambient temperature Ta –40 +85 °C Power supply voltage VDD 2.7 6.0 V Ambient temperature Ta –40 +85 °C TYP. MAX. UNIT 15 pF 15 pF 15 pF CAPACITANCE (Ta = 25 °C, VDD = 0 V) PARAMETER SYMBOL Input capacitance CI Output capacitance CO Input /output capacitance CIO TEST CONDITIONS f = 1 MHz Unmeasured pin returned to 0 V MIN. 45 µPD75516 MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) RESONATOR RECOMMENDED CIRCUIT X1 X2 Ceramic resonator C1 C2 X1 Crystal resonator PARAMETER TEST CONDITIONS Oscillator frequency (fX) *1 VDD = Oscillation voltage range Oscillation stabilization time *2 After VDD reaches the minimum value in the oscillation voltage range Oscillator frequency (fX) *1 X2 MIN. TYP. 1.0 1.0 4.19 VDD = 4.5 to 6.0 V C1 C2 X1 X2 External clock µPD74HCU04 Oscillation stabilization time *2 MAX. UNIT 5.0*3 MHz 4 ms 5.0*3 MHz 10 ms 30 ms X1 input frequency (fX) *1 1.0 5.0*3 MHz X1 high and low level widths (tXH, tXL) 100 500 ns SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) RESONATOR RECOMMENDED CIRCUIT XT1 R C3 C4 XT1 External clock TEST CONDITIONS Oscillator frequency (f XT) *1 XT2 Crystal resonator PARAMETER XT2 MIN. TYP. MAX. UNIT 32 32.768 35 kHz 1.0 2 s 10 s VDD = 4.5 to 6.0 V Oscillation stabilization time *2 XT1 input frequency (f XT) *1 32 100 kHz XT1 high and low level widths (tXTH, tXTL) 5 15 µs Leave Open * 1. Oscillator characteristics only. Refer to the description of AC characteristics for details of instruction execution time. 2. Time required for oscillation to become stabilized after VDD reaches MIN. of the oscillation voltage range or after STOP mode release. 3. 46 When the oscillator frequency is 4.19 MHz < fX ≤ 5.0 MHz, PPC = 0011 should not be selected as the instruction execution time. If PCC = 0011 is selected, one machine cycle is less than 0.95 µs, and the specification MIN. value of 0.95 µs will not be achieved. µPD75516 Note ★ When the system clock oscillator is used, the following points should be noted concerning wiring in the section enclosed by dots, in order to prevent the effects of wiring capacitance, etc. • Keep the wiring as short as possible. • Do not cross any other signal lines, and keep clear of lines in which a high fluctuating current flows. • Ensure that oscillator capacitor connection points are always at the same potential as VDD. Do not connect in a power supply pattern in which a high current flows. • Do not take a signal from the oscillator. The subsystem clock oscillator is designed to be a circuit with the low amplification factor to achieve low consumption current, with the result that it is more prone to misoperation due to noise than the main system clock oscillator. Therefore, when using the subsystem clock, special care is required for the wiring method. RECOMMENDED OSCILLATOR CONSTANTS MAIN SYSTEM CLOCK : CERAMIC RESONATOR (Ta = –40 to +85 °C) MANUFACTURER Kyocera Corp. PRODUCT NAME EXTERNAL CAPACITANCE (pF) OSCILLATION VOLTAGE RANGE (V) C1 C2 MIN. MAX. KBR–1000H 100 100 KBR–2.0MS 47 47 2.7 6.0 KBR–4.0MS 33 33 30 30 2.7 30 30 3.0 REMARKS CSA 2.00MG CSA 4.00MGU CSA 4.19MG093 CSA 4.91MGU Murata Mfg. Co., Ltd. CSA 4.91MG 6.0 CST 2.00MG CST 4.00MGU CST 4.19MG093 On-chip On-chip 2.7 On-chip On-chip 3.0 27 27 3.0 CST 4.91MGU CST 4.91MG CRHF 3.00 Toko, Inc. CRHF 4.19 6.0 MAIN SYSTEM CLOCK : CRYSTAL RESONATOR (Ta = –20 to +70 °C) MANUFACTURER Kinseki PRODUCT NAME HC–49/U EXTERNAL CAPACITANCE (pF) OSCILLATION VOLTAGE RANGE (V) C1 C2 MIN. MAX. 27 27 2.7 6.0 REMARKS 47 µPD75516 DC CHARACTERISTICS (Ta = –40 to 85 °C, VDD = 2.7 to 6.0 V) PARAMETER SYMBOL TEST CONDITIONS Output voltage high MAX. UNIT Ports 2, 3, 9 to 11, P80, P82 0.7 V DD VDD V VIH2 Ports 0, 1, 6, 7, 15, P81, P83, RESET 0.8 V DD VDD V Internal pull-up resistor 0.7 V DD VDD V VIH3 Port 4, 5, 12 to 14 Open-drain 0.7 V DD 10 V VDD–0.5 VDD V VIH4 X1, X2, XT1 VIL1 Ports 2 to 5, 9 to 14, P80, P82 0 0.3 VDD V VIL2 Ports 0, 1, 6, 7, 15, P81, P83, RESET 0 0.2 VDD V VIL3 X1, X2, XT1 0 0.4 V VOH VDD = 4.5 to 6.0 V, IOH = –1 mA VDD–1.0 V IOH = 100 µA VDD–0.5 V Ports 3, 4, 5 Output voltage low TYP. VIH1 Input voltage high Input Voltage low MIN. VOL VDD = 4.5 to 6.0V, IOL = 15 mA 2.0 V VDD = 4.5 to 6.0 V, IOL = 1.6 mA 0.4 V IOL = 400 µA 0.5 V 0.2 V DD V 3 µA X1, X2, XT1 20 µA Ports 4, 5, 12 to 14 (when open-drain) 20 µA Except below –3 µA X1, X2, XT1 –20 µA 3 µA 20 µA –3 µA 80 kΩ 300 kΩ 70 kΩ 60 kΩ 140 kΩ SB0, 1 0.4 Open-drain pull-up resistance ≥ 1k Ω Except below ILIH1 VI = VDD Input leakage current high ILIH2 ILIH3 Input leakage current low Output leakage current high Output leakage current low VI = 9 V ILIL1 VI = 0 V ILIL2 ILOH1 VO = VDD Except below ILOH2 VO = 9 V Ports 4, 5, 12 to 14 (when open-drain) ILOL VO = 0 V RU1 Ports 0, 1, 2, 3, 6, 7 (except P00) VI = 0 V VDD = 5.0 V ±10% 15 VDD = 3.0 V ± 10% 30 Ports 4, 5, 12 to 14 VO = VDD –2.0 V VDD = 5.0 V ± 10% 15 VDD = 3.0 V ± 10% 10 VO = 2 V Port 9 20 Internal pull-up resistor RU2 Internal pull-down resistor 48 RD 40 40 70 µPD75516 DC CHARACTERISTICS (Ta = –40 to 85 °C, VDD = 2.7 to 6.0 V) PARAMETER SYMBOL IDD1 IDD2 Supply current *1 TEST CONDITIONS TYP. MAX. UNIT 3 9 mA 0.55 1.5 mA 600 1800 µA 200 600 µA VDD = 3 V ± 10% 40 120 µA HALT mode VDD = 3 V ± 10% 5 15 µA 0.5 20 µA 0.3 10 µA 5 µA VDD = 5 V ± 10% *3 Operating 4.19 MHz crystal mode VDD = 3 V ± 10% *4 oscillation C1 = C2 = 22 pF VDD = 5 V ± 10% *2 HALT mode VDD = 3 V ± 10% IDD3 32.768 kHz crystal IDD4 oscillation *5 IDD5 XT1 = 0 V STOP mode Operating mode VDD = 5 V ± 10% * 1. 2. 3. 4. 