RF1K49224 Data Sheet August 1999 File Number 3.5A/2.5A, 30V, 0.060/0.150 Ohms, Complementary LittleFET™ Power MOSFET Features The RF1K49224 complementary power MOSFET is manufactured using an advanced MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits, gives optimum utilization of silicon, resulting in outstanding performance. It is designed for use in applications such as switching regulators, switching converters, motor drivers, relay drivers, and low voltage bus switches. This device can be operated directly from intergrated circuits. • rDS(ON) = 0.060Ω (N-Channel) rDS(ON) = 0.150Ω (P-Channel) • 3.5A, 30V (N-Channel) 2.5A, 30V (P-Channel) • Temperature Compensating PSPICE® Model • Thermal Impedance PSPICE Model • Peak Current vs Pulse Width Curve • UIS Rating Curve • Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” Formerly developmental type TA49224. Ordering Information PART NUMBER RF1K49224 PACKAGE MS-012AA 4330.1 Symbol BRAND D1(8) D1(7) RF1K49224 NOTE: When ordering, use the entire part number. For ordering in tape and reel, add the suffix 96 to the part number, i.e. RF1K4922496. S1(1) G1(2) D2(6) D2(5) S2(3) G2(4) Packaging JEDEC MS-012AA BRANDING DASH 5 1 2 3 9-16 4 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. LittleFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 RF1K49224 TA = 25oC Unless Otherwise Specified N-CHANNEL 30 Drain to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS= 20kΩ ) . . . . . . . . . . . . . . .VDGR 30 Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 Drain Current Continuous (Pulse Width = 5s). . . . . . . . . . . . . . . . . . . . . ID 3.5 Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Refer to Peak Current Curve Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . EAS Refer to UIS Curve Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD 2 Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.016 Operating and Storage Temperature . . . . . . . . . . . . TJ, TSTG -55 to 150 Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . TL 300 Package Body for 10s, See Techbrief 334 . . . . . . . . . .Tpkg 260 Absolute Maximum Ratings P-CHANNEL -30 -30 ±20 UNITS V V V 2.5 Refer to Peak Current Curve Refer to UIS Curve 2 0.016 -55 to 150 A W W/oC oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 125oC. N-Channel Electrical Specifications TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V 30 - - V Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA 1 - 3 V - - 1 µA - - 50 µA - - 100 nA - - 0.060 Ω 0.132 Ω Zero Gate Voltage Drain Current Gate to Source Leakage Current Drain to Source On Resistance IDSS IGSS rDS(ON) VDS = 30V, VGS = 0V TA = 25o C TA = 150o C VGS = ±20V ID = 3.5A VGS = 10V VGS = 4.5V Turn-On Time tON Turn-On Delay Time - - 50 ns - 10 - ns tr - 30 - ns td(OFF) - 60 - ns tf - 45 - ns tOFF - - 130 ns - 35 45 nC - 13 17 nC - 2.3 2.9 nC - 575 - pF - 275 - pF - 100 - pF td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge VDD = 15V, ID ≅ 3.5A, RL = 4.29Ω, VGS = 10V, RGS = 25Ω Qg(TOT) VGS = 0V to 20V Gate Charge at 10V Qg(10) VGS = 0V to 10V Threshold Gate Charge Qg(TH) VGS = 0V to 2V Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS Thermal Resistance Junction to Ambient RθJA VDD = 24V, ID ≅ 3.5A, RL = 6.86Ω Ig(REF) = 1.0mA VDS = 25V, VGS = 0V, f = 1MHz - - 62.5 oC/W MIN TYP MAX UNITS ISD = 3.5A - - 1.25 V ISD = 3.5A, dISD/dt = 100A/µs - - 45 ns Pulse width = 1s Device mounted on FR-4 material N-Channel Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time SYMBOL VSD trr 9-17 TEST CONDITIONS RF1K49224 P-Channel Electrical Specifications TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V -30 - - V Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA Zero Gate Voltage