APT83GU30B APT83GU30S 300V ® POWER MOS 7 IGBT TO-247 The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss D3PAK C G G C • SSOA rated E E C • Low Gate Charge G • Ultrafast Tail Current shutoff E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT83GU30B_S VCES Collector-Emitter Voltage 300 VGE Gate-Emitter Voltage ±20 VGEM Gate-Emitter Voltage Transient ±30 IC1 Continuous Collector Current @ IC2 Continuous Collector Current @ TC = 100°C ICM Pulsed Collector Current SSOA PD TJ,TSTG TL 1 7 UNIT Volts 100 TC = 25°C Amps 83 295 @ TC = 150°C 295A @ 300V Switching Safe Operating Area @ TJ = 150°C Watts 543 Total Power Dissipation -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 300 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 45A, Tj = 25°C) 1.5 2.0 Collector-Emitter On Voltage (VGE = 15V, I C = 45A, Tj = 125°C) 1.5 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C) 250 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 2-2004 MIN Rev A Characteristic / Test Conditions 050-7465 Symbol APT83GU30B_S DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 4385 VGE = 0V, VCE = 25V 406 Reverse Transfer Capacitance f = 1 MHz 31 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.0 144 VCE = 150V 29 44 Input Capacitance Coes Output Capacitance Cres VGEP Qge TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge I C = 45A SSOA Switching Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 295 A 15V, L = 100µH,VCE = 300V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon1 Eon2 Eoff 308 I C = 45A 122 µJ 354 Inductive Switching (125°C) VCC = 200V 69 VGE = 15V 355 I C = 45A 226 Turn-off Delay Time Current Fall Time Turn-off Switching Energy 189 6 29 R G = 20Ω 4 Turn-on Switching Energy (Diode) ns TBD TJ = +25°C 5 Current Rise Time Turn-on Switching Energy 29 R G = 20Ω 4 Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 69 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC = 200V 5 ns TBD TJ = +125°C 287 6 µJ 503 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) 0.23 RΘJC Junction to Case (DIODE) N/A Package Weight 5.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 Countinous current limited by package lead temperature. 050-7465 Rev A 2-2004 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT83GU30B_S 60 60 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE IC, COLLECTOR CURRENT (A) 40 30 20 TC=25°C 10 TC=125°C 250 FIGURE 2, Output Characteristics (VGE = 10V) 16 200 150 TJ = -55°C TJ = 25°C 50 TJ = 125°C 14 IC = 45A TJ = 25°C VCE = 60V 12 VCE = 150V 10 8 VCE = 240V 6 4 2 0 1 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 3.5 3 2.5 IC= 90A 2 IC= 45A 1.5 IC= 22.5A 1 0.5 0 5 6 7 8 9 10 11 12 13 14 15 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 2 IC = 90A IC = 22.5A 1.0 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 200 1.15 180 1.05 1.0 0.95 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature IC = 45A 1.5 1.2 1.10 40 60 80 100 120 140 160 GATE CHARGE (nC) FIGURE 4, Gate Charge 160 140 120 100 80 60 Lead Temperature Limited 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 2-2004 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 20 Rev A 4 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) TC=25°C 10 0 0.5 1 1.5 2 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 20 TC=125°C FIGURE 1, Output Characteristics(VGE = 15V) 300 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 30 0 0 0.5 1 1.5 2 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 0 TC=-55°C 40 TC=-55°C 0 100 50 050-7465 IC, COLLECTOR CURRENT (A) 50 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE APT83GU30B_S 400 70 VGE= 15V 60 50 40 30 20 VCE = 200V TJ = 25°C, TJ =125°C RG = 20Ω L = 100 µH 10 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 80 300 VGE =15V,TJ=25°C 