5. VDD = 3 V ± 10% Ta = 25 °C MIN. Current flowing to the internal pull-up resistor excluded. Subsystem clock oscillation also included. When operated in the high speed mode with the processor clock control register (PCC) set to 0011. When operated in the low speed mode with PCC = 0000. When operated on the subsystem clock after the main system clock oscillation stop with the system clock control register (SCC) set to 1001. 49 µPD75516 AC CHARACTERISTICS (Ta = –40 to +85 °C , VDD = 2.7 to 6.0 V) (1) Basic Operation PARAMETER SYMBOL CPU clock cycle time (minimum instruction execution time = 1 machine cycle )*1 tCY TI0 input frequency fTI TEST CONDITIONS MIN. VDD = 4.5 to 6.0 V Operation with main system clock Operation with subsystem clock MAX. UNIT 0.95 64 µs 3.8 64 µs 125 µs 0 1 MHZ 0 275 kHz 114 VDD = 4.5 to 6.0 V TI0 input high and lowlevel widths tTIH, Interrupt input high and low-level widths tINTH, RESET low-level width * 1. 122 0.48 µs 1.8 µs INT0 *2 µs INT1, 2, 4 10 µs KR0–7 10 µs 10 µs VDD = 4.5 to 6.0 V tTIL tINTL tRSL The CPU clock (Φ) cycle time is determined by the oscillator frequency of the connected resonator, the system clock control register (SCC) and the tCY 64 60 6 5 Operation Guaranteed Range 4 Cycle Time tCY [µs] 2tCY or 128/fX is set by interrupt mode register (IM0) setting. VS VDD (Main System Clock in Operation) 70 processor clock control register (PCC). The cycle time tCY characteristics for power supply voltage VDD when the main system clock is in operation is shown below. 2. TYP. 3 2 1 0.5 0 1 2 3 4 5 Power Supply Voltage VDD [V] 50 6 µPD75516 (2) Serial Transfer Operation (a) 2-wire and 3-wire serial I/O mode (SCK...Internal clock output) PARAMETER SYMBOL TEST CONDITIONS MIN. VDD = 4.5 to 6.0 V SCK cycle time TYP. MAX. UNIT 1600 ns 3800 ns (tKCY1/2)–50 ns tKCY1 tKL1 VDD = 4.5 to 6.0 V SCK high and low level widths tKH1 (tKCY1/2)–150 ns SI setup time (to SCK↑) tSIK1 150 ns SI hold time (from SCK↑) tKSI1 400 ns SO output delay time from SCK↓ tKSO1 * VDD = 4.5 to 6.0 V RL = 1 k Ω CL = 100 pF* ns 1000 ns RL and CL are SO output line load resistance and load capacitance, respectively. (b) 2-wire and 3-wire serial I/O mode (SCK...External clock input) PARAMETER SYMBOL TEST CONDITIONS VDD = 4.5 to 6.0 V SCK cycle time * 250 MIN. TYP. MAX. UNIT 800 ns 3200 ns 400 ns tKCY2 tKL2 VDD = 4.5 to 6.0 V SCK high and low level widths tKH2 1600 ns SI setup time (to SCK↑) tSIK2 100 ns SI hold time (from SCK↑) tKSI2 400 ns SO output delay time from SCK↓ tKSO2 RL = 1 k Ω CL = 100 pF* VDD = 4.5 to 6.0 V 300 ns 1000 ns RL and CL are SO output line load resistance and load capacitance, respectively. 