ETC HAT1002F

HAT1002F
Silicon P Channel Power MOS FET
Application
SOP–8
High speed power switching
Features
•
•
•
•
8
Low on–resistance
Capable of 4 V gate drive
Low drive current
High density mounting
5 6 7 8
D D D D
5
7 6
3
1 2
4
G
4
1, 2, 3
Source
4
Gate
5, 6, 7, 8 Drain
Ordering Information
————————————————————
Hitachi Code
FP–8D
————————————————————
EIAJ Code
S S S
1 2 3
SC–527–8A
————————————————————
JEDEC Code
—
————————————————————
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDSS
–30
V
———————————————————————————————————————————
Gate to source voltage
VGSS
±20
V
———————————————————————————————————————————
Drain current
ID
–3.5
A
———————————————————————————————————————————
Drain peak current
ID(pulse)*
–14
A
———————————————————————————————————————————
Body–drain diode reverse drain current
IDR
–3.5
A
———————————————————————————————————————————
Channel dissipation
Pch**
1.0
W
———————————————————————————————————————————
Channel temperature
Tch
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
*
PW ≤ 10 µs, duty cycle ≤ 1 %
** When using the glass epoxy board (40 x 40 x 1.6 mm)
HAT1002F
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————
Drain to source breakdown
voltage
V(BR)DSS
–30
—
—
V
ID = –10 mA, VGS = 0
———————————————————————————————————————————
Gate to source breakdown
voltage
V(BR)GSS
±20
—
—
V
IG = ±100 µA, VDS = 0
———————————————————————————————————————————
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
———————————————————————————————————————————
Zero gate voltage drain current
IDSS
—
—
–10
µA
VDS = –30 V, VGS = 0
———————————————————————————————————————————
Gate to source cutoff voltage
VGS(off)
–1.0
—
–2.5
V
VDS = –10 V, ID = –1 mA
———————————————————————————————————————————
Static drain to source on state
resistance
RDS(on)
—
0.06
0.07
Ω
ID = –2 A
VGS = –10 V *
————————————————————————
—
0.10
0.13
Ω
ID = –2 A
VGS = –4 V *
———————————————————————————————————————————
Forward transfer admittance
|yfs|
4.0
6.0
—
S
ID = –2 A
VDS = - 10 V *
———————————————————————————————————————————
Input capacitance
Ciss
—
960
—
pF
VDS = - 10 V
————————————————————————————————
Output capacitance
Coss
—
630
—
pF
VGS = 0
————————————————————————————————
Reverse transfer capacitance
Crss
—
215
—
pF
f = 1 MHz
———————————————————————————————————————————
Turn–on delay time
td(on)
—
tr
—
td(off)
—
tf
—
VDF
—
50
—
ns
VGS = –4 V, ID = –2 A
————————————————————————————————
Rise time
285
—
ns
VDD = –10 V
————————————————————————————————
Turn–off delay time
50
—
ns
————————————————————————————————
Fall time
90
—
ns
———————————————————————————————————————————
Body–drain diode forward
voltage
–0.8
—
V
IF = –3.5 A, VGS = 0
———————————————————————————————————————————
Body–drain diode reverse
recovery time
trr
—
60
—
ns
IF = –3.5 A, VGS = 0
diF / dt = 20A / µs
———————————————————————————————————————————
* Pulse Test
HAT1002F
Power vs. Temperature Derating
Maximum Safe Operation Area
–100
