HAT1002F Silicon P Channel Power MOS FET Application SOP–8 High speed power switching Features • • • • 8 Low on–resistance Capable of 4 V gate drive Low drive current High density mounting 5 6 7 8 D D D D 5 7 6 3 1 2 4 G 4 1, 2, 3 Source 4 Gate 5, 6, 7, 8 Drain Ordering Information ———————————————————— Hitachi Code FP–8D ———————————————————— EIAJ Code S S S 1 2 3 SC–527–8A ———————————————————— JEDEC Code — ———————————————————— Table 1 Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit ——————————————————————————————————————————— Drain to source voltage VDSS –30 V ——————————————————————————————————————————— Gate to source voltage VGSS ±20 V ——————————————————————————————————————————— Drain current ID –3.5 A ——————————————————————————————————————————— Drain peak current ID(pulse)* –14 A ——————————————————————————————————————————— Body–drain diode reverse drain current IDR –3.5 A ——————————————————————————————————————————— Channel dissipation Pch** 1.0 W ——————————————————————————————————————————— Channel temperature Tch 150 °C ——————————————————————————————————————————— Storage temperature Tstg –55 to +150 °C ——————————————————————————————————————————— * PW ≤ 10 µs, duty cycle ≤ 1 % ** When using the glass epoxy board (40 x 40 x 1.6 mm) HAT1002F Table 2 Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test conditions ——————————————————————————————————————————— Drain to source breakdown voltage V(BR)DSS –30 — — V ID = –10 mA, VGS = 0 ——————————————————————————————————————————— Gate to source breakdown voltage V(BR)GSS ±20 — — V IG = ±100 µA, VDS = 0 ——————————————————————————————————————————— Gate to source leak current IGSS — — ±10 µA VGS = ±16 V, VDS = 0 ——————————————————————————————————————————— Zero gate voltage drain current IDSS — — –10 µA VDS = –30 V, VGS = 0 ——————————————————————————————————————————— Gate to source cutoff voltage VGS(off) –1.0 — –2.5 V VDS = –10 V, ID = –1 mA ——————————————————————————————————————————— Static drain to source on state resistance RDS(on) — 0.06 0.07 Ω ID = –2 A VGS = –10 V * ———————————————————————— — 0.10 0.13 Ω ID = –2 A VGS = –4 V * ——————————————————————————————————————————— Forward transfer admittance |yfs| 4.0 6.0 — S ID = –2 A VDS = - 10 V * ——————————————————————————————————————————— Input capacitance Ciss — 960 — pF VDS = - 10 V ———————————————————————————————— Output capacitance Coss — 630 — pF VGS = 0 ———————————————————————————————— Reverse transfer capacitance Crss — 215 — pF f = 1 MHz ——————————————————————————————————————————— Turn–on delay time td(on) — tr — td(off) — tf — VDF — 50 — ns VGS = –4 V, ID = –2 A ———————————————————————————————— Rise time 285 — ns VDD = –10 V ———————————————————————————————— Turn–off delay time 50 — ns ———————————————————————————————— Fall time 90 — ns ——————————————————————————————————————————— Body–drain diode forward voltage –0.8 — V IF = –3.5 A, VGS = 0 ——————————————————————————————————————————— Body–drain diode reverse recovery time trr — 60 — ns IF = –3.5 A, VGS = 0 diF / dt = 20A / µs ——————————————————————————————————————————— * Pulse