51 µPD75516 (c) SBI mode (SCK...Internal clock output (master)) PARAMETER SYMBOL TEST CONDITIONS MIN. VDD = 4.5 to 6.0 V SCK cycle time TYP. MAX. UNIT 1600 ns 3800 ns tKCY3/2–50 ns tKCY3 tKL3 VDD = 4.5 to 6.0 V SCK high and low level widths tKH3 t KCY3/2–150 ns SB0 and SB1 setup time (to SCK↑) tSIK3 150 ns SB0 and SB1 hold time (from SCK↑) tKSI3 tKCY3/2 ns SB0 and SB1 output delay time from SCK↓ tKSO3 SB0, SB1↓ from SCK↑ tKSB tKCY3 ns SCK↓ from SB0, SB1↓ tSBK tKCY3 ns SB0 and SB1 low-level widths tSBL tKCY3 ns SB0 and SB1 high-level widths tSBH tKCY3 ns * VDD = 4.5 to 6.0 V RL = 1 k Ω CL = 100 pF* 0 250 ns 0 1000 ns RL and CL are SO output line load resistance and load capacitance, respectively. (d) SBI mode (SCK...External clock input (slave)) PARAMETER SYMBOL TEST CONDITIONS MIN. VDD = 4.5 to 6.0 V SCK cycle time TYP. MAX. UNIT 800 ns 3200 ns 400 ns tKCY4 tKL4 VDD = 4.5 to 6.0 V SCK high and low level widths tKH4 1600 ns SB0 and SB1 setup time (to SCK↑) tSIK4 100 ns SB0 and SB1 hold time (from SCK↑) tKSI4 tKCY4/2 ns SB0 and SB1 output delay time from SCK↓ tKSO4 SB0, SB1↓ from SCK↑ tKSB tKCY4 ns SCK↓ from SB0, SB1↓ tSBK tKCY4 ns SB0 and SB1 low-level widths tSBL tKCY4 ns SB0 and SB1 high-level widths tSBH tKCY4 ns * 52 RL = 1 k Ω CL = 100 pF* VDD = 4.5 to 6.0 V RL and CL are SO output line load resistance and load capacitance, respectively. 0 300 ns 0 1000 ns µPD75516 (3) A/D Converter (Ta = –10 to +70 °C, V DD = 3.5 to 6.0 V, AVSS = VSS = 0V) PARAMETER SYMBOL TEST CONDITIONS Resolution MIN. TYP. MAX. UNIT 8 8 8 bit ±1.5 LSB 2.5 V ≤ AVREF ≤ VDD*2 Absolute accuracy*1 Conversion time*3 tCONV 168/fX µs Sampling time*4 tSAMP 44/fX µs Analog input voltage VIAN AVREF V Analog input impedance RAN 1000 AVREF current IREF 1.0 * 1. 2. AVSS MΩ 2.0 mA Absolute accuracy with the quantization error (±1/2 LSB) excluded. ADM1 is set as shown below with regard to the A/D converter reference voltage (AVREF). 2.5 V 0.6 V DD 0.65 VDD VDD (3.5 to 6.0V) AVREF ADM1 = 0 ADM1 = 1 3. When 0.6 VDD ≤ AVREF ≤ 0.65 VDD, the ADM1 can be set either to 0 or 1. This is the time form the execution of the conversion start instruction to the conversion end (EOC = 1) (operating at 40.1 µs : fX = 4.19 MHz). 4. This is the time from the execution of the conversion start instruction to the sampling end (operating at 10.5 µs : fX = 4.19 MHz). 53 µPD75516 AC Timing Test Points (Except X1 and XT1 Inputs) 0.8 VDD 0.8 VDD Test Points 0.2 VDD 0.2 VDD Clock Timing 1/fX tXL tXH X1 Input V DD - 0.5 V 0.4 V 1/fXT tXTL tXTH XT1 Input VDD - 0.5 V 0.4 V TI0 Timing 1/fTI tTIL TI0 54 tTIH µPD75516 Serial Transfer Timing 3-wire serial I/O mode: tKCY1 tKH1 tKL1 SCK tSIK1 SI tKSI1 Input Data tKSO1 SO Output Data 2-wire serial I/O mode: tKCY2 tKL2 tKH2 SCK tSIK2 tKSO2 tKSI2 SB0,1 55 µPD75516 Serial Transfer Timing Bus release signal transfer: tKCY3,4 tKL3,4 tKH3,4 SCK tSBL tKSB tSBH tSIK3,4 tSBK SB0,1 tKSO3,4 Command signal transfer: tKCY3,4 tKL3,4 tKH3,4 SCK tKSB tSIK3,4 tSBK SB0,1 tKSO3,4 Interrupt Input Timing tINTL INT0,1,2,4 KR0-7 RESET Input Timing tRSL RESET 56 tINTH tKSI3,4 tKSI3,4 µPD75516 DATA MEMORY STOP MODE LOW POWER SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = –40 to +85 °C) PARAMETER SYMBOL Data retention power supply voltage VDDDR Data retention power supply current *1 IDDDR Release signal set time tSREL 3. MIN. TYP. 2.0 VDDDR = 2.0 V 0.1 MAX. UNIT 6.0 V 10 µA µs 0 Release by RESET Oscillation stabilization wait time *2 * 1. 