Drain Current Gate to Source Leakage Current Drain to Source On Resistance IDSS IGSS rDS(ON) VDS = -30V, VGS = 0V -1 - -3 V TA = 25o C - - -1 µA TA = 150o C - - -50 µA - - 100 nA - - 0.150 Ω 0.360 Ω VGS = ±20V ID = 2.5A VGS = -10V VGS = -4.5v Turn-On Time tON Turn-On Delay Time - - 40 ns - 9 - ns tr - 19 - ns td(OFF) - 60 - ns tf - 34 - ns tOFF - - 140 ns - 28 35 nC - 15 19 nC - 1.5 1.9 nC - 580 - pF - 260 - pF - 38 - pF td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDD = -15V, ID ≅ 2.5A, RL = 6Ω, VGS = -10V, RGS = 25Ω Total Gate Charge Qg(TOT) VGS = 0V to -20V Gate Charge at -10V Qg(-10) VGS = 0V to -10V Threshold Gate Charge Qg(TH) VGS = 0V to -2V Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS Thermal Resistance Junction to Ambient RθJA VDD = -24V, ID ≅ 2.5A, RL = 9.6Ω Ig(REF) = -1.0mA VDS = -25V, VGS = 0V, f = 1MHz - - 62.5 oC/W MIN TYP MAX UNITS ISD = -2.5A - - -1.25 V ISD = -2.5A, dISD/dt = -100A/µs - - 49 ns Pulse width = 1s Device mounted on FR-4 material P-Channel Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time SYMBOL VSD trr TEST CONDITIONS Typical Performance Curves (N-Channel) 4.0 3.5 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 3.0 2.5 2.0 1.5 1.0 0.2 0.5 0 0 0 25 50 75 100 125 TA , AMBIENT TEMPERATURE (oC) 150 FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE 9-18 25 75 100 125 50 TA, AMBIENT TEMPERATURE (oC) 150 FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE RF1K49224 Typical Performance Curves (N-Channel) (Continued) ZθJA, NORMALIZED THERMAL IMPEDANCE 10 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 0.01 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 0.001 10-5 10-4 10-3 10-1 100 10-2 t, RECTANGULAR PULSE DURATION (s) 101 102 103 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 10 5ms 10ms 1 100ms 0.1 200 TJ = MAX RATED TA = 25oC OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1s VDSS(MAX) = 30V 0.01 0.1 1 TA = 25oC 100 IDM, PEAK CURRENT (A) ID, DRAIN CURRENT (A) 100 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION DC 10 1 10-5 100 10-4 ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) 10-1 100 100 VGS = 5V VGS = 20V VGS = 10V 20 VGS = 4.5V 15 VGS = 4V 10 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25oC 5 0 0 1 2 3 VGS = 3V 4 VDS, DRAIN TO SOURCE VOLTAGE (V) Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 9-19 101 25 STARTING TJ = 150oC NOTE: 10-2 FIGURE 5. PEAK CURRENT CAPABILITY If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 1 10 tAV, TIME IN AVALANCHE (ms) 10-3 t, PULSE WIDTH (s) STARTING TJ = 25oC 1 0.1 150 - TA 125 = I25 10 FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 10 I VGS = 10V VDS, DRAIN TO SOURCE VOLTAGE (V) 20 FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: FIGURE 7. SATURATION CHARACTERISTICS 5 RF1K49224 Typical Performance Curves (N-Channel) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 250 20 -55oC 150oC 15 10 5 150 100 ID = 0.5A 50 0 1.5 3.0 4.5 6.0 VGS, GATE TO SOURCE VOLTAGE (V) ID = 7.0A ID = 3.5A ID = 1.75A 200 0 0 7.5 3 4 5 6 7 8 9 10 VGS , GATE TO SOURCE VOLTAGE (V) FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 2.0 2.0 VGS = VDS, ID = 250µA NORMALIZED GATE 1.0 0.5 0 -80 -40 0 40 80 120 THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 3.5A 1.5 1.5 1.0 0.5 0 -80 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 160 FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 1000 2.0 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD ID = 250µA 1.5 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V VDD = 15V 25oC rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) ID(ON), ON-STATE DRAIN CURRENT (A) 25 (Continued) 1.0 0.5 750 CISS 500 COSS 250 CRSS 0 -80 -40 0 40 80 120 TJ , JUNCTION TEMPERATURE (oC) 160 FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 9-20 0 0 5 10 15 20 VDS , DRAIN TO SOURCE VOLTAGE (V) 25 FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE RF1K49224 (Continued) 30 10.0 VDD = BVDSS VDD = BVDSS 22.5 7.5 RL = 8.57Ω Ig(REF) = 0.75mA VGS = 10V 15 5.0 PLATEAU VOLTAGES IN DESCENDING ORDER: VDD = BVDSS VDD = 0.75 BVDSS VDD = 0.50 BVDSS VDD = 0.25 BVDSS 7.5 2.5 0 0 I g ( REF ) 20 -----------------------I g ( ACT ) t, TIME (ms) VGS , GATE TO SOURCE VOLTAGE (V) VDS , DRAIN TO SOURCE VOLTAGE (V) Typical Performance Curves (N-Channel) I g ( REF ) 80 -----------------------I g ( ACT ) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 14. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms (N-Channel) VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% VDS VGS + - VDD 10% 10% 0 DUT RGS VGS 90% VGS 0 FIGURE 17. SWITCHING TIME TEST CIRCUIT 9-21 10% 50% 50% PULSE WIDTH FIGURE 18. RESISTIVE SWITCHING WAVEFORMS RF1K49224 Test Circuits and Waveforms (N-Channel) VDS (Continued) VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + VDD VGS = 10V VGS - VGS = 2V DUT 0 Ig(REF) Qg(TH) Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORM 1.2 -3.0 1.0 -2.5 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER Typical Performance Curves (P-Channel) 0.8 0.6 0.4 0.2 -2.0 -1.5 -1.0 -0.5 0 0 0 25 50 75 100 125 TA , AMBIENT TEMPERATURE (oC) 150 FIGURE 21. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE 25 75 100 125 50 TA, AMBIENT TEMPERATURE (oC) 150 FIGURE 22. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE THERMAL IMPEDANCE ZθJA, NORMALIZED 10 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 0.01 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 0.001 10-5 10-4 10-3 10-1 100 10-2 t, RECTANGULAR PULSE DURATION (s) 101 FIGURE 23. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 9-22 102 103 RF1K49224 Typical Performance Curves (P-Channel) -100 TJ = MAX RATED TA = 25oC -10 IDM, PEAK CURRENT (A) ID, DRAIN CURRENT (A) -50 (Continued) 5ms 10ms -1 100ms -0.1 1s OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) -0.01 -0.1 VDSS(MAX) = -30V -1 VGS = -20V TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: DC -10 -1 10-5 -100 10-4 10-3 10-1 100 101 FIGURE 25. PEAK CURRENT CAPABILITY -20 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] VGS = -20V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25oC VGS = -7V STARTING TJ = 150oC ID, DRAIN CURRENT (A) VGS = -10V STARTING TJ = 25oC -16 VGS = -8V VGS = -6V -12 VGS = -5V -8 VGS = -4.5V -4 0 1 10 tAV, TIME IN AVALANCHE (ms) 10-2 t, PULSE WIDTH (s) -15 IAS, AVALANCHE CURRENT (A) 150 - TA 125 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION FIGURE 24. FORWARD BIAS SAFE OPERATING AREA -1 0.1 = I25 -10 VDS, DRAIN TO SOURCE VOLTAGE (V) -10 I VGS = -10V 100 0 -1.5 -3.0 -4.5 -6.0 -7.5 VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 26. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = -15V -16 500 150oC rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) ID(ON), ON-STATE DRAIN CURRENT (A) -20 -55oC 25oC -12 -8 -4 0 0 -2 -4 -6 -8 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 28. TRANSFER CHARACTERISTICS 9-23 FIGURE 27. SATURATION CHARACTERISTICS -10 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = -15V 400 ID = -5.0A ID = -2.5A 300 ID = -1.25A 200 ID = -0.625A 100 0 -2 -4 -6 -8 -10 VGS , GATE TO SOURCE VOLTAGE (V) FIGURE 29. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT RF1K49224 Typical Performance Curves (P-Channel) (Continued) 1.2 1.5 1.0 0.5 -40 0 40 80 120 1.0 0.8 0.6 0.4 -80 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 30. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 750 1.2 ID = -250µA C, CAPACITANCE (pF) CISS 1.1 1.0 0.9 0.8 -80 160 FIGURE 31. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 600 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD 450 COSS 300 150 CRSS 0 -40 0 40 80 120 TJ , JUNCTION TEMPERATURE (oC) 0 160 VDS , DRAIN TO SOURCE VOLTAGE (V) -10.0 VDD = BVDSS VDD = BVDSS -22.5 0 -15 -7.5 RL = 12Ω Ig(REF) = -0.26mA VGS = -10V PLATEAU VOLTAGES IN DESCENDING ORDER: VDD = BVDSS VDD = 0.75 BVDSS VDD = 0.50 BVDSS VDD = 0.25 BVDSS I g ( REF ) 20 -----------------------I g ( ACT ) t, TIME (µs) -5.0 -2.5 0 I g ( REF ) 80 --------------------I g ( ACT ) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 34. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT 9-24 -20 -25 FIGURE 33. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE -30.0 -7.5 -10 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 32. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE -15.0 -5 VGS , GATE TO SOURCE VOLTAGE (V) 0 -80 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = -250µA PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = -10V, ID = -2.5A NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE 2.0 RF1K49224 Test Circuits and Waveforms (P-Channel) VDS tAV L 0 VARY tP TO OBTAIN REQUIRED PEAK IAS - RG + VDD DUT 0V VDD tP VGS IAS IAS VDS tP 0.01Ω BVDSS FIGURE 35. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 36. UNCLAMPED ENERGY WAVEFORMS tON tOFF td(OFF) td(ON) tr 0 RL tf 10% 10% VDS VGS - VDS VDD + VGS 90% 90% VGS 0 10% DUT RGS 50% 50% PULSE WIDTH 90% FIGURE 37. SWITCHING TIME TEST CIRCUIT FIGURE 38. RESISTIVE SWITCHING WAVEFORMS VDS RL VDS Qg(TH) 0 VGS= -2V VGS - Qg(-10) + DUT VGS= -10V -VGS VDD VGS= -20V VDD Ig(REF) Qg(TOT) 0 Ig(REF) FIGURE 39. GATE CHARGE TEST CIRCUIT 9-25 FIGURE 40. GATE CHARGE WAVEFORMS RF1K49224 Soldering Precautions The soldering process creates a considerable thermal stress on any semiconductor component. The melting temperature of solder is higher than the maximum rated temperature of the device. The amount of time the device is heated to a high temperature should be minimized to assure device reliability. Therefore, the following precautions should always be observed in order to minimize the thermal stress to which the devices are subjected. 1. Always preheat the device. 2. The delta temperature between the preheat and soldering should always be less than 100oC. Failure to preheat the device can result in excessive thermal stress which can damage the device. 9-26 3. The maximum temperature gradient should be less than 5oC per second when changing from preheating to soldering. 4. The peak temperature in the soldering process should be at least 30oC higher than the melting point of the solder chosen. 5. The maximum soldering temperature and time must not exceed 260oC for 10 seconds on the leads and case of the device. 6. After soldering is complete, the device should be allowed to cool naturally for at least three minutes, as forced cooling will increase the temperature gradient and may result in latent failure due to mechanical stress. 7. During cooling, mechanical stress or shock should be avoided. RF1K49224 PSPICE Electrical Model (N-Channel) SUBCKT RF1K49224 2 1 3 ; N-Channel Model rev 12/15/94 CA 12 8 1.75e-9 CB 15 14 1.80e-9 CIN 6 8 1.20e-9 DPLCAP DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD 5 10 LDRAIN DBREAK EBREAK 11 7 17 18 33.29 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1 RDRAIN ESG + 11 6 8 GATE 1 LDRAIN 2 5 1e-9 LGATE 1 9 1.233e-9 LSOURCE 3 7 0.452e-9 EBREAK 16 VTO + IT 8 17 1 EVTO 9 20 + 18 8 LGATE RGATE 21 6 8 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD MOS2 RSOURCE 7 LSOURCE 3 SOURCE S2A S1A 12 DBODY CIN RIN RBREAK 17 18 RBKMOD 1 RDRAIN 5 16 RDSMOD 1e-4 