250 VGE =15V,TJ=125°C 200 150 100 VCE = 200V RG = 20Ω L = 100 µH 50 0 0 10 20 30 40 50 60 70 80 90 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 80 350 10 20 30 40 50 60 70 80 90 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 250 RG = 20Ω, L = 100µH, VCE = 200V 70 200 tf, FALL TIME (ns) tr, RISE TIME (ns) 60 50 40 30 TJ = 125°C, VGE = 10V or 15V 150 100 TJ = 25°C, VGE = 10V or 15V 20 50 TJ = 25 or 125°C,VGE = 15V 10 0 0 10 20 30 40 50 60 70 80 90 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 050-7465 20 30 40 50 60 70 80 90 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 800 TJ =125°C, VGE=15V 600 400 200 TJ = 25°C, VGE=15V EOFF, TURN OFF ENERGY LOSS (µJ) 1600 VCE = 200V L = 100 µH RG = 20Ω 1400 TJ = 125°C, VGE = 10V or 15V 1200 VCE = 200V L = 100 µH RG = 20Ω 1000 800 600 400 200 TJ = 25°C, VGE = 10V or 15V 0 10 20 30 40 50 60 70 80 90 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 10 20 30 40 50 60 70 80 90 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 2000 2000 VCE = 200V VGE = +15V TJ = 125°C 1500 Eoff 90A Eon2 90A 1000 Eoff 45A 500 Eoff 22.5A 0 5 Eon2 45A Eon2 22.5A 10 15 20 25 30 35 40 45 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) Rev A 2-2004 EON2, TURN ON ENERGY LOSS (µJ) 1000 RG = 20Ω, L = 100µH, VCE = 200V 10 VCE = 200V VGE = +15V RG = 20Ω Eoff 90A 1500 1000 Eon2 90A Eoff 45A 500 Eon2 45A 0 Eon2 22.5A 0 Eoff 22.5A 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature APT83GU30B_S TYPICAL PERFORMANCE CURVES 350 10,000 Cies IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) 300 1,000 500 Coes 100 50 Cres 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 250 200 150 100 50 0 0 50 100 150 200 250 300 350 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.9 0.20 0.7 0.15 0.5 Note: 0.10 PDM 0.3 t2 0.05 Duty Factor D = t1/t2 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 250 0.0106 0.00663F 0.0868 0.0106F 0.133 0.262F Case temperature FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) RC MODEL Junction temp. ( C) Power (watts) 1.0 100 Fmax = min(f max1 , f max 2 ) 50 TJ = 125°C TC = 75°C D = 50 % VCE = 200V RG = 5 Ω 10 f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 10 30 50 70 90 110 130 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 2-2004 10-5 Peak TJ = PDM x ZθJC + TC SINGLE PULSE Rev A 0.1 0.05 0 t1 050-7465 ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 APT83GU30B_S APT15DS30 Gate Voltage 10% TJ = 125 C td(on) Collector Current tr V CE IC V CC 90% 5% 5% 10% Collector Voltage A Switching Energy D.U.T. Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST *DRIVER SAME TYPE AS D.U.T. 90% Gate Voltage td(off) TJ = 125 C tf Collector Current A V CE 90% IC 100uH V CLAMP 10% Collector Voltage 0 B A Switching Energy D.U.T. DRIVER* Figure 24, EON1 Test Circuit 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) Collector 6.15 (.242) BSC 2-2004 Rev A 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 20.80 (.819) 21.46 (.845) 1.65 (.065) 2.13 (.084) 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) Gate Collector Emitter 15.95 (.628) 16.05 (.632) Revised 4/18/95 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. 050-7465 5.38 (.212) 6.20 (.244) Collector (Heat Sink) Figure 23, Turn-off Switching Waveforms and Definitions 1.04 (.041) 1.15 (.045) 13.79 (.543) 13.99 (.551) 0.46 (.018) 0.56 (.022) 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.22 (.048) 1.32 (.052) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) 1.27 (.050) 1.40 (.055) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} Emitter Collector Gate Dimensions in Millimeters (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 13.41 (.528) 13.51 (.532) Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) and Leads are Plated