2. TEST CONDITIONS 17 2 /fX ms *3 ms tWAIT Release by interrupt request Current to the internal pull-up resistor is not included. Oscillation stabilization wait time is time to stop CPU operation to prevent unstable operation upon oscillation start. According to the setting of the basic interval timer mode register (BTM) (see below). Wait Time BTM3 BTM2 BTM1 BTM0 (Values at fX = 4.19 MHz in parentheses) — 0 0 0 220/fX (approx. 250 ms) — 0 1 1 217/fX (approx. 31.3 ms) — 1 0 1 215/fX (approx. 7.82 ms) — 1 1 1 213/fX (approx. 1.95 ms) Data Retention Timing (STOP Mode Release by RESET) Internal Reset Operation HALT Mode Operating Mode STOP Mode Data Retention Mode VDD VDDDR tSREL STOP Instruction Execution RESET tWAIT 57 µPD75516 Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal) HALT Mode Operating Mode STOP Mode Data Retention Mode VDD VDDDR tSREL STOP Instruction Execution Standby Release Signal (Interrupt Request) tWAIT 58 µPD75516 12. CHARACTERISTIC CURVES IDD vs VDD (Main System Clock : Crystal Oscillation) (Ta=25 °C) 5000 High-Speed Mode PCC=0011 Medium-Speed Mode PCC=0010 Low-Speed Mode PCC=0000 1000 Main System Clock HALT Mode Power Supply Current IDD [µA] 500 Subsystem Clock Operating Mode 100 Main System Clock STOP Mode + 32 kHz Oscillation and Subsystem Clock HALT Mode 50 10 X1 X2 XT1 Crystal Resonator 4.19 MHz 5 C1 C2 XT2 Crystal Resonator 32.768 kHz R C3 C4 1 0 1 2 3 4 5 6 7 Power Supply Voltage VDD [V] 59 µPD75516 IDD vs VDD (Main System Clock : Crystal Oscillation) (Ta=25 °C) 5000 High-Speed Mode PCC=0011 Medium-Speed Mode PCC=0010 Low-Speed Mode PCC=0000 1000 Main System Clock HALT Mode* Power Supply Current IDD [µA] 500 Subsystem Clock Operating Mode 100 Main System Clock STOP Mode + 32 kHz Oscillation and Subsystem Clock HALT Mode 50 10 X1 X2 XT1 Ceramic Oscillator 4.19 MHz 5 C1 C2 XT2 Crystal Resonator 32.768 kHz R C3 C4 1 0 1 2 3 4 Power Supply Voltage VDD [V] * 60 This is larger than the crystal oscillation by about 10%. 5 6 7 µPD75516 I IDD vs VDD (Main System Clock : Crystal Oscillation) (Ta=25 °C) 5000 High-Speed Mode PCC=0011 Medium-Speed Mode PCC=0010 Low-Speed Mode PCC=0000 1000 Main System Clock HALT Mode Power Supply Current IDD [µA] 500 Subsystem Clock Operating Mode 100 Main System Clock STOP Mode + 32 kHz Oscillation and Subsystem Clock HALT Mode 50 10 X1 X2 XT1 Ceramic Oscillator 2.0 MHz 5 C1 C2 XT2 Crystal Resonator 32.768 kHz R C3 C4 1 0 1 2 3 4 5 6 7 Power Supply Voltage VDD [V] 61 µPD75516 IDD vs VDD (Main System Clock : Crystal Oscillation) (Ta=25 °C) 5000 High-Speed Mode PCC=0011 Medium-Speed Mode PCC=0010 Low-Speed Mode PCC=0000 1000 