1.5
1.0
0.5
10 µs 100 µs
–30
I D (A)
Test Condition :
When using the glass epoxy board
(40 x 40 x 1.6 mm)
Drain Current
Channel Dissipation
Pch (W)
2.0
–10
–3
DC
PW
Op
er
=
1m
s
10
m
ati
s
on
**
Operation in
(T
c=
–0.3 this area is
25
limited by R DS(on)
°C
–0.1
)
–1
–0.03
0
50
100
150
Ambient Temperature
200
Ta (°C)
Ta = 25 °C
–0.01 1 shot pulse
–1
–3
–10 –30 –100
–0.1 –0.3
Drain to Source Voltage V DS (V)
** When using the glass epoxy board
(40 x 40 x 1.6 mm)
–6 V
–5 V
–4.5 V
–8
–4 V
–3.5 V
–4
VGS = –3 V
ID
(A)
–16
–12
Typical Transfer Characteristics
–20
Drain Current
Drain Current
I D (A)
–20
Typical Output Characteristics
–10 V –8 V
–16
–12
–8
–4
V DS = –10 V
Pulse Test
Pulse Test
0
–2
–4
–6
Drain to Source Voltage
–8
–10
V DS (V)
Tc = –25 °C
25 °C
75 °C
0
–1
–2
–3
Gate to Source Voltage
–4
–5
V GS (V)
HAT1002F
Drain to Source Saturation Voltage
V DS(on) (V)
Pulse Test
–0.4
–0.3
–0.2
I D = –2 A
–0.1
Static Drain to Source on State Resistance
R DS(on) ( Ω)
0
–1 A
–0.5 A
–6
–2
–4
Gate to Source Voltage
0.16
0.12
V GS = –4 V
–2 A
–1 A
0.08
–5 A, –2 A, –1 A
0.04
0
–40
–10 V
0
40
80
120
160
Case Temperature Tc (°C)
VGS = –4 V
0.1
–10 V
0.01
–0.1 –0.2
–10
V GS (V)
I D = –5 A
0.2
0.02
–8
Static Drain to Source on State Resistance
vs. Temperature
0.20
Pulse Test
Static Drain to Source on State Resistance
vs. Drain Current
1
Pulse Test
0.5
0.05
–5
–0.5 –1
–2
Drain Current I D (A)
–10
Forward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |y fs | (S)
–0.5
Drain to Source On State Resistance
R DS(on) ( Ω )
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
20
10
Tc = –25 °C
5
75 °C
25 °C
2
1
0.5
0.2
–0.2
V DS = –10 V
Pulse Test
–0.5 –1 –2
–5 -10 –20
Drain Current I D (A)
HAT1002F
Typical Capacitance vs.
Drain to Source Voltage
1000
10000
500
3000
Capacitance C (pF)
Reverse Recovery Time trr (ns)
Body–Drain Diode Reverse
Recovery Time
200
100
50
20
10
–0.2
Ciss
1000
Coss
300
Crss
100
30
di / dt = 20 A / µs
VGS = 0, Ta = 25 °C
VGS = 0
f = 1 MHz
10
0
–0.5 –1 –2
–5 –10 –20
Reverse Drain Current I DR (A)
–10
–20
–30
V GS
V DS
V DD = –25 V
–10 V
–5 V
–40
I D = –3.5 A
–50
0
8
16
24
32
Gate Charge Qg (nc)
–4
–8
–12
–16
–20
40
–40
–50
Switching Characteristics
1000
500
Switching Time t (ns)
Drain to Source Voltage
–10
V GS (V)
V DD = –5 V
–10 V
–25 V
Gate to Source Voltage
V DS (V)
0
–30
Drain to Source Voltage V DS (V)
Dynamic Input Characteristics
0
–20
tr
200
tf
100
t d(on)
50
t d(off)
20
V GS = –4 V, V DD = –10 V
PW = 3 µs, duty < 1 %
10
0.1
0.2
0.5
1
Drain Current
2
5
I D (A)
10
HAT1002F
Reverse Drain Current vs.
Source to Drain Voltage
Reverse Drain Current I DR (A)
–20
V GS = –5 V
–16
0V
–12
–8
–4
Pulse Test
0
–0.4
–0.8
–1.2
Source to Drain Voltage
–1.6
–2.0
V SD (V)
Package Dimensions
Unit : mm
• SOP–8
0.75 Max
6.8 Max
+ 0.05
4
0.20 – 0.02
1
2.03 Max
5
2.00 Max
8
4.55 Max
5.25 Max
0 – 10 °
0.40
+ 0.10
– 0.05
0.10 ± 0.10
1.27
0.25
0.60 +– 0.18
0.1
0.12 M
FP–8D
Hitachi Code
SC–527–8A
EIAJ
—
JEDEC