RGATE 9 20 1.83 RIN 6 8 1e9 RSOURCE 8 7 RDSMOD 13.5e-3 RVTO 18 19 RVTOMOD 1 + 17 18 MOS1 MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 S1A S1B S2A S2B DRAIN 2 13 8 S1B RBREAK 15 14 13 17 18 S2B RVTO 13 CB CA + EGS 6 8 EDS + 14 5 8 IT 19 VBAT + VBAT 8 19 DC 1 VTO 21 6 0.1 .MODEL DBDMOD D (IS = 2.50e-13 RS = 1.35e-2 TRS1 = 4.31e-5 TRS2 = 2.15e-5 CJO = 9.33e-10 TT = 2.08e-8) .MODEL DBKMOD D (RS = 1.14 TRS1 = 2.23e-3 TRS2 = -8.91e-6) .MODEL DPLCAPMOD D (CJO = 7.99e-10 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 2.15 KP = 6.25 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 7.74e-4 TC2 = 1.13e-6) .MODEL RDSMOD RES (TC1 = 4.5e-3 TC2 = -7.45e-7) .MODEL RVTOMOD RES (TC1 = -4.16e-3 TC2 = 2.16e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -7.15 VOFF= -5.15) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.15 VOFF= -7.15) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.6 VOFF= 2.4) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.4 VOFF= -2.6) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991. 9-27 RF1K49224 PSPICE Electrical Model (P-Channel) SUBCKT RF1K49224 2 1 3 ; P-Channel Model rev 4/7/97 CA 12 8 7.29e-10 CB 15 14 5.01e-10 CIN 6 8 5.55e-10 LDRAIN ESG 10 DBODY 5 7 DBODYMOD DBREAK 7 11 DBREAKMOD DPLCAP 10 6 DPLCAPMOD + 5 51 EBREAK 5 11 17 18 -35.46 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 5 10 8 6 1 EVTHRES 6 21 19 8 1 EVTEMP 6 20 18 22 1 EBREAK ESLC + 17 18 - - 50 DPLCAP LGATE RDRAIN EVTHRES + 19 8 EVTEMP RGATE GATE 1 LDRAIN 2 5 1e-9 LGATE 1 9 1.27e-9 LSOURCE 3 7 4.20e-10 9 - 20 21 18 + 22 MWEAK 11 MMED DBREAK MSTRO LSOURCE CIN RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 19.3e-3 RGATE 9 20 7.44 RLDRAIN 2 5 10 RLGATE 1 9 12.7 RLSOURCE 3 7 4.2 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 65.37e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 DBODY 16 6 RLGATE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD S1A S1B S2A S2B RLDRAIN RSLC1 51 RSLC2 IT 8 17 1 DRAIN 2 5 + 8 6 8 SOURCE 3 7 RSOURCE RLSOURCE S1A 12 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 14 + + 6 8 EGS 19 EDS - - IT VBAT 5 8 - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*48),2.5))} .MODEL DBODYMOD D (IS = 3.30e-13 RS = 4.56e-2 TRS1 =6.98e-4 TRS2 =8.08e-7 CJO = 8.21e-10 TT = 3.51e-8 M=0.4) .MODEL DBREAKMOD D (RS = 8.18e-1 TRS1 =5.28e-3 TRS2 = -7.18e-5 .MODEL DPLCAPMOD D (CJO = 2.52e-10 IS = 1e-30 N = 10 M=0.6) .MODEL MMEDMOD PMOS (VTO= -1.95 KP=0.75 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=7.44) .MODEL MSTROMOD PMOS (VTO= -2.44 KP= 7.25 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MWEAKMOD PMOS (VTO= -1.68 KP=0.045 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=74.4 RS=0.1) .MODEL RBREAKMOD RES (TC1 = 9.45e-4 TC2 = -1.01e-7) .MODEL RDRAINMOD RES (TC1 = 3.69e-3 TC2 = 5.90e-6) .MODEL RSLCMOD RES (TC1=3.46e-3 TC2= 1.26e-6) .MODEL RSOURCEMOD RES (TC1=3.69e-3 TC2=5.90e-6) .MODEL RVTHRESMOD RES (TC=-5.19e-4 TC2= 5.02e-6) .MODEL RVTEMPMOD RES (TC1 = -3.54e-3 TC2 = -6.53e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = 6.94 VOFF= 3.94) VON = 3.94 VOFF= 6.94) VON = 0.40 VOFF= -2.60) VON = -2.60 VOFF= 0.40) .ENDS NOTE:For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options;IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 9-28 RF1K49224 PSpice Thermal Model REV 28 Feb 97 7 JUNCTION RF1K49224 CTHERM1 7 6 1.00e-7 CTHERM2 6 5 9.00e-4 CTHERM3 5 4 3.00e-3 CTHERM4 4 3 4.00e-2 CTHERM5 3 2 5.20e-3 CTHERM6 2 1 1.90e-2 RTHERM1 CTHERM1 6 RTHERM1 7 6 7.10e-2 RTHERM2 6 5 1.90e-1 RTHERM3 5 4 5.95e-1 RTHERM4 4 3 4.27 RTHERM5 3 2 1.2e1 RTHERM6 2 1 1.04e2 RTHERM2 CTHERM2 5 RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 1 CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 9-29