Main System Clock HALT Mode Power Supply Current IDD [µA] 500 Subsystem Clock Operating Mode 100 Main System Clock STOP Mode + 32 kHz Oscillation and Subsystem Clock HALT Mode 50 10 X1 X2 XT1 Ceramic Oscillator 1.0 MHz 5 C1 C2 XT2 Crystal Resonator 32.768 kHz R C3 C4 1 0 1 2 3 4 Power Supply Voltage VDD [V] 62 5 6 7 µPD75516 IDD VS fX (VDD = 5V, Ta = 25°C) 3 X1 X2 IDD VS fX (VDD = 3V, Ta = 25°C) 0.5 2 High-Speed Mode PCC = 0011 Medium-Speed Mode PCC = 0010 IDD [mA] 0.4 High-Speed Mode PCC = 0011 MediumSpeed Mode PCC = 0010 X1 X2 0.3 Low-Speed Mode PCC = 0000 IDD [mA] 1 Low-Speed Mode PCC = 0000 0.2 Main System Clock HALT Mode 0.1 Main System Clock HALT Mode 0 0 1 2 3 4 1 5 2 3 VOL VS IOL (Port 0, 2, 6, 7) 5 VOL VS IOL (Port 3, 4 ,5) (Ta = 25°C) (Ta = 25°C) 40 30 4 fX [MHz] fX [MHz] 40 VDD = 6 V 30 VDD = 4 V VDD = 5 V VDD = 5 V VDD = 6V VDD = 4 V IOL [mA] IOL [mA] 20 20 VDD = 3 V VDD = 3 V VDD = 2.7 V VDD = 2.7 V 10 10 0 0 1 2 3 VOL [V] 4 5 1 2 3 4 5 VOL [V] 63 µPD75516 VOH VS IOH (Ta = 25°C) 20 15 VDD = 6 V VDD = 5 V IOH [mA] VDD = 4 V 10 VDD = 3 V 5 VDD = 2.7 V 0 1 2 3 VDD – VOH [V] 64 4 5 µPD75516 13. PACKAGE INFORMATION 80 PIN PLASTIC QFP (14×20) A B 41 40 64 65 F Q 5°±5° S D C detail of lead end 25 24 80 1 G H I M J M P K N L P80GF-80-3B9-2 NOTE Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS INCHES A 23.6 ± 0.4 0.929 ± 0.016 B 20.0 ± 0.2 0.795 +0.009 –0.008 C 14.0 ± 0.2 0.551+0.009 –0.008 D 17.6 ± 0.4 0.693 ± 0.016 F 1.0 0.039 G 0.8 0.031 H 0.35 ± 0.10 0.014 +0.004 –0.005 I 0.15 0.006 J 0.8 (T.P.) 0.031 (T.P.) K 1.8 ± 0.2 0.071 –0.009 L 0.8 ± 0.2 0.031+0.009 –0.008 M 0.15+0.10 –0.05 0.006+0.004 –0.003 N 0.15 0.006 P 2.7 Q 0.1 ± 0.1 S 3.0 MAX. +0.008 0.106 0.004 ± 0.004 0.119 MAX. 65 µPD75516 ★ 14. RECOMMEDED SOLDERING CONDITIONS The µPD75516 should be soldered and mounted under the conditions recommended in the table below. For details of recommended soldering conditions for the surface mounting type, refer to the document “Semiconductor Device Mount Technology” (IEI-1207). For soldering methods and conditions other than those recommended below, contact our salesman. Table 4–1 Surface Mount Type Soldering Conditions µPD75516GF–×××–3B9: 80–pin plastic QFP (14 × 20 mm) Soldering Method Soldering Conditions Recommended Condition Symbol Infrared reflow Package peak temperature: 230 °C Duration: 30 sec. max. (at 210 °C or above) Number of times: Once IR30-00-1 VPS Package peak temperature: 215 °C Duration: 40 sec. max. (at 200 °C or above) Number of times: Once VP15-00-1 Wave Soldering Solder bath temperature: 260 °C or less Duration: 10 sec. max. Number of times: Once Preheating temperature: 120 °C max. (package surface temperature) WS60-00-1 Pin part heating Pin part temperature: 300 °C or less Duration: 3 sec. max. (Per device side) Note Use of more than one soldering method should be