Test HAT1002F Power vs. Temperature Derating Maximum Safe Operation Area –100 1.5 1.0 0.5 10 µs 100 µs –30 I D (A) Test Condition : When using the glass epoxy board (40 x 40 x 1.6 mm) Drain Current Channel Dissipation Pch (W) 2.0 –10 –3 DC PW Op er = 1m s 10 m ati s on ** Operation in (T c= –0.3 this area is 25 limited by R DS(on) °C –0.1 ) –1 –0.03 0 50 100 150 Ambient Temperature 200 Ta (°C) Ta = 25 °C –0.01 1 shot pulse –1 –3 –10 –30 –100 –0.1 –0.3 Drain to Source Voltage V DS (V) ** When using the glass epoxy board (40 x 40 x 1.6 mm) –6 V –5 V –4.5 V –8 –4 V –3.5 V –4 VGS = –3 V ID (A) –16 –12 Typical Transfer Characteristics –20 Drain Current Drain Current I D (A) –20 Typical Output Characteristics –10 V –8 V –16 –12 –8 –4 V DS = –10 V Pulse Test Pulse Test 0 –2 –4 –6 Drain to Source Voltage –8 –10 V DS (V) Tc = –25 °C 25 °C 75 °C 0 –1 –2 –3 Gate to Source Voltage –4 –5 V GS (V) HAT1002F Drain to Source Saturation Voltage V DS(on) (V) Pulse Test –0.4 –0.3 –0.2 I D = –2 A –0.1 Static Drain to Source on State Resistance R DS(on) ( Ω) 0 –1 A –0.5 A –6 –2 –4 Gate to Source Voltage 0.16 0.12 V GS = –4 V –2 A –1 A 0.08 –5 A, –2 A, –1 A 0.04 0 –40 –10 V 0 40 80 120 160 Case Temperature Tc (°C) VGS = –4 V 0.1 –10 V 0.01 –0.1 –0.2 –10 V GS (V) I D = –5 A 0.2 0.02 –8 Static Drain to Source on State Resistance vs. Temperature 0.20 Pulse Test Static Drain to Source on State Resistance vs. Drain Current 1 Pulse Test 0.5 0.05 –5 –0.5 –1 –2 Drain Current I D (A) –10 Forward Transfer Admittance vs. Drain Current Forward Transfer Admittance |y fs | (S) –0.5 Drain to Source On State Resistance R DS(on) ( Ω ) Drain to Source Saturation Voltage vs. Gate to Source Voltage 20 10 Tc = –25 °C 5 75 °C 25 °C 2 1 0.5 0.2 –0.2 V DS = –10 V Pulse Test –0.5 –1 –2 –5 -10 –20 Drain Current I D (A) HAT1002F Typical Capacitance vs. Drain to Source Voltage 1000 10000 500 3000 Capacitance C (pF) Reverse Recovery Time trr (ns) Body–Drain Diode Reverse Recovery Time 200 100 50 20 10 –0.2 Ciss 1000 Coss 300 Crss 100 30 di / dt = 20 A / µs VGS = 0, Ta = 25 °C VGS = 0 f = 1 MHz 10 0 –0.5 –1 –2 –5 –10 –20 Reverse Drain Current I DR (A) –10 –20 –30 V GS V DS V DD = –25 V –10 V –5 V –40 I D = –3.5 A –50 0 8 16 24 32 Gate Charge Qg (nc) –4 –8 –12 –16 –20 40 –40 –50 Switching Characteristics 1000 500 Switching Time t (ns) Drain to Source Voltage –10 V GS (V) V DD = –5 V –10 V –25 V Gate to Source Voltage V DS (V) 0 –30 Drain to Source Voltage V DS (V) Dynamic Input Characteristics 0 –20 tr 200 tf 100 t d(on) 50 t d(off) 20 V GS = –4 V, V DD = –10 V PW = 3 µs, duty < 1 % 10 0.1 0.2 0.5 1 Drain Current 2 5 I D (A) 10 HAT1002F Reverse Drain Current vs. Source to Drain Voltage Reverse Drain Current I DR (A) –20 V GS = –5 V –16 0V –12 –8 –4 Pulse Test 0 –0.4 –0.8 –1.2 Source to Drain Voltage –1.6 –2.0 V SD (V) Package Dimensions Unit : mm • SOP–8 0.75 Max 6.8 Max + 0.05 4 0.20 – 0.02 1 2.03 Max 5 2.00 Max 8 4.55 Max 5.25 Max 0 – 10 ° 0.40 + 0.10 – 0.05 0.10 ± 0.10 1.27 0.25 0.60 +– 0.18 0.1 0.12 M FP–8D Hitachi Code SC–527–8A EIAJ — JEDEC