avoided (except in the case of pin part heating). For Your Information Products to improve the recommended soldering conditions are available. (Improvements: Extension of the infrared reflow peak temperature to 235oC, doubled frequency, increased life, etc.) For further details, consult our sales personnel. - 66 µPD75516 APPENDIX A. DEVELOPMENT TOOLS Hardware The following development tools are available for the development of systems using the µPD75516. IE–75000–R *1 IE–75001–R In–circuit emulator for use with the 75X series IE–75000–R–EM *2 Emulation board for use with the IE–75000–R and the IE–75001–R EP–75516GF–R Emulation probe for use with the µPD75516. 80–pin conversion socket EV–9200G–80 included EV–9200G–80 PG–1500 PROM programmer PA–75P516GF Connect to PG–1500 with PROM programmer adapter for use with the µPD75P516GF Software IE control program PG–1500 controller Host machine PC–9800 series (MS–DOS™ Ver. 3.30 to Ver. 5.00A *3) IBM PC/AT™ (PC DOS™ Ver. 3.1) RA75X relocatable assembler * 1. Maintenance product 2. Not a built–in component in the IE–75001–R 3. Ver. 5.00/5.00A has a task swapping function, which cannot be used with this software. Remarks Refer to the "75X Series Selection Guide" (IF–151) for third–party development tools. 67 µPD75516 APPENDIX B. RELATED DOCUMENTS Device Related Documents Document Name Document Number User's Manual IEM–5049 Instruction Application Table IEM–5036 Basic Volume IEM–5104 Application Note A/D Converter Volume IEA–630 75X Series Selection Guide IF–151 Development Tools Documents Hardware Document Name Software ★ Document Number IE–75000–R/IE–75000–R User's Manual EEU–846 IE–75000–R–EM User's Manual EEU–673 EP–75516GF–R User's Manual EEU–703 PG–1500 User's Manual EEU–651 Operation Volume EEU–731 Language Volume EEU–730 RA75X Assembler Package User's Manual PG–1500 Controller User's Manual EEU–704 Other Documents Document Name Package Manual IEI–635 Surface Mount Technology Manual IEI–1207 Quality Grade on NEC Semiconductor Devices IEI–1209 NEC Semiconductor Device Reliability & Quality Control IEM–5068 Electrostatic Discharge (ESD) Test MEM–539 Semiconductor Device Quality Guide Guarantee Guide MEI–603 Microcomputer Related Products Guide – Other Manufacturers Volume MEI–604 Note 68 Document Number The information in these related documents is subject to change without notice. For design purpose, etc., be sure to use the latest ones. µPD75516 69 µPD75516 [MEMO] No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance. Application examples recommended by NEC Corporation Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment, Special Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc. : Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc. M4 92.6 MS-DOS is a trademark of MicroSoft Corporation. PC DOS and PC/AT are trademarks of IBM Corporation.